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Abstract

We hypothesize that end-to-end neural image captioning systems work seemingly

well because they exploit and learn ‘distributional similarity’ in a multimodal feature

space by mapping a test image to similar training images in this space and generating

a caption from the same space. To validate our hypothesis, we focus on the ‘image’

side of image captioning, and vary the input image representation but keep the RNN

text generation component of a CNN-RNN model constant. Our analysis indicates that

image captioning models (i) are capable of separating structure from noisy input repre-

sentations; (ii) suffer virtually no significant performance loss when a high dimensional

representation is compressed to a lower dimensional space; (iii) cluster images with simi-

lar visual and linguistic information together. Our findings indicate that our distributional

similarity hypothesis holds. We conclude that regardless of the image representation used

image captioning systems seem to match images and generate captions in a learned joint

image-text semantic subspace.

1 Introduction

Image description generation, or image captioning (IC), is the task of automatically gener-

ating a textual description for a given image. The generated text is expected to describe, in

a single sentence, what is visually depicted in the image, for example the entities/objects

present in the image, their attributes, the actions/activities performed, entity/object inter-

actions (including quantification), the location/scene, etc. (e.g. “a man riding a bike on

the street”). Significant progress has been made with end-to-end approaches to tackling this

problem, where parallel image–description datasets such as Flickr30k [34] and MSCOCO [3]

are used to train a CNN-RNN based neural network IC system [15, 28, 31]. Such systems

have demonstrated impressive performance in the COCO captioning challenge1 according

to automatic metrics, seemingly even surpassing human performance in many instances (e.g.

CIDEr score > 1.0 vs. human’s 0.85) [3]. However, in reality, the performance of end-to-end

systems is still far from satisfactory according to metrics based on human judgement2. Thus,

despite the progress, this task is currently far from being a solved problem.

c© 2018. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
1http://cocodataset.org/#captions-challenge2015
2http://cocodataset.org/#captions-leaderboard

http://cocodataset.org/#captions-challenge2015
http://cocodataset.org/#captions-leaderboard
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In this paper, we challenge the common assumption that end-to-end IC systems are able

to achieve strong performance because they have learned to ‘understand’ and infer semantic

information from visual representations, i.e. they can for example deduce that “a boy is play-

ing football" purely by learning directly from mid-level image features and the corresponding

textual descriptions in an implicit manner, without explicitly modeling the presence of boy,

ball, green field, etc. in the image. It is believed that the IC system has managed to infer

that the phrase green field is associated with some ‘green-like’ area in the image and is thus

generated in the output description, or that the word boy is generated because of some CNN

activations corresponding to a young person. However, there seems to be no concrete evi-

dence that this is the case. Instead, we hypothesize that the apparently strong performance

of end-to-end systems is attributed to the fact that they exploit the distributional similarity

property in a multimodal feature space. To our best knowledge, our paper gives the first

empirical analysis on visual representations for the task of image captioning.

What we mean by ‘distributional similarity’ is that IC systems essentially attempt to find

images from the training set that are most similar to a test image, and generate a caption from

the most similar training instances (or generate a ‘novel’ description from a combination of

training instances, for example by ‘averaging’ the descriptions). Previous work has alluded

to this observation [14, 28], but it has not been thoroughly studied. This phenomenon

could also be in part attributed to the fact that the datasets are repetitive and simplistic,

with an almost constant and predictable linguistic structure [5, 16, 28]. Thus, while IC

systems perform very well at the task of matching images to captions at surface-level, they

do not truly understand images or language and use this understanding to generate image

descriptions. Such misconception can deter true progress in the field. This paper aims to

draw attention to this issue and to the importance of understanding how IC systems work

and with that support work towards progress in the field that goes beyond optimizing for

metrics to achieve state-of-the-art performance.

It is worth noting that we are interested in demonstrating the phenomenon of distribu-

tional similarity in IC, rather than achieving or improving state-of-the-art performance. As

such, we do not resort to fine-tuning or extensive hyperparameter optimization or ensembles.

Therefore, our model is not comparable to state-of-the-art models such as Vinyals et al. [28],

which optimize IC by fine-tuning the image representations, exploring beam size, scheduled

sampling, and using ensemble models. Instead, we vary only the image representation to

demonstrate that end-to-end IC systems utilize distributional similarity on the image side to

generate captions, regardless of the image representation used.

Our main contributions are:

(a) An IC experiment where we vary the input image representation but keep the RNN text

generation model component constant (Section 3). This experiment demonstrates that

regardless of the image representation (a continuous image embedding or a sparse, low-

dimensional vector), end-to-end IC systems seem to utilize a visual-semantic subspace

for IC.

(b) The introduction of pseudo-random vectors derived from object-level representations

as a means to evaluate IC systems. Our results show that end-to-end models in this

framework are remarkably capable of separating structure from noisy input representa-

tions.

(c) An experiment where IC models are conditioned on image representations factorized

and compressed to a lower dimensional space (Section 4.1). We show that high di-
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mensional image embeddings that are factorized to a lower dimensional representation

and used as input to an IC model result in virtually no significant loss in performance,

further strengthening our claim that IC models perform similarity matching rather than

image understanding.

(d) An analysis of different image representations and their transformed representa-

tions (Section 4.2). We visualize the initial visual subspace and the learned joint visual

semantic subspace and observe that the visual semantic subspace has learned to clus-

ter images with similar visual and linguistic information together, further validating our

claims of distributional similarity.

(e) An experiment where the IC model is tested on an out-of-domain dataset (Section 4.3),

which has a slightly different image distribution. We observe that models show better

performance on test sets that have a similar distribution as the training. Their perfor-

mance deteriorates when the distributions are even slightly different.

Overall, our study demonstrates that end-to-end IC models implicitly learn and exploit

multimodal similarity spaces rather than performing actual image understanding.

2 Model setting

For the experiments in Section 3, we base our implementation on the end-to-end approach

by Karpathy and Fei-Fei [15]. We use the LSTM [12] based language model as described

in Zaremba et al. [35], which is conditioned on the image information. For that, we first

perform a linear projection of the image representation followed by a non-linearity:

Im f eat = σ(W ·Im) (1)

Here, Im ∈ Rd is the d-dimensional initial image representation, W ∈ Rn×d is the linear

transformation matrix, σ is the non-linearity. We use Exponential Linear Units [4] as the

non-linear activation in all our experiments. Following Vinyals et al. [27], we initialize the

LSTM based caption generator with the projected image feature.

Training and Inference The image caption generator is trained to generate sentences con-

ditioned on the image representation by minimizing a cross-entropy loss, i.e., the sentence-

level loss corresponds to the sum of the negative log likelihood of the correct word being

generated at each time step:

Pr(S|Im f eat ;θ) = ∑
t

log(Pr(wt |wt−1..w0; Im f eat)) (2)

where Pr(S|Im f eat ;θ) is the sentence-level loss conditioned on the image feature Im f eat and

Pr(wt) is the probability of the word at time step t. This is trained with standard teacher

forcing as described in Sutskever et al. [25] where the correct word information is fed to the

next state in the LSTM.

Inference is typically performed with approximation techniques like beam search or sam-

pling [15, 27]. In this paper, as we are mainly interested in studying the effect of different

image representations, we focus on the language output that the models can most confidently

produce. Therefore, unless stated otherwise we generate captions using a greedy argmax ap-

proach.
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3 Image captioning with different image representations

In this section, we verify our hypothesis that a ‘distributional similarity’ space exists in

end-to-end IC systems. Such systems attempt to match image representations in order to

condition the RNN decoder to generate captions that are similar to the closest images, rather

than actually understanding the image in order to describe it. We keep the IC model constant

(Section 2) across experiments and vary only the image representation used. The different

representations we experimented with are described in what follows.

3.1 Lower-bound image representation

Random: We condition the LSTM on a 300-dimensional vector comprising random values

sampled uniformly between [0,1)3. This feature essentially gives us a worst-case image

feature and thus provides an artificial lower bound.

3.2 Representations from image-level classification

We compare two CNNs – VGG19 [24] and ResNet152 [11] – both pre-trained on the ILSVRC

challenge data [23]. We explore various representations derived from these CNNs:

Penultimate layer (Penultimate): Most previous attempts to IC use the output of the

penultimate layer of a CNN pre-trained on ILSVRC. Previous work motivates using ‘off-

the-shelf’ feature extractors in the framework of transfer learning [6, 20]. Such features

have often been applied to image captioning [7, 9, 15, 18, 27, 31] and have been shown to

produce state-of-the-art results. Therefore, we extract the fc7 layer from VGG19 (4,096D)

and the pool5 layer from ResNet152 (2,048D) for each image.

Class prediction vector (Softmax): We also investigate higher-level image representations

where each element in the vector is the estimated posterior probability of an object category

appearing in that image. Note that the categories may not directly correspond to the captions

in the dataset. While there are alternative methods that fine-tune the image network on a new

set of object classes extracted in ways that are directly relevant to the captions [8, 30], we

study the impact of off-the-shelf prediction vectors on the IC task. The intuition is that cat-

egory predictions from pre-trained CNN classifiers may also be beneficial for IC, alongside

the standard approach of using mid-level features from the penultimate layer. Therefore, for

each image, we use the predicted category posterior distributions of VGG19 and ResNet152

for 1,000 object categories.

Object class word embeddings (Top-k): Here we experiment with a method that utilizes

the averaged word representations of top-k predicted object classes. We first obtain Softmax

predictions using ResNet152 for 1,000 object categories (synsets) per image. We then se-

lect the objects that have a posterior probability score > 5% and use the 300-dimensional

pre-trained word2vec [19] representations4 to obtain the averaged vector over all retained

object categories. This is motivated by the observation that averaged word embeddings can

represent semantic-level properties and are useful for classification tasks [2].

3We also tried using 1,000-dimensions, which yielded similar but slightly poorer results.
4https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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3.3 Representations from object-level detections

We also explore representing images using information from object detectors that identify

instances of object categories present in an image, rather than a global, image-level classifi-

cation. This can potentially provide for a richer and more informative image representation.

For this we use:

• ground truth (Gold) region annotations for instances of 80 pre-defined categories pro-

vided with MSCOCO. It is worth noting that these were annotated independently of

the image captions, i.e. people writing the captions had no knowledge of the 80 cate-

gories. As such, there is no direct correspondence between the region annotations and

image captions.

• a state-to-the-art object detector YOLO [21], pre-trained on MSCOCO for 80 cate-

gories (YOLO-Coco), and on MSCOCO and ILSVRC for over 9,000 categories (YOLO-

9k). We use YOLOv2.

We explore several representations derived from instance-level object class annotations

or detectors above:

Bag of objects (BOO): We represent each image as a sparse ‘bag of objects’ vector, where

each element represents the frequency of occurrence for each object category in the image

(Counts). We also explore an alternative representation where we only encode the presence

or absence of the object category regardless of its frequency (Binary) to determine whether it

is important to encode object counts in the image. These representations help us examine the

importance of explicit object categories and in a sense interactions between object categories

(e.g. dog and ball) in the image representation. We investigate whether such a sparse and

high-level BOO representation is actually sufficient for generating image captions. It is also

worth noting that BOO is different from the Softmax representation above as it encodes the

number of object occurrences, not the confidence of class predictions at image level. We

compare BOO representations derived from the Gold annotations (Gold-Binary and Gold-

Counts) and both YOLO-Coco and YOLO-9k detectors (Counts only).

Pseudo-random vectors: To further probe the capacity of the model to discern image

representations in an image distributional similarity space, we propose a novel experiment

in which we examine a type of representation where similar images are represented us-

ing similar random vectors, which we term as pseudo-random vectors. We form this rep-

resentation from BOO Gold-Counts and BOO Gold-Binary. More specifically, Im f eat =

∑o∈Objects f × φo, where φo ∈ Rd is an object-specific random vector and f is a scalar rep-

resenting counts of the object category. In the case of Pseudorandom-Counts, f is the

frequency counts from Gold-Counts. In the case of Pseudorandom-Binary, f is either 0 or

1 based on Gold-Binary. We use d = 120 for these experiments. Intuitively, these pseudo-

random vectors appear random and noisy in the representational space as a result of the

composition of (random) object category vectors, more specifically the multiplication of ob-

ject category vectors by their frequency of occurrence and the addition of vectors across

multiple object categories. We use these vectors to demonstrate that end-to-end IC models

are capable of separating structure from noise, and thus exploit the distributional similarity

property in a multimodal feature space.
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3.4 Datasets and experimental setup

Dataset We evaluate image captioning conditioned on different representations on the

most widely used dataset for IC, MSCOCO [3]. The dataset consists of 82,783 images

for training, with at least five captions per image, totaling to 413,915 captions. We perform

model selection on a 5000-image development set and report the results on a 5000-image

test set using standard, publicly available splits5 of the MSCOCO validation dataset as in

previous work [15].

3.5 Image captioning results

We report results of IC on MSCOCO in Table 1, where the IC model (Section 2) is con-

ditioned on the various image representations described in Section 3.1. As expected, using

random image embeddings clearly does not provide any useful information and performs

poorly. The CNN softmax representations with the same set of 1,000 object classes (VGG19

and ResNet152) have very similar performance. We note that the posterior distribution may

not directly correspond to words in the captions, i.e. many words and concepts are not con-

tained in the set of object classes. Our results differ from those by Wu et al. [30] and Yao

et al. [32] where the object classes have been fine-tuned to correspond directly to the caption

vocabulary.

Representation B-1 B-2 B-3 B-4 M C S

Random 0.48 0.24 0.11 0.07 0.11 0.07 0.03

Softmax
VGG19 0.62 0.43 0.29 0.19 0.20 0.61 0.13

ResNet152 0.62 0.43 0.29 0.19 0.20 0.62 0.12

Penultimate
VGG19 (fc7) 0.65 0.46 0.32 0.22 0.21 0.69 0.14

ResNet152 (pool5) 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Embeddings Top-k 0.62 0.42 0.28 0.19 0.20 0.63 0.13

BOO

Gold-Binary 0.65 0.47 0.32 0.22 0.22 0.75 0.15

Gold-Counts 0.67 0.48 0.33 0.23 0.22 0.81 0.16

YOLO-Coco 0.65 0.46 0.32 0.22 0.22 0.75 0.15

YOLO-9k 0.64 0.45 0.31 0.21 0.20 0.68 0.13

Pseudo-random
Pseudorandom-Binary 0.65 0.46 0.31 0.21 0.21 0.73 0.14

Pseudorandom-Counts 0.67 0.48 0.34 0.23 0.22 0.80 0.15

Table 1: Results on the MSCOCO test split, where we vary only the image representation

and keep other parameters constant. The captions are generated with beam = 1. We report

BLEU (1-4), Meteor, CIDEr and SPICE scores.

The performance of the pool5 image representations shows a similar trend for VGG19

and ResNet152, with ResNet152 achieving slightly better scores than VGG19. We posit that

the representations from the image network trained on object classes are able to capture more

fine-grained image details.

The performance of the averaged top-k word embeddings is similar to that of the Softmax

representation. This is interesting, since the averaged word representational information is

mostly noisy: we combine top-k synset-level information into one single vector; however, it

still performs competitively.

The performance of the BOO sparse 80-dimensional annotation vector is better than all

other image representations judging by the CIDEr score. We note again that this occurs de-

spite the fact that the annotations may not directly correspond to the semantic information in

5http://cs.stanford.edu/people/karpathy/deepimagesent

http://cs.stanford.edu/people/karpathy/deepimagesent
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Method B-1 B-2 B-3 B-4 M C S

PCA 0.66 0.48 0.34 0.24 0.22 0.75 0.15

ICA 0.66 0.48 0.34 0.24 0.22 0.74 0.15

PPCA 0.66 0.48 0.34 0.24 0.22 0.76 0.15

FULL 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Table 2: Performance of compressed Pool5

representations.

Model B-1 B-2 B-3 B-4 M C

Pool5 0.60 0.41 0.26 0.17 0.14 0.29

SC 0.62 0.42 0.28 0.18 0.17 0.35

TDBU 0.60 0.40 0.26 0.17 0.17 0.34

Table 3: Performance of models on

Flickr30k.

the captions or the images. The sparse representational information is indicative of the pres-

ence of only a subset of potentially useful objects. We notice two distinct patterns, a marked

difference with Binary and Count representations. This takes us back to the motivation that

image captioning requires information about objects, as well as interactions between objects

and their attributes. Although our representation is really sparse on the object interactions, it

captures the basic concept of the presence of more than one object of the same kind, and thus

provides extra information. A similar trend was observed by Wang et al. [29], who further

explored encoding the geometric and size information of objects into the representation, and

by Yin and Ordonez [33], who learn interactions using a specified object-layout RNN.

We also notice that using predicted objects using YOLOCoco performs better than using

YOLO9k. This is probably expected as YOLOCoco was trained on the same dataset hence

producing better object proposals. We also observed that YOLO9k had a significant number

of objects predicted for the test images that had not been seen in the training set (around

20%).

The most surprising result is the performance of the pseudo-random vectors. We notice

that both the pseudo-random binary and pseudo-random count vectors perform almost as

well as the Gold objects. This suggests that the conditioned RNN is able to remove noise

and learn some sort of a common ‘visual-linguistic’ semantic subspace.

4 Analysis of distributional similarity in IC

In what follows we present further analyses on the different image representations to gain

a better understanding of such representations and demonstrate our distributional similarity

hypothesis.

4.1 Factorizing representations

In Section 3.5 we observed encouraging results from the bag of objects representation despite

it being sparse, low-dimensional, and only partially relevant to captions. Interestingly, us-

ing pseudo-random vectors derived from a bag of objects also resulted in good performance

despite the added noise. This leads to the question: are high-dimensional vectors necessary

or relevant? To answer this question, we evaluate whether the performance of the model is

significantly poorer if we reduce the dimensionality of the initial high dimensional repre-

sentation. We experiment with three exploratory factor analysis-based methods – Principal

Component Analysis (PCA) [10], Probabilistic Principal Component Analysis (PPCA) [26]

and Independent Component Analysis (ICA) [13]. In all cases, we obtain 80-dimensional

factorized representations from ResNet152 pool5 (2048D), which is commonly used in IC.

We summarize our results in Table 2. We observe that the representations obtained by all
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of the factored models seem to retain the necessary representational power to produce ap-

propriate captions, equivalent to the original representation. This seems contradictory, as

we expected a loss in information content when compressing it to arbitrary 80-dimensions.

This experiment indicates that the model is not explicitly utilizing the full expressiveness of

the full 2048-dimensional representations. The model is able to learn from seemingly weak,

structured information and can achieve performance that is close to that achieved using the

full representation.

→

(a) Pool5

→

(b) Softmax

→ ...

(c) Bag of objects

→

(d) Pseudo-random

Figure 1: Visualization of the t-SNE projection of initial representational space (left)

vs. the transformed representational space (right). Please see https://github.com/

sheffieldnlp/whatIC for original images.

4.2 Analyzing transformed image representations

Considering our earlier hypothesis as proposed in Section 3.5 whereby the conditioned RNN

is learning some sort of a common ‘visual-linguistic’ semantic space, we explore the dif-

ference in representations in the initial representational space (Im in Equation 1) and the

transformed representational space (Im f eat in Equation 1). The transformation matrix W

(Equation 1) is learned jointly as a subtask of the image captioning. We posit that image

representations in the 256-dimensional transformed space will be more semantically coher-

ent with respect to both images and captions. To visualize the two representational spaces,

we use Barnes-Hut t-SNE [17] to compute a 2-dimensional embedding over the test split.

In general, we found that images are initially clustered by visual similarity (Pool5) and se-

mantic similarity (Softmax, BOO). After transformation, we observe that some linguistic

information from the captions has produced different types of clusters. Figure 1 highlights

some interesting observations regarding the changes in clustering across three different rep-

resentations. For Pool5, images seem to be clustered by their visual appearance, for example

snow scenes in Figure 1a, regardless of the subjects in the images (people or dogs). After

transformation, separate clusters seem to form for snow scenes involving a single person,

groups of people, and dogs. Interestingly, images of dogs in fields and snow scenes are

also drawn closer together. Softmax (Figure 1b) shows many small, isolated clusters before

transformation. After transformation, bigger clusters seem to be created – suggesting that

https://github.com/sheffieldnlp/whatIC
https://github.com/sheffieldnlp/whatIC
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the captions have again drawn related images together despite being different in the Soft-

max space. For bag of objects (Figure 1c), objects seem to be clustered by co-occurrence

of object categories, for example toilets and kitchens are clustered since they share sinks.

Toilets and kitchens seem to be further apart in the transformed space. We perform a sim-

ilar analysis on the pseudorandom representations (Figure 1d). We observe that the initial

representations have very little explicit information and do not cluster well, indicating that

the pseudorandom vectors are indeed noisy. The projected representations, however, form

clusters that mimic the projected space of the BOO cluster, demonstrating that the model is

able to factorize the noisy representations in the visual-semantic projection space guided by

information from the captions. Enlarged versions of the images in Figure 1 are also provided

in the Appendix.

4.3 Domain dependency

We now demonstrate that end-to-end models are heavily reliant on datasets that have a similar

training and test distribution. We posit that an IC system that performs similarity matching

will not perform well on a slightly different domain for the same task. Demonstrating this

will further validate our hypothesis that IC systems perform image matching to generate

image captions.

We evaluate several models trained on MSCOCO on 1000 test image samples from the

Flickr30k [34] dataset 6. Like MSCOCO, Flickr30k is an image description dataset; how-

ever, unlike MSCOCO, the images have a different object distributions and the captions are

slightly longer and more descriptive.

We evaluate the captions generated by our model with ResNet152 pool5 representation

and by two other state-of-the-art models pretrained on MSCOCO: (a) Self-Critical (SC) [22],

based on self critical sequence training that uses reinforcement learning, and (b) Bottom Up

and Top Down (TDBU) [1], based on top-down and bottom-up attention using object region

proposals. Both state-of-the-art models are much more complex than the image-conditioned

RNN language model. The results are summarized in Table 3.

We observe that the scores drop by a large margin. A similar observation was made

by Vinyals et al. [28], and they alluded the drop in scores to the linguistic mismatch between

the datasets. However, the out of training vocabulary words in the Flickr30k test set is

only 8.6%. This suggests that there is more to the issue than a mere vocabulary mismatch.

Typical sentences on Flickr30k are structurally different and generally longer, and the model

is unable to generate good bigrams or even unigrams as is evident from B-1 and B-2 scores

in Table 3.

5 Conclusions

We hypothesized that IC systems essentially exploit a distributional similarity space to ‘gen-

erate’ image captions by attempting to match a test image to similar training image(s) and

generate an image caption from these similar images. Our study focused on the image side

of image captioning: We varied the image representations while keeping the text generation

component of an end-to-end CNN-RNN model constant. We found that regardless of the

image representation, end-to-end IC systems seem to match images and generate captions in

a visual-semantic subspace for IC. We conclude that:

6the test split is obtained from http://staff.fnwi.uva.nl/d.elliott/wmt16/splits.zip
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(a) End-to-end IC models are remarkably capable of separating structure from noisy input

representations, as demonstrated by pseudo-random vectors;

(b) End-to-end IC models suffer virtually no significant loss in performance when a high

dimensional representation is factorized to a lower dimensional space;

(c) End-to-end IC models can learn a joint visual-textual semantic subspace by clustering

images with similar visual and linguistic information together;

(d) End-to-end IC models rely on test sets having a similar distribution as the training set

for generating good captions.

The observations above strengthen our distributional similarity hypothesis – that end-to-end

IC models perform image matching and generate captions for a test image from similar

image(s) from the training set – rather than performing actual image understanding. Our

findings provide novel insights into what end-to-end IC systems are actually able to do,

which previous work only suggests or hints at without concretely demonstrating. We believe

our findings are important for the community to further advance work on image captioning

in a more informed manner.

There is much scope for future work from the findings of this paper. One could examine

the hidden states of the RNN model to better understand its behaviour and to further validate

our distributional hypothesis. Understanding the theoretical formulation of the CNN-RNN

architecture could also further help quantitatively confirm our hypothesis. Another useful

direction would be to ascertain whether the distributional hypothesis also holds for more

complex architectures, such as [1, 31]; our intuition is that the hypothesis would remain

valid even for such models.
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