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Phase difference estimation is a fundamental problem in numerous applications. However, incoherent
sampling (IS) is an inevitable factor which degrades the precision of many correlations or Fourier
transform-based approaches. In this paper, IS and the spectral superposition of real signals are both
considered. A novel estimator is developed based on modulation and the discrete Fourier transform
(DFT). With the estimated frequency, the phase difference can be obtained by calculating four DFT
samples of the modulated signals. Simulations and the experimental results have proved their validity
as well as their superiority over five other methods designed for IS, particularly at high signal-to-noise
ratios. Furthermore, the proposed method can maintain high accuracy even when a significant bias
occurs with the frequency estimation. Published by AIP Publishing. https://doi.org/10.1063/1.5026439

I. INTRODUCTION

The phase difference between two noisy versions of a
sinusoid received at spatially separated sensors is an impor-
tant parameter applied in tracking, positioning, direction find-
ing, instrumentation, measurement, etc. One early similar
application is estimating [via the discrete Fourier transform
(DFT)] the direction of arrival (DOA) of signals incident on
an array of antennas and overcoming the inherent estima-
tion bias.1 For phase difference estimation, many approaches
have been proposed so far. When the source signals are
stationary, the generalized cross correlator2 is a classical
method which provides maximum likelihood estimation per-
formance under the Gaussian signal and noise assumption.
However, its resolution degrades at certain sampling rates.
The approaches based on DFT3 and discrete-time-Fourier
transform (DTFT)4 calculate the phase difference directly
through the subtraction of two DFT or DTFT phases at the
signal frequency, but they suffer from spectrum leakage errors
related to incoherent sampling (IS). For real sinusoids, the
quadrature delay estimator (QDE),5 which utilizes in-phase
and quadrature-phase components to get the estimated phase
difference, is unbiased under the assumption of coherent sam-
pling (CS). The correlation-based method (CM)6,7 is com-
putationally effective, but its performance is limited by the
sampling period. On the other hand, for time-varying phase
difference, online or adaptive techniques are widely con-
cerned,8–11 such as the Hilbert transform (HT) method,10,11

which can estimate the rapidly changed phase difference.
However, its precision is also influenced by the sampling
period.

It is noticeable that in practical applications, IS always
occurs because the varying signal frequency is usually sam-
pled by using an analog-to-digital converter (ADC) at a fixed

a)Electronic addresses: yaqingtu@126.com and kuiwang.nudt@hotmail.com

sampling rate.12 To some extent, a majority of estimators uti-
lizing autocorrelation or cross-correlation exhibit the effect
of bias according to IS, especially when the signal length
is not sufficiently large. To solve this problem, the data-
extension based correlation (DEC) method13 directly extended
the signal to approach CS by signal shift or truncation. The
data-extension scheme was combined with the Hilbert trans-
form (DEHT) in Ref. 14 to overcome the end effect of the
HT method although data extension cannot exactly achieve
CS even with a known frequency. Alternatively, the estima-
tion bias caused by IS can be canceled out through analytical
derivation. This can be found in the unbiased quadrature delay
estimator (UQDE)15 and the phase and frequency matching-
based method.16 In the frequency domain, when the discrete
sequence obtained by IS is processed within a DFT or DTFT
window, the spectrum leakage error is appended to the esti-
mated results. Such an error gets worse for real signals because
of the spectral superposition of the positive- and negative-
frequency components. For real sinusoids, the modified DTFT
(M-DTFT)-based delay estimator15 converts the real signals
to complex versions using the idea of the quadrature-phase
component. Furthermore, the DTFT-based algorithms with
negative frequency contribution (NFC-DTFT)17 significantly
improve precision when the signal frequency is low or close
to the Nyquist frequency. Further revisions of the NFC-DTFT
method were constructed in Refs. 18–20 with window tech-
niques and sliding algorithms to fit the time-varying signals.
However, all the aforementioned methods designed for IS
need a priori knowledge of actual signal’s frequency, and
they show bias when the accurate frequency information is
unavailable.

The method proposed in this paper modulates the real-
valued IS signals to approach CS, with the estimated frequency.
The spectral superposition of the positive- and negative-
frequency components is eliminated by some simple opera-
tions on the DFT samples. After all, the phase difference can
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be obtained by calculating only four DFT samples. In Sec. II,
the general ideas, detailed derivation, and parameter settings
of the estimator are presented. The simulations and experi-
mental results are shown in Sec. III. The final conclusions are
presented in Sec. IV.

II. METHOD DEVELOPMENT
A. The underlying principle to tackle IS

Consider the received signals of two noisy real sinusoids
at the same frequency as follows:




x1(n)= s1(n) + w1(n)=A1 cos(ω0n + θ1) + w1(n)

x2(n)= s2(n) + w2(n)=A2 cos(ω0n + θ2) + w2(n)
, n= 0, 1, 2, . . . , N − 1, (1)

where A1 and A2 are the amplitudes and θ1 and θ2 are the ini-
tial phases of the source signals s1(n) and s2(n). ω0 = 2πf /fs

(0 ≤ ω0 ≤ π) is the normalized frequency in radians, where
f is the actual signal frequency in Hz and fs is the sam-
pling frequency in Hz. w1(n) and w2(n) are additive white
Gaussian noises (AWGNs) with zero means and identical
variance (σ2).

According to Euler’s formula, the source signal si(n), i =
1, 2 can be rewritten as

si(n)=Ai cos(ω0n + θi)

= (Ai/2) · ej(ω0n+θi) + (Ai/2) · e−j(ω0n+θi). (2)

If a priori knowledge of the signal frequency is assumed,
the source signals can be adjusted to approach CS. Data exten-
sion provides a tangible solution, but the extended or truncated
signal sequences cannot satisfy CS at various signal frequen-
cies, and the errors get worse for short signals. Alternatively,
modulation is more effective despite the signal length and
frequency. Consider the modulated signal xi ,m(n) as

xi,m(n)= (si(n) + wi(n)) · e−jnωm

= si,m(n) + wi,m(n)

= (Ai/2) · ej((ω0−ωm)n+θi)

+ (Ai/2) · e−j((ω0+ωm)n+θi) + wi(n)e−jnωm , (3)

where ωm is the modulation frequency in rad/s, which is pro-
portional to ω0. si ,m(n) and wi ,m(n) represent the modulated
source signal and noise. The modulated signal xi ,m(n) results
from a shift of the spectrum of xi(n) by ωm.

The DFT of xi ,m(n), denoted as X i ,m(k), is

Xi,m(k)=
N−1∑
n=0

(
si,m(n) + wi,m(n)

)
· e−j 2π

N nk

= Si,m(k) + Wi,m(k)

=

N−1∑
n=0

[
Ai

2
ej

(
(ω0−ωm−

2πk
N )n+θi

) ]

+
N−1∑
n=0

[
Ai

2
e−j

(
(ω0+ωm+ 2πk

N )n+θi

) ]
+ Wi,m(k), (4)

where Si ,m(k) = DFT[si ,m(n)], W i ,m(k) = DFT[wi ,m(n)], and
k = 0, 1, 2, . . ., N − 1.

In order to analyze the spectral superposition of real
signals, the positive- and negative-frequency components of
Si ,m(k) are denoted as Si ,mP(k) and Si ,mN (k), respectively,
where Si ,mP(k) can be expressed as

Si,mP(k)=
N−1∑
n=0

[
Ai

2
ej

(
(ω0−ωm−

2πk
N )n+θi

) ]
=

Ai

2
ejθi

N−1∑
n=0

ej(ω0−ωm−
2πk

N )n =
Ai

2
ejθi

1 − ej(ω0−ωm−
2πk

N )N

1 − ej(ω0−ωm−
2πk

N )

=
Ai

2
ejθi

ej N
2 (ω0−ωm−

2πk
N )

(
e−j(ω0−ωm−

2πk
N ) N

2 − ej(ω0−ωm−
2πk

N ) N
2

)
ej 1

2 (ω0−ωm−
2πk

N )
(
e−j 1

2 (ω0−ωm−
2πk

N ) − ej 1
2 (ω0−ωm−

2πk
N )

)
=

Ai

2
ejθi ej (N−1)

2 (ω0−ωm−
2πk

N )
sin(

N
2

(ω0 − ωm −
2πk
N

))

sin(
1
2

(ω0 − ωm −
2πk
N

))
, (5)

and similarly we can get

Si,mN (k)=
N−1∑
n=0

[
Ai

2
e−j

(
(ω0+ωm+ 2πk

N )n+θi

) ]

=
Ai

2
e−jθi e−j (N−1)

2 (ω0+ωm+ 2πk
N )

sin(
N
2

(ω0 + ωm +
2πk
N

))

sin(
1
2

(ω0 + ωm +
2πk
N

))
.

(6)

With a knowledge of ω0, the modulation frequency ωm

can be set to satisfy the following requirements:




(ω0 − ωm)N = 2qπ

q= round

(
ω0N
2π

) , (7)

where q is a positive integer and the function of round(·)
means to round the number up or down to the nearest integer.
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According to this assumption, sin((N /2) (ω0 − ωm − 2πk/N))
= 0 so that only if k = q, Si ,mP(q) , 0; otherwise, Si ,mP(k) = 0.
Then, Eq. (4) can be simplified as

Xi,m(k)=



Si,mN (k) + Wi,m(k), k , q

Si,mN (k) + Si,mP(k) + Wi,m(k), k = q.
(8)

Ignoring the noisy term of W i ,m(k), Fig. 1 shows an exam-
ple of the discrete spectrum of the source signal si(n) and
the modulated signal si ,m(n) for ω0 = 0.146π and N = 45.
As is shown in Fig. 1(a), without modulation, the spectrum
of the source signal shows obvious spectral superposition,
which is detrimental for parameter estimation. Unfortunately,
a majority of Fourier transform based estimators which were
developed for complex signals or ignored the negative fre-
quency contribution give a biased performance for real signals.
After modulation [see Fig. 1(b)], the positive-frequency com-
ponent Si ,mP(k) shows no spectrum leakage, and the interaction
of positive- and negative-frequency components can be sepa-
rated in this case. That is to say, modulation is helpful to realize
unbiased estimation for real sinusoids.

As we know, Si,mP(ejω)=DTFT[(Ai/2) · ej((ω0−ωm)n+θi)]
=Aiπejθiδ(ω − (ω0 −ωm)), where δ(·) is the Dirac delta func-
tion. The DFT of (Ai/2) ·ej((ω0−ωm)n+θi) is of course the discrete
sequence sampled from its DTFT with a frequency damping
interval of 2π/N. From Eq. (7), we can find Si,mP(ejω)|ω=2πq/N

as the only DFT sample which is not equal to zero, and θi can
be obtained directly by calculating the phase of Si ,mP(q). Thus,
the phase difference between s1(n) and s2(n) can be computed
as

∆θ = θ2 − θ1 = arctan

(
imag

(
S2,mP(q)/S1,mP(q)

)
real

(
S2,mP(q)/S1,mP(q)

) )
. (9)

B. Derivation of the estimator

From the analysis above, the problem of calculating the
phase difference converts to the estimation of Si ,mP(q). From
Eq. (8), Si ,mP(q) can be obtained as

FIG. 1. Positive- and negative-frequency components of si(n) and si ,m(n).
(a) Discrete spectrum of the source signal si(n). (b) Discrete spectrum of the
modulated signal si ,m(n).

Si,mP(q)=Xi,m(q) − Si,mN (q) −Wi,m(q). (10)

Denoting Ωk = ω0 + ωm + 2πk/N for simplification and
then from Eqs. (6) and (8), we obtain

Si,mN (q)=
Ai

2
e−jθi e−j (N−1)

2 Ωq
sin(NΩq/2)

sin(Ωq/2)
, (11)

Xi,m(k)= Si,mN (k) + Wi,m(k)

=
Ai

2
e−jθi e−j (N−1)

2 Ωk
sin(NΩk/2)
sin(Ωk/2)

+ Wi,m(k), k , q.

(12)

Substitute Eqs. (11) and (12) into (10), and then Si ,mP(q)
can be obtained as

Si,mP(q)=Xi,m(q) − Xi,m(k)
sin(NΩq/2) sin(Ωk/2)

sin(Ωq/2) sin(NΩk/2)

× ej (N−1)
2 (Ωk−Ωq) + ε(k), k , q, (13)

where ε(k) is the interference term caused by the AWGN,

ε(k)=
sin(NΩq/2) sin(Ωk/2)

sin(Ωq/2) sin(NΩk/2)
ej (N−1)

2 (Ωk−Ωq)

×Wi,m(k) −Wi,m(q), k , q. (14)

Because of Wi,m(k)=DFT[wi(n)e−jnωm ], it is easy to
prove that E[W i ,m(k)] = 0, var[W i ,m(k)] = Nσ2, and
E[Wi,m(k) ·W∗i,m(l)]= 0, when k , l. Accordingly, the expecta-
tion and variance of ε(k) can be expressed as

E[ε(k)]=
sin(NΩq/2) sin(Ωk/2)

sin(Ωq/2) sin(NΩk/2)
ej (N−1)

2 (Ωk−Ωq)

×E[Wi,m(k)] − E[Wi,m(q)]= 0, k , q, (15)

var[ε(k)]=E[|ε(k)|2]

= *
,

(
sin(NΩq/2) sin(Ωk/2)

sin(Ωq/2) sin(NΩk/2)

)2

+ 1+
-
· Nσ2. (16)

Accordingly, an unbiased estimator of Si ,mP(q) can be
written as

Ŝi,mP(q)=Xi,m(q) − Xi,m(k)
sin(NΩq/2) sin(Ωk/2)

sin(Ωq/2) sin(NΩk/2)

× ej (N−1)
2 (Ωk−Ωq), k , q. (17)

From Eq. (17), the estimator Ŝi,mP(q) needs to compute
only two DFT samples as X i ,m(q) and X i ,m(k). Ωq and Ωk can
then be obtained directly by the estimated signal frequency
and the corresponding modulation frequency.

C. Principle to choose k

It should be noticed that in Eq. (17), k can be an arbitrary
integer varying from 0 to N − 1 except q. Due to the non-
linear form of the phase of Ŝi,mP(q), it is difficult to find the
analytical optimal integer k. However, we expect ��Xi,m(k)�� to
be large enough so that it would not be too sensitive to noise,
where |·| means the absolute value. According to the round-
ing operation in Eq. (7), the peak value of ��Xi,m(k)�� (excluding
��Xi,m(q)��) usually occurs at N − q − 1, N − q, or N − q + 1. The
frequency estimation error is another factor to be considered.
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FIG. 2. Mean square phase difference errors versus SNR for different values
of k in Eq. (17) (ω0 = 0.146π, N = 53).

The expanded autocorrelation (EA) method21 is involved for
frequency estimation, and it shows an obvious bias at high
signal-to-noise ratios (SNRs). A typical example is given in
Fig. 2. The performance of the EA method for frequency esti-
mation is presented in the upper subgraph in Fig. 2, which
shows mean-square errors (MSEs) saturation when the SNR
is higher than 20 dB. Seven different values of the integer k
[in Eq. (17)] are simulated at ω0 = 0.146π and N = 53. Com-
paring their MSEs between two SNRs at 20 dB and 75 dB, a
“trade-off” effect can be found which generally indicates that
the accuracy at high SNRs is always achieved at the cost of
slightly reducing performance at low SNRs. In particular, if
we set k = q − 1, good precision can be guaranteed for high
SNRs, but the method exhibits a bias at any value of SNR.

After a large number of simulations and numerical evalua-
tions, an empirical principle of choosing k was derived to set k
around N − q at low SNRs when the accurate frequency infor-
mation is available. Alternatively, if a significant bias happens
to the frequency estimation, k = q − 1 is not a bad choice to
achieve high precision for high-SNR applications.

So the proposed method is summarized as follows:

(1) Use an estimated signal frequency ω̂0 to replace ω0 in
Eq. (7), and calculate the modulation frequency ωm and
the integer q.

(2) Modulate the source signal si(n) to si ,m(n), i = 1, 2 as in
Eq. (3).

(3) Choose appropriate integer k and calculate four DFT
samples of the modulated signal including X1,m(q),
X1,m(k), X2,m(q), and X2,m(k).

(4) Obtain Ŝ1,mP(q) and Ŝ2,mP(q) by Eq. (17).
(5) Use Eq. (9) to realize the phase difference estimation.

III. SIMULATIONS AND EXPERIMENTS
A. Simulations

To verify the validity, comparative analysis based on sim-
ulations is conducted involving CM, HT, QDE, DTFT, DEC,
DEHT, UQDE, M-DTFT, and NFC-DTFT approaches set

FIG. 3. Mean square phase difference errors versus SNR (ω0 = π/6, N = 53).

against the proposed method. Without loss of generality, sim-
ulation parameters are set as A1 = A2 = 1, ∆θ = π/6, and
θ2 = θ1 + ∆θ, while θ1 is uniformly distributed between −π
and 5π/6. Each simulation result (including AWGN) is carried
out with an average of 2000 independent runs.

Assuming the signal frequency ω0 = π/6 is known to the
estimators, Fig. 3 shows the mean square phase difference
errors versus SNR at N = 53, which is recognized as an IS
situation. Obviously, the conventional methods like CM, HT,
QDE, and DTFT are biased estimators under IS. By contrast,
the methods designed for IS including DEC, DEHT, UQDE,
M-DTFT, and NFC-DTFT and the proposed method coinci-
dently show high accuracy when the SNR is larger than 30 dB,
which has proved their effectiveness to overcome IS. From the
subgraph, we can see that the performance of the proposed
method and NFC-DTFT is even slightly better than those of
the DEHT, UQDE, and M-DTFT methods.

When the signal frequency is unknown, the EA method is
used to estimate the signal frequency, and the methods for IS

FIG. 4. Mean square phase difference errors versus SNR (ω0 = 0.146π,
N = 53).
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FIG. 5. Mean square phase difference errors versus frequency (SNR = 60 dB,
N = 53).

suffer from the frequency estimation errors. The mean square
phase difference errors versus SNR atω0 = 0.146π and N = 53
is shown in Fig. 4. In this case, π/(2ω0) is not equal to an integer
so that the quadrature-phase component cannot be accurately
obtained by time-shifting the signal by integer samples, and
consequently, the UQDE and M-DTFT methods exhibit a bias
when the SNR is higher than 30 dB. Similarly, the extended
signal sequences cannot exactly achieve CS at this signal fre-
quency, and the performance of data-extension based methods
such as DEC and DEHT degrades with the increase of SNR.
As for NFC-DTFT and the proposed methods, their MSEs
are mainly affected by the frequency estimation errors. How-
ever, the proposed method shows stronger robustness than the
NFC-DTFT method, and it performs better than the other five
approaches when the SNR is larger than 35 dB.

To evaluate the precision at various signal frequencies,
the mean square phase difference errors versus frequency at
SNR = 60 dB and N = 53 is shown in Fig. 5. The signal fre-
quency is estimated by the EA method, and its performance is
provided as the dark dashed line in the upper right subgraph.
In Fig. 5, the MSEs of the DEC, DEHT, M-DTFT, and UQDE
methods fluctuate drastically with respect to variation of the

signal frequency. They are affected by both the value and esti-
mation errors of the signal frequency, and they reach the mini-
mum only at certain points for meeting the CS requirement. In
general, the NFC-DTFT and proposed methods exhibit better
performance. The performance of the NFC-DTFT method is
mainly affected by the frequency estimation errors, and the
fluctuation of the dark line in Fig. 5 has the same characteris-
tics as the line in the subgraph. For the proposed method, such
an effect can also be found in calculating the angle of Ŝi,mP(q).
However, due to the division in Eq. (9), the fluctuation effect
is canceled out so that the proposed method can provide a
steady and accurate estimation. Generally speaking, the pro-
posed method shows higher anti-interference performance to
variation of the signal frequency and relative estimation errors
than the other five methods, and it has a high precision over a
large range of the signal frequency.

B. Measurement experiments

To prove the validity in practice, a RHEONIK Corio-
lis mass flowmeter (CMF) with a RHE08 transmitter is used
to test the performance of DEC, DEHT, UQDE, M-DTFT,
and NFC-DTFT methods against the proposed method. In the
experiments, the signal frequency f is approximately 146 Hz,
and the sampling frequency fs is 2 kHz so that the normal-
ized frequency can be evaluated as ω0 = 2πf /fs = 0.146π ≈
0.4587 rad. The flow rate varies from 0.40 to 16.72 kg min−1.
In addition, 2650 points of sampled signals are divided into 50
segments, and for each segment, the signal length is N = 53,
which is the same as the parameter settings in simulations. The
estimated time delay comes from an average of 50 segments.
According to the measurement theory of CMF given in Ref.
22, the mass flow rate M f is calculated as




Mf =B0 · ∆t + C0

∆t =∆θ̂/(ω̂0 · fs)
, (18)

where B0 = 0.1392, C0 = −0.0052, ∆θ̂ is the estimated phase
difference, ∆t is the corresponding time delay, and ω̂0 is the
estimated signal frequency by the EA method.

The experimental results are shown in Table I. The esti-
mated frequency ω̂0 fluctuates around the theoretical value
ω0 = 0.4587 rad, which contributes to the bias in the

TABLE I. Theoretical and estimated time delays under different flow rates.

Estimated time delays (µs)

Flow rates Theoretical Proposed
(kg min�1) Time delays (µs) ω̂0 (rad) DEC DEHT UQDE M-DTFT NFC-DTFT (k = N � q + 3)

1 0.40 2.902 0.4602 7.688 2.907 2.851 2.922 2.919 2.912
2 1.12 8.107 0.4620 10.241 8.146 7.912 8.083 8.134 8.117
3 4.32 31.061 0.4595 31.564 31.184 30.460 31.049 31.135 31.050
4 5.93 42.659 0.4614 43.201 42.843 41.892 42.712 42.769 42.651
5 8.46 60.788 0.4560 61.388 61.048 59.624 60.789 60.938 60.765
6 10.14 72.859 0.4562 73.480 73.187 71.466 72.846 73.022 72.851
7 12.10 86.950 0.4568 87.598 87.296 85.338 86.992 87.149 86.927
8 13.95 100.282 0.4565 101.005 100.687 98.381 100.293 100.511 100.283
9 16.72 120.126 0.4559 120.789 120.609 117.878 120.140 120.391 120.059
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later phase difference estimation. The average error rate for
each phase difference estimator is calculated as ri = (1/9)

×
9∑

i=1

(
∆ti,estimated − ∆ti,theoretical

)
/∆ti,theoretical, i = 1, 2, . . ., 9,

and the results of DEC, DEHT, UQDE, M-DTFT, and NFC-
DTFT methods and the proposed method are 22.00%, 0.40%,
1.93%, 0.14%, 0.28%, and 0.07%, respectively. Thus, the
superiority of the proposed method is demonstrated by these
experimental measurements.

IV. CONCLUSION

To tackle the bias caused by IS, an accurate phase differ-
ence estimator is proposed based on modulation and the DFT.
The estimated results can be obtained by calculating four DFT
samples of the modulated signals. Unlike data-extension based
methods, our proposed method can approach CS at various sig-
nal lengths and frequencies. The spectral superposition of real
sinusoids is eliminated which is helpful to achieve unbiased
estimation. Compared with DEC, DEHT, UQDE, M-DTFT,
and NFC-DTFT methods, the proposed method shows higher
anti-interference performance to frequency estimation errors,
which enables it to provide reliable results when significant
errors happen to the frequency estimation. The simulation
results have proved its superiority, particularly at high SNRs.
The validity of the proposed method is also demonstrated by
field experiments. Finally, the proposed method is also capable
of estimating the signal amplitude and initial phase.
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