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Realistic Lower Bound on Elevation Estimation

for Tomographic SAR
Bo Yang, Huaping Xu, Member, IEEE, Wei Liu, Senior Member, IEEE, Yanan You, and Xiaozhen Xie

Abstract—The noise in a tomographic synthetic aperture radar
(Tomo-SAR) model is normally assumed to be independent
and identically distributed (i.i.d.) Gaussian. In this work, the
correlated Tomo-SAR model is introduced by studying the effect
of random residual phase and correlated additive Gaussian noise,
and a realistic and general hybrid Cramér-Rao bound (CRB)
on elevation estimation is derived for such a model. Then, a
simplified calculation of the HCRB is proposed when the bound of
elevation is the main focus. Computer simulations are performed
to analyze the proposed HCRB for elevation estimation. The
results obtained from estimators based on compressive sensing
(CS) and distributed compressive sensing (DCS) show that
the proposed HCRB can provide a more realistic bound than
the CRB derived with the white additive noise and perfect
phase compensation assumption. This is also validated through
processing results on real data acquired by TerraSAR-X/Tandem-
X sensors.

Index Terms—Synthetic aperture radar (SAR), SAR tomog-
raphy (Tomo-SAR), Cramér-Rao bound (CRB), hybrid Cramér-
Rao bound (HCRB), correlated noise, elevation accuracy.

I. INTRODUCTION

TOMOGRAPHIC synthetic aperture radar (Tomo-SAR)

is an extension of SAR interferometry (InSAR), where

multiple views are utilized to map the scattering power at

different heights, thus enabling 3-D imaging of the scenes [1].

Since it first demonstrated the resolution capability along the

elevation direction by an airborne system [2], Tomo-SAR has

attracted great interest and much progress has been made in

the field of spaceborne multibaseline InSAR, especially for

scenes with steep topography or high spatial density. A 2-D

SAR image pixel can be considered as a projection of the

3-D scene scattering along the elevation direction onto the 2-

D azimuth-range plane. Based on this principle, Fornaro et

al. [3]–[5] first validated the capability based on spaceborne

data and formulated the layover problem as a linear spectral

estimation of the amplitude, phase and elevation parameters

of the targets.

Based on the Tomo-SAR signal model, various estimators

have been proposed for 3-D reconstruction with multipass

SAR data over the same scene, such as beamforming, SVD-

based methods, nonlinear least square (NLS), and their com-
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bined versions and variations (see [3], [4], [6], [7]). For space-

borne Tomo-SAR, estimators based on compressive sensing

(CS) have been proposed to obtain a significantly improved

elevation resolution [6]–[13]. However, for a small number

of acquisitions, with unevenly sampled space and limited

span of baselines, the performance of CS-based methods

is not satisfactory for single stack elevation reconstruction.

The neighborhood-based approach, distributed compressive

sensing (DCS) or multilooking approach to compressive sens-

ing (MCS), can mitigate the undersampling effect effectively

and improve the performance further [14], [15]. In essence,

the same supports of common components for neighboring

azimuth-range pixels or multiple channels are exploited to re-

duce acquisition cost and help improve the elevation accuracy

in [14]–[17].

It is important to analyze and evaluate the performance

of an estimator before it is employed in practice. The the-

oretical lower bounds (see [18]–[28])1, such as Cramér-Rao

bound (CRB) and hybrid Cramér-Rao bound (HCRB), play

an important role in predicting the performance of estimators,

analyzing the system parameters and guiding their design. Zhu

et al. derived the CRB of the single stack Tomo-SAR model in

[8], following which Liang et al. obtained the CRB of multiple

channels for the joint Tomo-SAR model [16]. Both works

are based on the assumption that the overall noise containing

both background clutters and thermal noise in a given pixel is

independent among deramped SAR images, so that the CRB

of unknown parameters can be derived using the results of

[29] and [30]. Considering that clutters in the referred pixel

between different SAR images are actually correlated in most

cases, the HCRB was derived in [31] with the assumption that

the correlation coefficient is real-valued, although this is not

verified by real data.

In this work, a realistic correlated Tomo-SAR model is

proposed and the elevation estimation accuracy for the pro-

posed model is derived. Firstly, a correlated residual phase

term is introduced in the original Tomo-SAR model, and then

the total noise signal is formulated by two parts: one is the

correlated residual phase term due to dominant targets and the

other one is the additive noise originated from the thermal

effect of the system and correlated clutters. Subsequently, the

joint correlated Tomo-SAR model is formed by theoretical

analysis. Then, with the joint probability density function (pdf)

of observations and the random disturbance parameters, the

elevation accuracy of scatters is derived under the framework

1Some works denote the Cramér-Rao bound by CRLB and the hybrid
Cramér-Rao bound by PCRB (Posterior Cramér-Rao bound) or MCRLB
(Modified Cramér-Rao lower bound).
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Fig. 1. Radar side-looking imaging geometry, where each azimuth-range pixel
value is the superposition of echoes reflected from all targets in the referred
red sector area.

of HCRB. Furthermore, a simplified calculation of the HCRB

is proposed when the bound for elevation estimation is the

main focus. Finally, some factors affecting the proposed bound

are studied for the case with one and two scatterers. Detailed

analysis and simulation results as well as real data validation

show that the HCRB under the residual correlated phase

and correlated additive noise is more realistic than the CRB

derived with perfect phase calibration and additive white noise

assumption, and the CRB presented in [8] and [16] can be

considered as a special case of our result.

The rest of this paper is organized as follows. In Section

II, a review of the Tomo-SAR model is provided, followed

by the proposed correlated Tomo-SAR model in Section III.

The HCRB for elevation estimation with correlated noise is

presented in Section IV, and the derived bound is analysed

for the case with single and two scatterers and verified by

two CS-based estimators in Section V, followed by real data

validation. Finally, conclusions are drawn in Section VI.

II. ORIGINAL TOMO-SAR MODEL

In the side-looking imaging geometry shown in Fig. 1,

each azimuth-range pixel value is the superposition of echoes

reflected from targets in the referred red sector area. That is,

each pixel in a single look complex (SLC) image represents the

projection of a 3-D sector area onto the azimuth-range plane

along the elevation direction. The k-th high-resolution SAR

image followed by co-registration and phase compensation

(deramping, atmospheric and deformation phase removal [32],

[33]) can be modeled by the following line integration [3], [4]

yk ≈
∫

[Smin, Smax]

x(s) exp(j2πξks)ds (1)

where [Smin, Smax] is the elevation range along the direction

s, j =
√
−1, ξk denotes the elevation frequency with ξk =

−2b⊥k/λr, λ and r are radar wavelength and the range of the

considered cell, respectively, and b⊥k is the effective baseline

perpendicular to the range direction of the master antenna as

shown in Fig. 2.

Similar to uniform partition of the red sector area in Fig.

1, the integration on elevation s is usually discretized with

N uniform segments in [Smin, Smax]. The pixel value of the
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Fig. 2. Baseline distribution of the Tomo-SAR system and one man-made
scene, where pixels corresponding to the red resolution cell have the same
elevation support.

k-th observation yk can be written as a linear combination of

M strong and sparse backscattering sources

yk =
M
∑

m=1

Φ(k,m)xm + wk (2)

where Φ(k,m) = exp(−j2πξksm) for k = 1, 2, · · · ,K and

m = 1, 2, · · · ,M , sm and xm are the elevation and complex

reflectivity of the m-th target, respectively, and wk is the

additive noise containing clutters and thermal noise.

Furthermore, the K sets of tomographic SAR data can be

modeled linearly as one stack [3]–[5]

y = Φx + w (3)

where y is the observations with K × 1 elements in referred

azimuth-range cell, Φ is a semi-discrete space-frequency

matrix along direction s with K × N elements, and x =
[x1, · · · , xN ]T is the complex reflectivity vector with M nonze-

ro elements. For example, there are many uniform partitions of

the red sector area in [Smin, Smax], but only the scattering of

ground and tree canopy as well as building facades is effective.

Considering the case that vertical baselines {b⊥k}Kk=1 are

distributed uniformly with equal spacing, i.e., the interval of

the two adjacent satellites ∆B is equal, the n-th column of Φ

in the model of tomographic SAR can be expressed as

Φ(sn) = [e−j4π
⌊K

2
⌋∆Bsn

λr , · · · , 1, · · · , ej4π
⌈K

2
−1⌉∆Bsn

λr ]T (4)

where ⌊·⌋ denotes the round down to integer operation, while

⌈·⌉ denotes the round up to integer operation. The cluttering

effect is normally embedded in the additive white noise

contribution. Thus, w is assumed to be zero-mean Gaussian

with a covariance matrix σ2
wRw, where σ2

w is the intensity of

noise and Rw is the K ×K identity matrix [3]–[13].

For the real spaceborne SAR data, on the one hand, the

baseline parameters and ranges of the neighboring pixels in

Eq. (3) are approximately equal, and therefore the observed
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matrices of the neighboring stacks can be expressed in the

same form; on the other hand, the targets’ elevation of range

line cells, e.g. the cells represented by the red line area

in the triangular slope facet of Fig. 2, is almost equal to

each other. Thus, some neighboring stacks are modeled with

approximately the same space-frequency matrix and elevation

support.

After L pixel stacks or multiple channels are selected, the

Tomo-SAR data is combined into the following joint model

[16], [17], [34], [35]



















y1 = Φx1 + w1

y2 = Φx2 + w2

...

yL = ΦxL + wL

(5)

or alternatively into the following form

Y = ΨX + W (6)

where X = [xT1 · · · xTL]
T, Y = [yT1 · · · yTL]

T, W =
[wT

1 · · ·wT
L]

T, and Ψ is a block diagonal matrix with Φ being

the main diagonal elements. When L = 1, the joint model is

reduced to the single model in Eq. (3).

III. JOINT CORRELATED TOMO-SAR MODEL

In the preprocessing of Tomo-SAR, the phase part not

related to elevation estimation should be compensated first,

such as the deramping phase and atmospheric phase as well

as the deformation phase. The residual phase term after com-

pensation is expressed as exp(−jθk) and then incorporated

into Eq. (2). The k-th observation can be expressed by

yk =
M
∑

m=1

exp(−jθk)Φ(k,m)xm + ŵk (7)

where θk is the residual noise phase related to uncompensated

phase and multiplicative speckle noise, and ŵk denotes the

noise generated through the thermal effect and the clutters

with the residual phase disturbance. As a result, the general

Tomo-SAR model in a vector form is given by

y =

M
∑

m=1

a ⊙Φ(sm)xm + ŵ (8)

where a = [exp(−jθ1) · · · exp(−jθK)]T is the vector form of

the residual phase term, ⊙ is the Hadamard product and ŵ is

the vector of additive noise.

The coherence between the elements of the speckle noise

phase vector is very strong, enabling it to focus 3-D backscat-

tering profiles [39]. The speckle noise phase can be decom-

posed into one common phase part and one different phase

part. The common part can be attributed to the scattering

phase of the dominant scatterer, and then the different phase

vector among different observations is weakly correlated.

Accordingly, elements of the residual phase vector θ must be

weakly correlated. In this paper, the vector of residual phase is

assumed to be multivariate Gaussian and identically distributed

with zero mean and covariance matrix σ2
θCθ, where

Cθ =











1 ρ12 · · · ρ1K
ρ12 1 · · · ρ2K

...
...

. . .
...

ρ1K ρ2K · · · 1











(9)

with ρmn representing the correlation coefficient between θm
and θn, and σ2

θ is the intensity of residual phase, which is

weak after the preprocessing.

Since the linear term in Eq. (2) is the major concern in

Tomo-SAR, the model in Eq. (8) can be decomposed into the

sum of the ideal target measurement and the total noise term

z,

y =

M
∑

m=1

Φ(sm)xm + z (10)

where

z =
M
∑

m=1

(a − e)⊙Φ(sm)xm + ŵ (11)

and e is an all-one K × 1 vector. Then, the mean vector and

covariance matrix of z are given by

µz = (µa − 1)
M
∑

m=1
Φ(sm)xm (12)

Cz = (
M
∑

m=1
Hmxm)Rc(

M
∑

m=1
Hmxm)H + σ2

wRŵ (13)

where

Rc = Ra − µ2
ae · eT

µa = exp(−σ2

θ

2 ) (14)

Ra = µ2
a exp(Cθσ

2
θ)

and Hm denotes the diagonal matrix obtained by diagonalizing

the vector Φ(sm). The statistical characteristics of disturbance

µa and Ra can be obtained based on the property that the

Fourier transform of a Gaussian function is another Gaussian

function. From Eq. (8), when σ2
θ = 0 and θ is equal to zero,

we have z = w in Eq. (3). As a result, our proposed model

can be considered as an extension of the original Tomo-SAR

model. Additionally, the weak correlation of the elements in

the residual phase vector would result in weak correlation of

the elements in the noise vector z. According to the SAR signal

model in [40], the k-th element of cluttering signal in Eq. (8)

can be expressed as

ŵk = ρ · ej2πξk ŝ · ωke
jϕk (15)

where ρ is the common amplitude of the complex reflec-

tivity function, ej2πξk ŝ is the phase factor related to the

background height profile ŝ and the k-th antenna position,

ωk is the amplitude of the multiplicative speckle noise, and

ϕk is the k-th interferometric phase of the speckle. In [40],

interferometric phases of speckle for different observations

are weakly correlated for a dual-baseline SAR system, i.e.,

when the coherences between three images are 0.57, 0.33 and

0.55, the correlation coefficient of interferometric phases is

0.0281. This is the reason why the height profile of background
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Fig. 3. The amplitude map of the noise covariance matrix CZ with K = 15

for the case of three stacks.

areas can be estimated in [41]–[43] under the assumption of

mutual independence of different interferograms. Therefore,

the weak correlation of interferometric phases for a dual-

baseline SAR system can be generalized to the Tomo-SAR

system. Accordingly, the phases of ŵ are weakly correlated,

leading to weak correlation among the elements of z in Eq.

(13).

Based on the above analysis, the additive noise ŵ can be

assumed to be multivariate complex Gaussian with zero mean

and covariance matrix σ2
wRŵ. For all stacks, Rŵ is given by

Rŵ =











1 c∗12 · · · c∗1K
c12 1 · · · c∗2K

...
...

. . .
...

c1K c2K · · · 1











(16)

where cmn is the complex correlation coefficient between ŵm

and ŵn.

After combining the joint Tomo-SAR model in Eq. (5) with

the single stack correlated model in Eq. (8), the joint Tomo-

SAR correlated model with L stacks can be formulated as










































y1 =
M
∑

m=1
a1 ⊙Φ(sm)x1m + ŵ1

y2 =
M
∑

m=1
a2 ⊙Φ(sm)x2m + ŵ2

...

yL =
M
∑

m=1
aL ⊙Φ(sm)xLm + ŵL

(17)

where al (l = 1 · · ·L) is the multiplicative noise vector for

the l-th image, and sm is the common elevation of targets in

L stacks.

Eq. (17) can be combined into the following form

Y = ΨX + Z (18)

where Z = [zT1 · · · zTL]
T with zl (l = 1 · · ·L) formulated in

the same way as Eq. (11). When L = 1, it is reduced to the

single stack model in Eq. (10).

Due to the stationarity of correlated residual phase and

correlated additive noise for all pixels, the disturbance vectors

in each stack can be assumed to have the same statistics. It

is normally assumed that neighboring stacks of one Tomo-

SAR image are uncorrelated (Part II of [44]). Without loss of

generality, the covariance matrix of the overall noise signal of

the joint model CZ is block diagonal with Cz being the main

diagonal elements. As an extended example of Eq. (13), CZ

for the case of three stacks is shown in Fig. 3.

IV. DERIVATION OF THE HYBRID CRAMÉR-RAO BOUNDS

As mentioned, existing works on CRB derivation are based

on the assumption that the additive noise is white and the phase

is compensated perfectly. Next, we will derive the lower bound

for the proposed model (Eq. (17)) under correlated noise.

When the unknown parameters contain both random and

deterministic variables, the HCRB is always employed. The

deterministic and random parameters are unified in the Fisher

information matrix, where the diagonal elements of the co-

variance matrix represent the bounds of unbiased estimates of

deterministic parameters and the mean square errors on the

estimates of the random variables. For our case, the unknown

parameter vector ξ includes the deterministic parameters in

ξd and the random parameters in ξr. Let ξ̂d be an unbiased

estimator of ξd and ξ̂r be an estimator of ξr. For every

estimator, the HCRB ensures that

EY,ξr

[

(ξd − ξ̂d)(ξd − ξ̂d)
T (ξd − ξ̂d)(ξr − ξ̂r)

T

(ξr − ξ̂r)(ξd − ξ̂d)
T (ξr − ξ̂r)(ξr − ξ̂r)

T

]

≽ F−1
h

(19)

where (·)T is the transpose operator and EY,ξr
[·] denotes the

expectation with the joint pdf of observations Y and random

parameters ξr. The symbol ≽ represents that the difference

matrix of the left covariance matrix minus the right hybrid

information matrix Fh is nonnegative definite. Since EY,ξr
=

Eξr

(

EY|ξr

)

, Fh can be expressed as the expectation of the

sum of the standard Fisher information matrix Fc and prior

information matrix Fp with respect to ξr , that is,

Fh(ξ) = Eξr
[Fc(ξ)] + Fp(ξ), (20)

with

Fc(ξ) = −EY|ξr









∂2 ln p(Y|ξ)
∂ξd∂ξ

T
d

∂2 ln p(Y|ξ)
∂ξd∂ξ

T
r

∂2 ln p(Y|ξ)
∂ξr∂ξ

T
d

∂2 ln p(Y|ξ)
∂ξr∂ξ

T
r







 (21)

Fp(ξ) = −Eξr

[(

0 0

0
∂2 ln p(ξr)

∂ξr∂ξ
T
r

)]

(22)

where EY|ξr
[·] denotes the conditional expectation with respect

to p(Y|ξ).
Following the analysis of the joint correlated model in Sec-

tion III and the HCRB theory above, the HCRB on elevation

is derived according to the Gaussian pdf of residual phase.

For the two types of unknown parameters in ξ, ξd includes

the noise intensity σ2
w, the weak correlation matrix Rŵ, all

M elevation positions sm (m = 1, 2, · · · ,M ), the amplitude

|xml| and phase φml of the m-th source in the l-th stack for

m = 1, 2, · · · ,M and l = 1, 2, · · · , L, while ξr includes the

residual phase θkl for k = 1, 2, · · · ,K and l = 1, 2, · · · , L.

In detail,

ξd = [σ2
w,Rŵ, |x11|, φ11, s1, · · · , |xML|, φML, sM ]T (23)

ξr = [θ11, · · · , θKL]
T (24)
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Note that the dimension of ξd and ξr is (M + 2ML +
K(K−1)

2 + 1)× 1 and KL× 1, respectively.

Under the condition of the unknown parameter ξ, the

observed data Y follows the complex Gaussian distribution

with a mean value µ(ξ) and covariance matrix C(ξ) as

µ(ξ) = [(A1Φx1)
T · · · (ALΦxL)

T]T (25)

C(ξ) = σ2
wIL ⊗ Rŵ (26)

where Al is the diagonal matrix of al for l = 1, 2, · · · , L and

IL is an L × L identity matrix. Accordingly, the likelihood

function of Y is given by

p(Y|ξ) = exp[−(Y − µ(ξ))HC(ξ)−1(Y − µ(ξ))]

πKL|C(ξ)| (27)

where (·)H is the Hermitian transpose. By referring to [45],

the first-order derivative of the log-likelihood function is given

by

∂

∂ξ
ln p(Y|ξ) = −tr

[

C(ξ)−1 ∂C(ξ)

∂ξ

]

+ YHC(ξ)−1 ∂C(ξ)

∂ξ
C(ξ)−1Y

(28)

where tr(·) denotes the trace of the matrix. Then, the (p, q)
element of the standard Fisher information matrix is

[Fc(ξ)]pq = 2Re

(

∂µ(ξ)H

∂ξp
C(ξ)−1 ∂µ(ξ)

∂ξq

)

+ tr

[

C(ξ)−1 ∂C(ξ)

∂ξp
C(ξ)−1 ∂C(ξ)

∂ξq

] (29)

for p, q = 1, 2, · · · ,M + 2ML+ 1, where Re(·) denotes the

real part of a complex matrix. Without considering the random

parameters ξr, the standard Fisher information matrix (Eq.

(21)) was used to derive the CRB in [16].

Since the random nuisance parameter only contains the

residual phase, which is multivariate Gaussian, the derivative

of log-prior function with respect to this nuisance parameter

can be obtained by

∂

∂ξr
ln p(ξr) =

∂

∂ξr
(−

L
∑

l=1

θT
l C−1

θ θl

2σ2
θ

)
(30)

Substituting (21), (22), (28) and (30) into (20), the hybrid

Fisher information matrix Fh can be written as

[Fh(ξ)]pq = Eξr

{

2Re

[

∂µ(ξ)H

∂ξp
C(ξ)−1 ∂µ(ξ)

∂ξq

]}

+tr

[

C(ξ)−1 ∂C(ξ)

∂ξp
C(ξ)−1 C(ξ)

∂ξq

]

+Eξr

[

1

2σ2
θ

∂2

∂ξpξq

(

L
∑

l=1

θT
l C−1

θ θl

)]

(31)

for p, q = 1, 2, · · · ,M + 2ML+ K(K−1)
2 + 1 +KL.
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Fig. 4. Structure of the complete hybrid Fisher information matrix.

A. HCRB of Elevation

Applying the derivatives with respect to arbitrary parameters

ξp and ξq in ξ and then the expectation with respect to ξr in

Appendix A, the complete hybrid Fisher information matrix Fh

can be obtained. Then, the HCRB for elevation in the presence

of correlated noise is

σ2(sm) =
[

F−1
h (ξ)

]

sm
(32)

where the subscript sm denotes the diagonal element of the in-

verse matrix corresponding to the elevation of the m-th source.

Since the deterministic parameters ξd1 = [σ2
w,Rŵ]

T are not

correlated with ξd2 = [|x11|, φ11, s1, · · · , |xML|, φML, sM ]T

and the random parameters [θ11, · · · , θKL], the complete hy-

brid Fisher information matrix can be partitioned into the block

form shown in Fig. 4. As the bound for elevation estimation

is the major concern in Tomo-SAR, we can just select the

submatrix highlighted in gray in Fig. 4. Accordingly, the

derivation with respect to ξd1 in Eq. (32) can be omitted.

Thus, the bound for elevation estimation can be calculated by

σ2(sm) =

(

F2(ξ) F23(ξ)
F23(ξ)

H F3(ξ)

)−1

sm

(33)

where the partitioned submatrix can be calculated with

[Fh(ξ)]pq =Eξr

{

2Re

[

∂µ(ξ)H

∂ξp
C(ξ)−1 ∂µ(ξ)

∂ξq

]}

+
1

2σ2
θ

Eξr

[

∂2

∂ξp∂ξq
(

L
∑

l=1

θT
l C−1

θ θl)

] (34)

for p, q = (K(K−1)
2 +2), · · · ,M+2ML+ K(K−1)

2 +1+KL.

V. SIMULATIONS AND RESULTS

In this section, simulations are performed to examine the

derived HCRB under correlated noise for cases with one

scatterer and two scatterers, respectively, which have been the

focus of many works on detection and estimation [46]–[51].

The baselines are evenly distributed in all simulations and part

of the parameters listed in Table I.

As shown by Eq. (11), the total noise term is composed

of the multiplicative noise part and the additive noise part.

Accordingly, the total noise effect is divided into two parts:

the effect of additive noise is measured by the SNR, which

is the ratio of the power of signal and the power of additive

noise ŵ

SNRm = 10 lg(|xm|2/σ2
w),m = 1 · · ·M (35)
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TABLE I
EXPERIMENTAL PARAMETERS

wavelength (λ) 0.03125 m

view angle 20 deg

range distance (r) 553.37 Km

correlation coefficient ρmn (1 ≤ m ̸= n ≤ K) 0.01

lower triangular elements of Rŵ (Cmn, m > n) 0.01 + 0.01 j

upper triangular elements of Rŵ (Cmn, m < n) 0.01 - 0.01 j
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Fig. 5. The elevation accuracy of CRB and HCRB as a function of the phase
φ. Parameters: M = 1, vertical baseline span B = 400m, satellite number
K = 25, SNR=15dB, σ2

θ
=0.04. (a) Single stack; (b) three stacks.
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Fig. 6. The elevation accuracy of CRB and HCRB over Rayleigh resolution
as a function of the product of satellite number and SNR.Parameters: M = 1,
vertical baseline span B = 300m, φ=0, σ2

θ
=0.04. (a) Single stack; (b) three

stacks.

where |xm| is the amplitude of the m-th dominant target; the

effect of multiplicative noise is measured by the variance of

residual phase σ2
θ .

Firstly, HCRB results with respect to some parameters are

provided to analyze the influencing factors. We will also show

that the bounds of the joint model are better than that of

the single model. Then, simulation results are provided to

demonstrate that the derived HCRBs for the correlated model

are more realistic than those for the original model. Finally, the

superiority of the proposed HCRB is further validated through

real data experiment.

A. HCRB Analysis

Firstly, when one scatterer is considered, the elevation

HCRB as a function of the scattering phase φ of this single

scatterer, SNR and the number of observations K are shown

in Figs. 5 and 6 for both single stack and three stacks. It’s

observed from Fig. 5 that the elevation accuracy does not

change with φ, which indicates that φ has no influence on the

HCRB when there is only one scatterer in the azimuth-range
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Fig. 7. The elevation accuracy of HCRB as a function of the phase difference
∆φ of two sources with different α. Parameters: M = 2, K = 15, SNR1 =
SNR2 = 10dB, vertical baseline span B = 300m, σ2

θ
=0.04. (a) Single stack;

(b) three stacks.
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Fig. 8. The elevation accuracy of CRB and HCRB by integrating ∆φ over
one period as a function of the super-resolution factor α between two sources
with different σ2

θ
. Parameters: M = 2, K = 15, SNR1 = SNR2 = 10dB,

vertical baseline span B = 300m. (a) Single stack; (b) three stacks.
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Fig. 9. CRB and HCRB on the estimation of elevation and variance of two
estimators on elevation with respect to α. Parameters: M = 2, K = 15,
SNR1 = SNR2 = 10dB, vertical baseline span B = 300m, σ2

θ
=0.04. (a)

Single stack; (b) three stacks.

pixel. Since the SNR and the number of acquisitions basically

play the same role in the estimation, it is observed that the

variance of elevation estimation over Rayleigh resolution is

approximately linearly proportional to their product for both

single and joint cases from Fig. 6.

Now we consider the case with two strong scatterers. A

super-resolution factor α = ∆s

ρs
is introduced to measure the

distance between them, where ∆s and ρs denote the distance

difference of the two scatterers and Rayleigh resolution on

elevation, respectively. In terms of the phase difference with

different values of α as shown in Fig. 7, when the distance

between them increases, the HCRB becomes less dependent

on the phase difference. Moreover, the curves have a similar

shape for the single and joint cases. When it comes to super-
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Fig. 10. CRB and HCRB on the estimation of elevation and variance of two
estimators on elevation with respect to SNR. Parameters: M = 2, K = 21,
vertical baseline span B = 300m, super-resolution factor α = 0.8, σ2

θ
=0.02.

(a) Single stack; (b) three stacks.

resolution for two close scatterers, the phase difference has the

minimum interference to elevation estimation at ±π
2 , while 0

and ±π are in the opposite. As shown in Fig. 8, the error

increases when they move closer to each other. Furthermore,

the larger the variance of the residual phase σ2
θ , the larger the

estimation error. When σ2
θ becomes small, the residual phase is

very close to zero and the correlation of noise becomes weak,

and finally, the elevation result of HCRBs approaches that of

CRBs in [8], [16]. As expected, for all above comparisons

between the single and multiple stacks, the elevation bound of

the joint model is better than that of individual model under

the same set of parameters. In addition, from all figures we

can see that CRB and HCRB have similar trends.

B. HCRBs versus CRBs

Since the layover separation is the focus of Tomo-SAR,

experiments are carried out by groups of simulated observa-

tions overlaid by two dominant scatterers. The two targets are

distributed in the scene like a step along the azimuth direction.

With the parameters listed in Tab I, simulated data for cases

of L = 1 and L = 3 are firstly generated following the

model of Eqs. (10) and (18), respectively. Secondly, due to the

weak correlation of noise, the basic models of CS Tomo-SAR

estimator [11] and DCS Tomo-SAR estimator [17] are directly

applied in the correlated model to estimate the elevation for

the case of one stack and three stacks. Finally, the estimated

variance of Monte-Carlo simulations is computed to compare

the HCRB and CRB with the estimation results based on CS

and DCS.

The CS Tomo-SAR estimator applied in correlated model

for one stack (Eq. (10)) is shown below

x̂ = argmin
x

∥x∥1 s.t. ∥y −Φx∥2 ≤ ε (36)

where ε is the allowed reconstruction error and related to the

intensity of noise, ∥ · ∥1 and ∥ · ∥2 denote l1 and l2 norms of

a vector, respectively.

For the case of joint correlated Tomo-SAR model, three

stacks are combined in a measurement matrix G = [y1, y2, y3],
and the reflectivity vectors are placed in a matrix of Γ =
[x1, x2, x3]. Then, the DCS Tomo-SAR estimator for three

stacks correlated model (Eq. (18)) is given by

Γ̂ = argmin
Γ

∥Γ∥2,1 s.t. ∥G −ΦΓ∥F ≤ ε (37)

TABLE II
USED TERRASAR-X/TANDEM-X DATA

Mission date b⊥
TSX 20120122 77.2771m

TSX 20120213 -171.2727m

TSX 20120306 56.9760m

TSX 20120328 -107.1363m

TSX 20120511 0m

TSX 20120920 -45.6784m

TSX 20121023 -46.3148m

TSX 20130304 -115.1926m

TDX 20130520 222.0882m

TDX 20130622 321.7421m

TDX 20130714 248.0137m

TDX 20130816 -26.4968m

TDX 20130918 22.0632m

TDX 20131010 20.6752m

TDX 20131123 -127.1331m

TDX 20140106 -90.5094m

TDX 20140219 118.2358m

TSX 20140518 -40.0007m

TSX 20140701 10.6413m

TSX 20140814 -22.3069m

where ∥ · ∥F is the Frobenius norm, and the minimization is

for the sum of l2 norms of all matrix rows. The nonlinear least

squares (NLS) strategy is used for refining the estimated re-

sults of Eqs. (36) and (37). Finally, the elevations of scatterers

are determined by peak positions of the elevation spectrum.

Due to randomness of the phase difference, the elevation

bounds are usually calculated by integrating ∆φ over one

period [8]. Figs. 9 and 10 show both theoretical and simulated

results for cases of L = 1 and L = 3 as a function of

α and SNR, respectively, where the variance is adopted to

evaluate the estimators in comparison with the derived bounds.

It is observed that the elevation estimation result of CS and

DCS estimators approaches the HCRBs under correlated noise

better than CRBs derived under i.i.d. noise in both simulations

and clearly the proposed HCRB provides a tighter bound than

the latter one, which also demonstrates the effectiveness of the

adopted correlated noise model.

C. Validation through real data

Now we validate the performance of the HCRB by real

data, acquired by the sensors of TerraSAR-X/Tandem-X, over

Terminal 3-E (T3-E) of the Beijing Capital International

Airport, between 2012 and 2014. The maximum height of T3-

E is about 45m and the roof of the building has a streamlined

shape [52]. 20 passes are used whose observing dates and

effective baselines are summarized in Table II. The theoretical

resolution is 19.3402m in elevation, which corresponds to

11.0053m in height. Mean effective baseline separation is

25.9481m, and thus the Nyquist elevation span is 367.4641m,

which corresponds to 209.1008m of total height span. Fig. 11

(a) shows the intensity of the investigated building, with the

corresponding optical image shown in Fig. 11 (b). We study

the areas marked in red boxes of Fig. 11 (a) to validate the

proposed bound. These azimuth-range cells are overlayed by

the eaves of the building and the ground. Additionally, the

eaves in the marked areas have a similar height relative to the
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(a) (b)

Fig. 11. T3-E of Beijing Capital International Airport. (a) TerraSAR-X
intensity image; (b) Optical image (Google Earth).
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Fig. 12. The reconstructed height profile of the T3-E building using the
CS+NLS estimator. It is worth noting that when two scatters are overlaid in
one pixel only the point cloud of the stronger scatterer is shown.

ground, and the ground scatters overlayed in the eave pixels

are rarely interfered by airplanes.

After data have been registered, calibrated in terms of phase

and amplitude by referring to [3]–[5], the elevation point

cloud of the T3-E building is reconstructed by the CS+NLS

estimator. Then, the height profile is obtained by elevation

times the sine of incidence angle. The height profile of the T3-

E building is shown in Fig. 12, where we can see clearly the

streamline of the roof and the height range is also consistent

with the information of T3-E given in [52]. It is worth noting

that there exists some bias for the airport covered bridges

resulting from the changes due to the presence and absence

of airplanes. Subsequently, we choose the stacks with close

reflectivity by Kolmogorov-Smirnov test in [34], where two

scatterers are detected. In total 23 stacks are selected. The

elevation differences of two scatterers of the 23 selected stacks

obtained by CS and CS + NLS estimators are shown in Fig.

13 (a), and it is observed that the elevation differences are

distributed between 44m and 55m. The standard deviations of

the 23 elevation differences based on the CS and CS + NLS

are 3.0013m and 2.8707m, respectively. On the assumption of

equivalent elevation standard deviations of the two scatterers,

the errors of the two estimators are 2.1223m and 2.0299m,

respectively.

As mentioned previously, when the number of observations

is fixed, the main factors affecting the theoretical bounds,

the CRB and HCRB, are α, SNR and σ2
θ . The elevation
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Fig. 13. Results for the marked region in Fig. 11 (a). (a) The estimated
elevation differences of two scatters; (b) theoretical bounds compared with
standard deviations of two estimators (parameters: M = 2, K = 20, vertical
baselines are given in Tab. II, super-resolution factor α = 2.5).

interval of two close scatterers is about 48.8034m, obtained by

averaging the results of CS + NLS, and then we have α = 2.5.

Furthermore, we can obtain the SNR 8.27dB of each scatter

by averaging the 19 cross-channel SNRs, each of which is

estimated based on the maximum likelihood method in [53].

Then, we draw the theoretical bounds with respect to the SNR

in range from 5dB to 10dB. It is observed from Fig. 13 (b)

that the estimated standard deviations from the CS and CS +

NLS are greater than the CRB and HCRB. Additionally, the

proposed HCRB is closer than CRB to the standard deviations

calculated with the real data, especially when σ2
θ grows.

VI. CONCLUSION

In this work, a joint correlated Tomo-SAR model has been

provided by introducing the residual phase and correlation

coefficient of additive noise. The elevation estimation accu-

racy for the correlated model was derived in detail using a

general HCRB. Some factors affecting the elevation estimation

accuracy were studied for one and two scatters to compare

HCRB and CRB, respectively. As expected, the joint model

has provided a better estimation than that of the single stack

model. It was shown from both simulations and real data that

the derived HCRB under the residual correlated phase and

additive correlated noise is more realistic than the CRB derived

based on i.i.d. noise for real scenes. The variance of residual

phase is the major factor influencing the difference between

HCRB and CRB.

APPENDIX A

The procedure for calculating the hybrid Fisher information

matrix in Eq. (31) is divided into three steps: calculating the

derivatives with respect to deterministic and random parame-

ters, followed by taking the expectation with respect to ξr .
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A. Deterministic Parameters

The derivatives of mean µ(ξ) and covariance C(ξ) with

respect to parameters from ξd can be derived as

∂µ(ξ)
∂σ2

w

= 0KL×1

∂µ(ξ)
∂cmn

= 0KL×1

∂µ(ξ)
∂|xml|

= [0T
K×1 · · · (AlΦ(sm)ejφml)T · · · 0T

K×1]
T (38)

∂µ(ξ)
∂φml

= [0T
K×1 · · · (jAlΦ(sm)xml)

T · · · 0T
K×1]

T

∂µ(ξ)
∂sm

= [(A1
∂Φ(sm)
∂sm

xm1)
T · · · (AL

∂Φ(sm)
∂sm

xmL)
T]T

∂C(ξ)
∂σ2

w

= IL ⊗ Rŵ

∂C(ξ)
∂cmn

= σ2
wIL ⊗ ∂Rŵ

∂cmn

∂C(ξ)
∂|xml|

= 0KL×KL (39)

∂C(ξ)
∂φml

= 0KL×KL

∂C(ξ)
∂sm

= 0KL×KL

where ⊗ is the Kronecker product, and 0m×n denotes the

m×n all-zero matrix, and
∂Φ(sp)
∂sp

represents the derivative of

Φ(sp) with respect to sp, which can be easily obtained.

B. Random Parameters

The derivatives of mean µ(ξ) and covariance C(ξ) with

respect to ξr can be derived as

∂µ(ξ)
∂θml

= [0T
K×1 · · · ( ∂Al

∂θml
Φxl)

T · · · 0T
K×1]

T (40)

∂C(ξ)
∂θml

= 0KL×KL (41)

C. Expectation Calculation on Random Parameters

After the calculation of partial derivatives of µ(ξ) and C(ξ)
with respect to parameters ξ (refer to the Equations (38)

(39) (40) and (41)), the expectation with respect to random

variables are given by the following equations

Eξr

(

AH
l Rŵ

−1Al

)

= Ra ⊙ Rŵ
−1

Eξr

(

AH
l Rŵ

−1 ∂Al

∂θkl

)

= j[Ra ⊙ Rŵ
−1]Okk

Eξr

(

∂AH
l

∂θkl
Rŵ

−1 ∂Al

∂θil

)

= Okk[Ra ⊙ Rŵ
−1]Oii (42)

Eξr

[

∂2

∂θkl∂θil

(

θT
l C

−1

θ
θl

2σ2

θ

)]

=
ρ
′

ki

σ2

θ

where Oki denotes that the element at the k-th row and i-th
column of the matrix is 1, while the others are 0, and ρ

′

ki is

the k-th row and i-th column element of the inverse matrix of

Cθ.
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