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ABSTRACT

We present a composite model and radiative transfer simulations of the massive star-forming

core W33A MM1. The model was tailored to reproduce the complex features observed with

Atacama Large Millimeter/submillimeter Array at ≈0.2 arcsec resolution in CH3CN and dust

emission. The MM1 core is fragmented into six compact sources coexisting within ∼1000 au.

In our models, three of these compact sources are better represented as disc-envelope systems

around a central (proto)star, two as envelopes with a central object, and one as a pure envelope.

The model of the most prominent object (Main) contains the most massive (proto)star (M⋆ ≈

7 M⊙) and disc + envelope (Mgas ≈ 0.4 M⊙), and is the most luminous (LMain ∼ 104 L⊙). The

model discs are small (a few hundred au) for all sources. The composite model shows that the

elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a

filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament

is reproduced by a parabolic trajectory with focus at the centre of mass of the region. Radial

collapse and fragmentation within this filament as well as smaller filamentary flows between

pairs of sources are proposed to exist. Our modelling supports an interpretation where what

was once considered as a single massive star with a ∼103 au disc and envelope is instead a

forming stellar association which appears to be virialized and to form several low-mass stars

per high-mass object.

Key words: radiative transfer – stars: formation – stars: massive – stars: protostars.

1 IN T RO D U C T I O N

The formation of stars can occur in different environments, ranging

from isolated to highly clustered systems (Lada & Lada 2003).

There is evidence that the more massive the stellar system is, the less

likely it is to form in isolation (Sana 2016). Therefore, improving

our understanding of intermediate- and high-mass star formation

comes together with our knowledge of the formation of multiple

stellar systems. A recent review that emphasizes the link between

the formation of massive stars and their clusters is presented in

Motte et al. (2018).

Earlier interferometric observations showed that massive stars

form through accretion from structures that could be rotationally

⋆ E-mail: andres.izquierdo.c@gmail.com (AFI); r.galvan@irya.unam.mx

(RG-M)

supported discs (e.g. Cesaroni et al. 1999; Zhang et al. 2002; Patel

et al. 2005; Carrasco-González et al. 2012). However, the advent

of the Atacama Large Millimeter/submillimeter Array (ALMA)

is changing the landscape of star formation research by provid-

ing unprecedented high angular resolution, sensitivity and dynamic

range images of the participating dust and gas. One of the overall

conclusions that can be obtained from considering recent results

is that a few intermediate and massive stars can form as scaled

up versions of the low-mass star formation paradigm: a single

Keplerian disc – which could be circumbinary – plus a rotat-

ing/infalling envelope at early stages (e.g. Sánchez-Monge et al.

2013; Beltrán & de Wit 2016; Girart et al. 2018); whereas many

massive stars form in clustered systems at clump (∼0.1 to 1 pc; Liu

et al. 2015) or even core (<0.1 pc; Johnston et al. 2015; Beuther

et al. 2017; Hunter et al. 2017; Maud et al. 2017) scales. Cesaroni

et al. (2017) find evidence for Keplerian discs in about half of their

small sample. In contrast, Ginsburg et al. (2017) find no evidence
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of discs in a more highly clustered and luminous star formation

region.

Radiative transfer simulations are needed to interpret the com-

plexity of current observations. A variety of public codes to calculate

the (sub)mm line and continuum emerging from 3D models have

been presented and tested in the literature, e.g. MOLLIE (Keto & Ry-

bicki 2010) and LIME(Brinch & Hogerheijde 2010). Some of these

codes provide basic model set-ups, but composite 3D models are

often needed to better represent complex structures. In this spirit,

efforts to produce radiative transfer models of star-forming systems

with multiple components have recently appeared in the literature

(Schmiedeke et al. 2016; Quénard, Bottinelli & Caux 2017).

In this paper, we present a multiple-component radiative transfer

model that aims at reproducing the main features observed with

ALMA in the high-mass star formation core W33A MM1 (e.g.

Maud et al. 2017; Galván-Madrid et al. 2010). This core is the

most massive in W33A and hosts the most luminous Young Stellar

Object (YSO), traced by a faint hypercompact H II region (van der

Tak & Menten 2005). Further evidence for at least one massive

(M > 10 M⊙) YSO in MM1 comes from high angular resolution

IR observations (Bunn, Hoare & Drew 1995; de Wit et al. 2007,

2010; Davies et al. 2010). Previous sub-arcsecond Submillimeter

Array (SMA) observations pointed towards the existence of a mas-

sive gaseous disc of a few M⊙ surrounding a potentially massive

(M⋆ ∼ 10 M⊙) YSO centred in the millimetre source Main within

MM1 (Galván-Madrid et al. 2010).

W33A is part of the W33 molecular cloud complex (van der Tak

et al. 2000; Immer et al. 2014; Lin et al. 2016). Its parallax distance

to the Sun has been measured to be 2.4+0.17
−0.15 kpc (Immer et al. 2013).

The ALMA observations that we model here were presented in

Maud et al. (2017). These data have ×3 better angular resolution

and ×15 better sensitivity than our previous SMA observations.

The ALMA images reveal that what we previously thought was a

massive rotating disc, probably with one unresolved companion, is

actually a multiple system in formation, although the kinematics is

still dominated by the most massive object MM1 Main. A prominent

spiral-like filamentary gas stream appears to feed the central part of

MM1 from the north-west.

The outline of the paper is as follows: Section 2 describes the ob-

servations that we model. Section 3.1 explains the individual physi-

cal components that are used. Section 3.2 details on the construction

of the composite 3D grid. Section 3.3 describes the implementation

in LIME. Section 3.4 describes the logical order in which the final

global model was found. Section 3.5 explains the determination of

the model parameters. Sections 4.1 and 4.2 give the results of the

line and continuum model, including a comparison to observations.

Sections 5 and 6 are a discussion of the results and the conclusions,

respectively. Appendix A shows the channel map emission in the

models and observations. Finally, Appendix B gives information on

how to access the tools that we developed to create the complex

models and how to use them within LIME, which we believe can be

of interest to the community.

2 O BSERVATIONA L DATA

The ALMA observations were originally scheduled as an A-ranked

Cycle 1 project (2012.1.00784.S – PI: M. G. Hoare), but due to

the need for the then longest baselines, they were not successfully

executed until June 2015. For more details of the data set, we refer

to Maud et al. (2017).

Due to the multiplicity in the region within a few arcseconds, we

modelled only the data that are less morphologically confused, and

lines that do not appear to be spectroscopically blended or contam-

inated by others. Therefore, we selected the CH3CN J = 19−18,

K= 4, and K = 8 lines, as well as the 0.8 mm (Band 7) continuum.

We also use the 1.3 mm (Band 6) continuum for further comparisons

with our models, although it has a slightly lower angular resolution.

The 1.36 mm (220.818 GHz) continuum image has a synthe-

sized beam FWHM = 0.33 × 0.24 arcsec, with a position angle

PA = −46.2◦. The rms noise in this image is σ rms,1.3mm ≈ 112µJy

beam−1 (0.035 K). The 0.86 mm (349.454 GHz) continuum image

has an FWHM = 0.21 × 0.14 arcsec, PA = −80.9◦and σ rms,0.8mm

≈ 177µJy beam−1 (0.059 K). The K = 4 (ν0 = 349.3463 GHz) and

K = 8 (ν0 = 349.0249 GHz) CH3CN cubes have almost identical

beams with FWHM = 0.20 × 0.14 arcsec and a PA = −79.8◦. Their

noise levels are σ rms,K4 ≈ 3.7 mJy beam−1 (1.28 K) and σ rms,K8 ≈ 2.1

mJy beam−1 (0.73 K), respectively, in channels 0.42 km s−1 wide.

2.1 Main observational features

In this section, we enumerate the main observational features that

motivated the components of our MM1 model. Further motivation

will become apparent through the rest of the paper.

In Fig. 1, we present the Band 7 continuum emission and the

CH3CN J = 19−18, K = 4 moment 0 maps for the observational

data. There, we highlight the compact sources as reported in Maud

et al. (2017) and Galván-Madrid et al. (2010): Main, south (S),

south-east (SE), east (E), and ridge. Two new compact sources are

proposed in this paper and are labelled under the same rules: Main

north-east (MNE) and south north-west (SNW), as well as five inter-

source filaments represented with dashed lines, and the spiral-like

filament in the northern part of the region.

The existence of MNE and SNW is mainly motivated by the

CH3CN line emission. The moment 0 map evidences extended

emission towards the north-east of Main and the north-west of S.

This emission is also warm (see Maud et al. 2017), and its veloc-

ity field is more consistent with separate, redshifted blobs (see the

last row of Fig. A1) than with a single, more extended source. For

more details, see Section 4.1. On the other hand, the existence of

inter-source filaments is motivated mostly by the extended features

in the continuum maps that appear to join the compact sources (see

Fig. 1 and Section 4.1.2), although some of these features are also

apparent in the CH3CN maps.

3 MO D EL

3.1 Physical models

In order to describe this complex star formation region, we produce

a global model made of the superposition of individual components,

all within a 7000 au cubic region representing W33A MM1. In this

section, we describe the physical attributes of the individual com-

ponents. We emphasize that the final model is not unique nor a best

fit, but it provides a reasonable match to the data and is physically

motivated. The justification for the use and characteristics of each

element are further explained in Sections 3.4, 3.5 and 4.

From the seven compact sources, four of them are disc-envelope

systems (Main, S, SE, Ridge), two of them are pure rotating/infalling

envelopes (MNE, SNW), corresponding to less evolved YSOs and

one is a turbulent sphere (E), corresponding to an even younger

object. Fig. 2 shows a schematic diagram of the relative positions

and central masses of these sources.

Additionally, we include five cylindrical filaments joining pairs

of compact sources (also sketched in Fig. 2), plus a larger spiral-like
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Figure 1. Left: ALMA 349 GHz (0.8 mm) continuum image of W33A MM1. Right: velocity-integrated intensity (moment 0) of the CH3CN J = 19−18,

K= 4 line data. Cells with intensity below 10 per cent of the peak were masked out. The compact sources included in the model are marked by crosses (+).

The dashed arrows represent the modelled inter-source filaments and their flow direction. A label indicates the zone where the spiral-like filament resides. The

beam size is shown in the lower left corner of the panels.

Figure 2. Configuration of compact sources and inter-source filaments in

the W33A-MM1 model. The x- and y-axes are parallel to RA and Dec. The

z-axis is parallel to the line of sight, with positive values increasing away

from the observer. The z = 0 plane intersects the position of Main, and (x,

y) = (0, 0) coincides with the phase centre of the ALMA images. Arrows

indicate the direction of the gas flows between sources. The sizes of the

markers are related to the mass of the sources as shown in the top subplot.

filament which we interpret as an accretion flow feeding the centre

of MM1 from its periphery, as proposed by Maud et al. (2017).

3.1.1 Compact sources

We implemented a standard YSO modelling for the four disc-

envelope sources, following the approach of Keto & Zhang (2010).

Those authors superpose a rotationally supported flared disc em-

bedded in an infalling and rotating envelope. The envelope is mod-

elled using the prescription of Ulrich (1976), who constructs the

density and velocity fields assuming that the particles around the

stellar source follow ballistic paths. Although simple, this model

has been useful to reproduce observations from the scales of low-

mass (proto)stars up to high-mass clusters (e.g. Whitney et al. 2003;

Keto 2007; Maud et al. 2013).

For the envelope density, we use equation (1) of Keto & Zhang

(2010):

ρenv(r, θ ) = ρe0
(r/Rd)−3/2

(

1 +
cos θ

cos θ0

)−1/2

× [1 + (r/Rd)−1(3 cos2 θ0 − 1)]−1, (1)

where r is the distance to the centre of the model and θ the polar

angle; Rd is the centrifugal radius, defined as an equilibrium zone

where the gravitational force of the central-point mass is equal to

the centrifugal force of the rotating envelope; θ0 is the initial angle

of the streamline and ρe0
is the envelope normalization density at

r = Rd and θ = π/2. They must satisfy the geometrical relation

[equation (2) of Keto & Zhang 2010]:

r =
Rd cos θ0 sin2 θ0

cos θ0 − cos θ
. (2)

This constraint can be used to find an analytical expression for

cos θ0 (see its functional form in equation (13) of Mendoza, Cantó

& Raga 2004).

The velocity components of the envelope are (see equations 14–

16 of Keto & Zhang 2010):

vr (r, θ ) = −

(

GM⋆

r

)1/2 (

1 +
cos θ

cos θ0

)1/2

, (3)

vθ (r, θ ) =

(

GM⋆

r

)1/2 (
cos θ0 − cos θ

sin θ

)1/2 (

1 +
cos θ

cos θ0

)1/2

,

(4)

vφ(r, θ ) =

(

GM⋆

r

)1/2
sin θ0

sinθ

(

1 −
cos θ

cos θ0

)1/2

(5)
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For the temperature of the envelope we follow Whitney et al.

(2003) and assume Tenv(r) ∝ r−0.33. The proportionality constant is

left as a free parameter to adjust density weighted mean tempera-

tures according to the observational data.

We include the possibility of adding a conical cavity with an

arbitrary opening angle.

For the disc, we implemented the standard prescription by Pringle

(1981). We assume a steady, Keplerian, flared disc limited within

the centrifugal radius Rd of the envelope. The disc density field is

given by equation (3.14) of Pringle (1981):

ρdisc(z, R) = ρ0(R) exp{−z2/2H 2(R)}, (6)

where R and z are cylindrical coordinates. H(R) is the scale height

of the disc and ρ0(R) is the disc density function in the mid-plane

(equations 7 and 8 of Keto & Zhang 2010):

H (R) = H0(R/R⋆)1.25, (6a)

ρ0(R) = Aρρe0
(Rd/R)2.25. (6b)

The scale height at the stellar radius is set to H0 = 0.01R⋆, and

Aρ is the density factor between disc and envelope at Rd. The disc

velocity is (equation 3.3 of Pringle 1981):

vdisc =
√

GM⋆/R φ̂, (7)

and the temperature (equation 12 f Keto & Zhang 2010):

Tdisc = BT

[

(

3GM⋆Ṁ

4πR3σ

)

(

1 −

√

R⋆

R

)]1/4

, (8)

where BT is a factor to adjust disc heating and Ṁ is the mass

accretion rate given by equation (3) of Keto & Zhang (2010):

Ṁ = ρe0
4πR2

dvk, (9)

where vk is the Keplerian velocity at Rd.

Fig. 3 shows the density and temperature structure of example

disc and envelope models.

3.1.2 Accretion filaments

Elongated features joining some pairs of compact sources are ap-

parent in the continuum images and in the line cubes (see Section 4).

We modelled them as ‘accretion filaments’. Most of them are im-

plemented as straight cylinders of ∼103 au length that join pairs of

compact sources, and with uniform density and temperature. The

accompanying code leaves open the option of adding a dependency

of density and temperature with cylindrical radius. We assume the

kinetic energy of the filaments is related to their gravitational po-

tential energy as given by the virial theorem:

3

5

GM⋆

r
=

1

2
v2, (10)

from which we obtain the speed at each point of the model. The

main axis of each cylinder is defined as rcyl−ax = r⋆> − r⋆< , where

r⋆> and r⋆< are the positions of the most and least massive compact

object in each pair. Additionally, we consider that the gravitational

potential is fully determined by the most massive of the pair of

sources and that the velocity in the cylinder points towards that

source. This is analogous to considering that the entire gas inside

the filament is within the Hill radius of the most massive compact

source. The velocity field for each cylinder can be written as:

vcyl(r) =

(

6GM⋆>

5

)1/2
r − r⋆>

|r − r⋆> |3/2
. (11)

Since our simplifying assumptions imply that the most massive

compact source is taking material from the least massive one, we

fixed the systemic (initial) velocity of the flows to be the same as

that of the low mass source in each pair. Note that the previous

assumptions automatically fix the relative orientation of compact

sources in the z-axis (line of sight).

There are five filamentary flows between pairs of compact

sources in our model: SE→S, SE→Main, SE→MNE, E→MNE

and E→SE (see Fig. 2).

Additionally to the small cylindrical filaments, we include a larger

(7240 au length) accretion filament reaching the central part of

MM1 from its north side, following the interpretation of Maud

et al. (2017) that this spiral-like structure is a ‘feeding filament’

that deposits material to the central region of MM1. We model the

feeding filament structure using a parabolic cylinder with focus at

the centre of mass of the entire region.

The speed along the parabolic trajectory is given by orbital energy

conservation, and we also include a velocity component of collapse

towards the axis of the parabolic filament. Thus, the vector velocity

is

vpar(r) =

(

2GMc

|r − rcm|

)1/2

t̂ + vinn̂, (12)

where t̂ and n̂ are the tangent and normal unitary vectors associated

to the main axis of the parabola. We set the infall velocity (vin)

within the parabolic filament in terms of the speed of sound in the

medium: cs = (γ kBT/2mH)1/2, where γ is the characteristic heat

capacity ratio of the medium, kB the Boltzmann constant and mH

the Hydrogen mass. More details can be found in Section 4.1.2.

For simplicity, we set the density and temperature of the filaments

to be homogeneous in each of them.

3.2 The model grids

3.2.1 Global grid

We create a global grid that harbors the individual local grids

(models) together. Each local grid is rotated and translated within

the global grid according to the restrictions given by observational

data. The global grid is homogeneous and cubic: it has 301 nodes

distributed in equal steps over 7000 au in each direction, i.e. it is

built with ∼27 × 106 points, and its linear resolution is 23.3 au.

Fig. 4 shows a visualization of the final global grid where the density

of plotted points is proportional to the model density.

To overlap the local grids within the global grid, an algorithm

for distance minimization between the nodes of both was made.

Thus, spatial information is extracted from each node of each local

grid and the corresponding nearest node in the global grid is found.

This point will inherit the physical properties that the local grid

point was saving. Since local grids are generally more spatially

resolved than the global grid, it is likely to occur that some cells of

a given local grid converge to the same closest node in the global

grid. When this happens, the latter node takes the average of the

overlapping densities. Other properties are taken as their density-

weighted averages.

After the previous step is done, the algorithm similarly checks

whether two or more nodes of different local models collapse into

the same node in the global grid. This time, the latter node takes the

sum of the densities (for mass conservation) and other properties

are again density-weighted averages.
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3D radiative transfer modelling of W33A MM1 2509

Figure 3. (a) Left: density (colours) and temperature (contours) profiles for a pure (Ulrich) envelope compact source. The example corresponds to the final

model for MNE. (b) Right: density and temperature profiles for a compact source made of a disc plus an envelope. The example corresponds to Main, which

has a cavity. The top subplots show the edge-on (i = 90◦) middle cut of the models, and the bottom subplots show the face-on (i = 0◦) middle cut.

Figure 4. Visualization of the global grid, which is made of the superposi-

tion of many local grids, each representing an individual submodel. Regions

with a higher density of points have a larger mass density in the model.

Colours indicate the depth in the z-axis, with positive values increasing

away from the observer. The z = 0 plane intersects the position of Main,

and (x, y) = (0, 0) coincides with the phase centre of the ALMA images.

3.2.2 Local grids

For the compact sources, each local grid was also set to be homoge-

neous in Cartesian coordinates. These local grids can have different

physical sizes and resolutions each.

For the models containing an Ulrich envelope, we added a condi-

tion to ensure that no point of their grids falls into the mathematically

undefined position (r, θ ) = (Rd, π/2), where the density diverges.

The interpretation of this jump in density is that the ‘true’ disc starts

inwards (Mendoza et al. 2004).

For the cylinders, the nodes of their local grids are evenly and

randomly distributed. To do so, we first generate a random point

along the axis of the cylinder. Secondly, we create a vector with

fixed position in that point, with random orientation (restricted to

be perpendicular to the axis) and length in the ranges [0, 2π] and

[0, Rcyl], respectively. This recipe is repeated (2Rcyl)
2|rcyl−ax|/dr3

times to ensure that all the cells of the global grid enclosed by

the virtual cylindrical surface will have enough points around them

to be filled with. dr is the maximum possible separation between

neighbouring nodes in the global grid: dr =
√

dx2 + dy2 + dz2.

The grid of the parabolic filament was built in a similar way

to those of the cylinders, with an extra consideration due to the

curved trajectory. First, we consider the characteristic equation of a

parabola is x2 = 4py, where p is the parameter that accounts for its

focus. Then, it is possible to calculate all the tangent vectors in the

parabolic section of analysis as follows:

t̂ = cos(θ )î + sin(θ )ĵ ,

θ (x) = tan−1(x/2p),
(13)

if its vertex is located in (0,0). Each of these tangent vectors repre-

sent a local main axis around which we generated a random point

as in the second step of the construction of cylindrical grids. We
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repeat this step enough times to populate correctly this zone in the

global grid, as explained in the previous paragraph.

3.3 Radiative transfer simulations

We use version 1.6.1 of the Line Modelling Engine code (LIME,

Brinch & Hogerheijde 2010) to perform radiative transfer simula-

tions of the physical grids described in the previous section. LIME

calculates both molecular line and (dust) continuum maps by solv-

ing the molecular excitation or fixing it in the LTE case, and then

the transfer of radiation through the model. It builds unstructured

3D Delaunay grids by generating a set of random points across the

domain that will be accepted or rejected according to the density

of the given model. Then, the grid is smoothed via Voronoi tessel-

lations. LIME retrieves molecular data from the LAMDA data base

(Schöier et al. 2005).

A few adaptations had to be made to be able to feed our models

into LIME. The necessary code is available through the GitHub link

provided in Appendix B. We included a header script in LIME to

upload the output data from our model-generating codes. Also,

we added in the user interface script (model.c) an algorithm to

determine the nearest neighbours between the randomly generated

set of points in LIME and the points of our global grid, following the

suggestions made in the LIME documentation.1 Given that our grid is

homogeneous in Cartesian coordinates, it is possible to efficiently

determine the closest pairs of points. Let us call a random generated

LIME point (xr, yr, zr) and its nearest point in our grid (xm, ym, zm).

First, we compute the nearest yz plane associated with the given xr,

so, xm is found. Then, in that plane we look for the nearest column

associated with the given yr, so ym is found. Finally, in that column

we compute the nearest cell associated with the given zr, so zm is

found. In the end, the point (xr, yr, zr) receives all the properties

belonging to (xm, ym, zm).

The rotational (J, K) transitions of CH3CN are such that several

K lines for a given J + 1 → J can be observed in a single spectral

set-up (e.g. Cummins et al. 1983; Remijan et al. 2004). This fact has

made these lines a widely used tracer of warm, dense gas (e.g. Araya

et al. 2005; Purcell et al. 2006; Cesaroni et al. 2017). We use LTE

calculations for our modelling. This is justified since the critical

density of the J = 19−18, K= 4, and K = 8 transitions at the model

temperatures is ncrit ≈ 1 × 107 cm−3. Also, ‘effective’ densities for

thermalization are typically at least one order of magnitude below

critical densities (Evans 1999). Most of the mass in our domain is

above the critical density of the modelled lines.

We allow for different CH3CN abundances with respect to H2 for

each submodel (see Section 3.5). The gas-to-dust mass ratio was set

to 100 in the entire global grid.

Some fluctuations in the model continuum emission appear be-

cause the grid points randomly generated by LIME
2 do not map the

region completely, since they are fewer than the model grid points.

Therefore, different model regions are better covered with LIME grid

points in some runs than in others. To smooth these fluctuations,

for each continuum image presented in this paper, we generated

10 images with the same set of parameters. Then we extracted the

median of the intensity for each pixel and constructed a final image.

This averaging process is equivalent to generate an image with a

higher number of grid points in LIME, but faster. We found that the

1http://lime.readthedocs.io/en/latest, section Advanced set-up.
2Defined with the ‘pIntensity’ parameter.

line emission is not sensitive to this effect because it is brighter than

the continuum, so the fluctuations are not noticeable.

Finally, the output images and cubes created with LIME were

passed through the ALMA instrumental response using version

4.4.0 of CASA (McMullin et al. 2007). The task ‘simobserve’ was

first used to generate visibilities from the model images. The array

configuration, integration time, date, hour angle and precipitable

water vapor were all set to properly emulate the observing con-

ditions of the data. The task ‘clean’ was then used to create the

ALMA-simulated images from the model visibilities. The simu-

lated and observed images have noise levels and beam sizes match-

ing each other within a few per cent.

3.4 Iterative building of global model

In this section, we summarize the order in which the global model

was tailored and the motivation for its specific features. Section 3.5

goes deeper into the determination of the free parameters of the

local models.

We started modelling compact source Main with a single massive

envelope, but in the end a disc embedded within an envelope was

a better match to the data. Then, we proceeded to model compact

sources S, SE, E, and Ridge. Each source was modelled separately

in the same way as Main, in its own local grid. The top row of

Fig. 5 illustrates the effects of changing the model prescription for

compact source S on its CH3CN line profiles, modelled in isolation.

More details can be found in Section 4.1.1.

The next step was to construct the global grid (Section 3.2.1)

and allocate the compact sources within it. The first global grid

contained only compact sources. This global model was compared

to the observations, then the small inter-source filaments were de-

fined and assigned to a second global grid. Small adjustments to the

properties of the compact sources and small filaments were done

by physically motivated trial and error to better match this second

global grid to the observational data. The influence of the global en-

vironment on the line profiles of source S can be seen in the bottom

row of Fig. 5.

The final addition to the global grid was the spiral-like filament

feature. The assumption of a parabolic orbit with focus at the centre

of mass of MM1 was readily a good approximation. Then, the 3D

orientation and density of the parabola were adjusted to match the

observed velocity gradient and fluxes. This filament was initially

considered to be static, but a radial collapse component was added

to better match its observed velocity dispersion and morphology in

the channel maps (see Fig. A1).

Finally, the newly proposed compact sources MNE and SNW

were added to reproduce finer features in the images. Their inclusion

helped to reproduce the extended heating and velocity dispersion

towards the north-east of Main and the north-west of South (S), as

well as the secondary features around Main and S (more details

below). In the resulting global grid, additional small adjustments to

each component were tried until we were satisfied with the match

between the global model and observations. We reiterate that the

models are not best fits to the data, but a physically motivated

representation that matches the observations reasonably well (e.g.

Schmiedeke et al. 2016).

3.5 Determination of model parameters

Tables 1 and 2 list the free and derived model parameters for the

compact sources (discs and envelopes) and filaments, respectively.

In this section, we describe how the values of those free parameters
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Figure 5. CH3CN J = 19−18, K = 4 (left) and K= 8 (right) spectra for different isolated (top row) and global (bottom row) models for source S. The scenarios

are: disc-only (yellow line), envelope-only (red line) and disc + envelope (green line). The dashed lines in the bottom panels show the ALMA data. The rms

noise levels in the spectra are ∼1 K (see Section 2.)

Table 1. Top: Free parameters for compact sources. Bottom: Derived properties from model output.

Parameter Main MNE S SNW SE E Ridge

Stellar mass (M∗) (M⊙) 7.0 0.6 2.8 0.6 0.9 – 0.9

Mass accretion rate (Ṁ) (M⊙ yr−1) 4.0 × 10−4 1.3 × 10−5 1.0 × 10−5 2.8 × 10−5 1.1 × 10−5 – 1.0 × 10−5

Env. temp. at 10 au (T10env ) (K) 375 2500 1875 1875 500 – 250

Centrifugal radius (Rd) (au) 152 302 362 202 264 – 164

Cavity half opening angle (θh) (deg.) 40 – 20 – – – –

Disc density ratio (Aρ ) 24.1 – 7.5 – 11.9 – 12.6

Disc temperature factor (BT) 5.0 – 15.0 – 11.3 – 3.8

Abundance (NCH3CN/NH2
) 1.8 × 10−7 1.3 × 10−7 6.0 × 10−7 3.8 × 10−8 1.0 × 10−7 1.8 × 10−8 6.7 × 10−8

Position angle (PA) (deg.) −23 23 15 45 10 – 5

Inclination (i) (deg.) 45 40 30 40 45 – 45

Systemic velocity (vsys) (km s−1) 33.7 41.7 35.5 41.2 38.1 38.7 38.2

Local grid radius (au) 500 400 400 300 500 400 300

Stellar radius (R∗) (R⊙) 30.2 3.8 2.3 5.2 0.9 – 0.9

Mean temperaturea (K) 990 832 806 695 413 140 201

Envelope density at Rd (ρe0
) (cm−3) 1.8 × 108 7.2 × 106 2.0 × 106 2.8 × 107 6.2 × 106 1.3 × 107 b 1.2 × 107

Envelope mass (Menv) (M⊙) 0.122 0.009 0.003 0.014 0.010 0.039 0.005

Disc mass (Mdisc) (M⊙) 0.271 – 0.011 – 0.028 – 0.012

Total mass of gas (Mgas) (M⊙) 0.393 0.009 0.014 0.014 0.038 0.039 0.017

aDensity weighted mean temperature; bmean density in E.
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Table 2. Same as Table 1 but for the filamentary structures.

Parameter Spiral E → MNE E → SE SE → MNE SE → Main SE → S

Dominating mass (Mc; M⋆ >) (M⊙) 12.0 7.0 0.9 7.0 7.0 2.8

Filament density (ρ0) (cm−3) 8.0 × 107 4.3 × 108 8.0 × 107 8.3 × 106 8.3 × 106 3.8 × 107

Filament temperature (K) 200 250 250 250 250 250

Filam. abundance (NCH3CN/NH2
) 1.5 × 10−8 0.8 × 10−8 1.0 × 10−8 5.0 × 10−8 5.0 × 10−8 0.7 × 10−8

Cylindrical radius (au) 200 150 100 150 150 150

Length (au) 7240 1300 870 2060 1540 2430

Mean tangential velocity (km s−1) 4.0 3.9 1.1 3.1 3.1 1.5

Mass inflow rate (10−5 M⊙ yr−1) 4.75 2.79 0.32 0.22 0.22 0.48

Mass of gas (Mgas) (M⊙) 0.410 0.045 0.012 0.007 0.005 0.036

were determined. We emphasize that our method was intuition-

guided trial and error. To find a good set of parameters we iterated

over different model versions mainly comparing their CH3CN K = 4

and 0.8 mm continuum to the data, whereas the K = 8 line and

1.3 mm continuum were just used as a posteriori checks.

Although the central stellar mass M⋆ is not the unique parameter

that affects the line-width, it is the most important (see equations 3–

5 and 7). For a first estimation of the stellar mass of the compact

sources, we first inspected the channel maps around their central

positions as defined from the continuum peaks. In some compact

sources, a velocity gradient was clearly discernible (S, SE, Ridge),

while in some others it was not (Main, MNE, SNW), probably due

to the confusion with neighbouring emission. For the sources with

clear velocity gradients, we extracted their spectra averaged over the

relevant apertures and made Gaussian fits to obtain estimations of

the projected rotation velocity of the gas (	v= 0.5FWHM), while

estimating the disc radius r from measuring the angular separation

between the blue- and redshifted emission lobes. Using these pa-

rameters, we made a first estimation of the central mass assuming

Keplerian rotation as in M⋆ = 	v2r/G. For the sources without clear

velocity gradients in the channel maps, we estimated their stellar

mass by matching the full width at half-maximum (FWHM) of the

modelled CH3CN line with the data in the central beam of each. For

the case of Main, we started with the 13 M⊙ estimation from Maud

et al. (2017), and reduced it down to 7 M⊙ due to our interpretation

of multiplicity (see Section 4.1.1 for more details).

After their first estimation, the central masses were slightly varied

to better match the data. The inclination i with respect to the line

of sight is also important and is the second preferred parameter

that we vary to adjust line-widths. For Main, we used the previous

estimate based on models by de Wit et al. (2010), whereas for the

other sources we started with the assumption of i = 45◦ and varied

it until we achieved a line-width that matched the observed.

A cavity with opening half-angle θh was included in the models of

Main and S. Observations show that MM1 has at least one molecular

outflow centred in Main (Davies et al. 2010; Galván-Madrid et al.

2010). It is not clear whether S also drives an outflow, but we

incorporated a cavity in its model given that it is the second most

massive source. The cavity was used mainly to refine the line profile

of these sources but also to construct a more realistic model of their

inner regions. We varied θh from 0◦ to 80◦ in steps of 20◦ (see

Fig. 6).

The mass accretion rate Ṁ was varied as a free parameter in

order to scale up or down the density of the compact sources, with

a corresponding effect on the line and continuum intensity levels.

From equation (9), the normalization constant ρe0
of the envelope

density is directly proportional to Ṁ . Note that as a consequence,

this is also true for the disc density (see equation 6b). Since Main

is a high-mass protostellar object, we used Ṁ in the range 10−4 to

10−3 M⊙ yr−1 (e.g. Zinnecker & Yorke 2007; Osorio et al. 2009).

For the lower mass sources, we tested values in the range 10−6 to

10−5 M⊙ yr−1.

The normalization of the envelope temperature and the disc tem-

perature factor BT was set such that the resultant density weighted

mean temperature of the compact sources was consistent with the

temperature map presented in Maud et al. (2017). Similarly, the

disc density ratio Aρ is used to calibrate the density-weighted mean

temperature, as well as the continuum and line intensities, with the

observational data. We restrict both parameters BT and Aρ to values

∼5–20, in order to not exaggerate the relative importance of the

disc with respect to the envelope.

The centrifugal radius of the envelope Rd was chosen to be the

same disc radius previously defined in this section. The line emis-

sion of MNE and SNW is marginally (un)resolved; thus, we re-

stricted Rd to be larger than half of the envelope size. The emission

in Main is quite compact, so we set Rd from the line-width and

continuum intensity in its central beam. The PA in the plane of the

sky was also defined from the same restrictions as Rd. For Main,

previous observations and modelling provided a good first estimate

(de Wit et al. 2010; Davies et al. 2010).

For the CH3CN abundance with respect to H2, NCH3CN/H2
, we

tested values from 10−9 to 10−7, in agreement with determinations

using interferometric observations in massive star formation re-

gions (e.g. Wilner, Wright & Plambeck 1994; Remijan et al. 2004;

Galván-Madrid et al. 2009). We started with NCH3CN/H2
= 10−9

and increased it in order to adjust the line emission once the correct

continuum flux was achieved.

The systemic velocity vsys of the compact sources was set to be

the velocity of the line peak in the data. For cases like Main where

the K = 4 CH3CN line was optically thick at the centre, the K = 8

line was also considered to refine vsys.

The dominating mass is the mass responsible for the gravita-

tional field that determines the gas velocity in the filaments (see

equations 11 and 12). For the large parabolic filament, the dominat-

ing mass is set to the total model mass contained in the central region

of MM1, i.e. stellar + gas mass of Main + S + MNE + SNW + the

gaseous mass in their vicinity. For the cylindrical filaments con-

verging to Main or MNE, the dominating mass is the mass of

Main. For the rest of the small filaments, it is the mass of

the most massive of the two sources at the extremes of the

cylinder.

The temperature in each of the filaments was set to be homoge-

neous, and consistent with the determination in Maud et al. (2017).

The density for each filament, homogeneous as well, was used
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Figure 6. Effect of varying the cavity opening angle on the spectra of compact source Main modelled in isolation. The upper row shows from left to right:

θh = 0◦, 20◦, 40◦. The bottom row shows θh = 60◦ (left) and θh = 80◦ (right). The middle panel of the bottom row shows the resulting CH3CN J = 19−18,

K = 4 spectra. Density (colours) and temperature (contours) profiles were also included in the subplots. The cross-sections show edge-on models (i = 90◦).

The spectra come from models with inclination i = 45◦, the same as Main in the model. It is clear that the two-peaked profile is only seen with cavities wider

than 60◦ when the disc dominates the emission.

mainly to control the continuum intensity, whereas the CH3CN

abundance was used to further adjust the line emission. We tested

H2 particle densities from 106 to 108 cm−3 and abundances from

10−9 to 10−7.

The length of the filaments was estimated from the spatial con-

figuration of the compact sources in the data. We assume that the

cylinders have the same depth in the line of sight as projected length

in the plane of the sky (see Section 4.1.2 for further details). The

cylindrical radii were estimated directly from the apparent angular

width of the filaments in the continuum and channel maps.

4 R ESULTS

4.1 CH3CN J = 19–18, K = 4

4.1.1 Compact sources

To compare the model spectra of the compact sources with those

from the ALMA images, in Fig. 7 we show the average spectra

in squared apertures of 0.2 arcsec size (approximately the beam

size). The observed lines are generally asymmetric, and in most

cases there are secondary velocity features besides the principal line

peaks. The presence of such features in apertures already as small

as 480 au, as well as the absence of pure two-peaked line profiles,

warns against interpreting the compact sources only as Keplerian,

rotationally supported discs. Nearby companions, envelopes and

filamentary flows can all contribute to the observed spectra.

The spectrum around compact source Main consists of a single-

peaked line centred at ∼34 km s−1, and a secondary, fainter compo-

nent peaked at ∼42 km s−1 (see Fig. 7). In our model, the brightest

line peak is dominated by Main, whereas the redshifted, fainter

spectral component is contributed by compact source MNE. Our

interpretation also reproduces the spectrum around the central po-

sition of MNE.

To model Main we first considered the simplest case of a pure

Keplerian disc, but such model always produces double-peaked

profiles unless an unrealistically high optical depth – mass – is

used, which consequently also produces line and continuum fluxes

that are too high. We concluded that an envelope surrounding the

disc is the most natural way to produce the single-peaked profile of

the brightest spectral component (see Fig. 7) while matching both

the K = 4 and continuum fluxes. The inclination angle was chosen

based on the restrictions available from the IR interferometric and

photometric modelling of de Wit et al. (2010), who found i ∼ 50◦

(we set i= 45◦ for simplicity). Several observations show that Main

drives one, or possibly two massive molecular outflows (Davies

et al. 2010; Galván-Madrid et al. 2010; Maud et al. 2015) and

possess a cavity on scales of a few ×100 au (de Wit et al. 2010).

We included such cavity in the model. Fig. 6 shows the effect of

changing the opening angle of the cavity on the model spectra of

Main. An opening angle θ = 40◦ is a good compromise between

the need to wash out the two-peaked line profile (wider cavities do

not since for them the model approximates to a pure disc without

envelope) and having a line that is not too broad and too bright, as

in the case of much narrower cavities.
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Figure 7. CH3CN J = 19−18, K = 4 spectra of the modelled compact sources compared with the data. The header on each panel indicates the region of

analysis. The central panel is a snapshot of the velocity channel v = 38.05 km s−1, where the 0.2 × 0.2 arcsec integration apertures around compact sources are

marked in white. The dashed line apertures are centred in the new compact sources proposed by the model (MNE and SNW). The black square shows an extra

aperture of interest in between compact sources Main and S, labelled as Main-S in the spectra. The cyan markers indicate the centre of the compact sources

included in the model.

Although Main is still the most massive object in the field (the

full list of free parameters and derived quantities is in Table 1), we

determined a lower central mass and smaller disc size than previous

estimates. In previous (sub)mm observations where the entire MM1

core3 was marginally resolved, the kinematics was interpreted as

originating from a dynamical mass of 10–15M⊙ within an ∼1200

au radius (Galván-Madrid et al. 2010). Maud et al. (2017) deter-

mined a dynamical mass ∼13 M⊙ within a 1000 au radius from the

current ALMA data. Given that we interpret emission peaks MNE,

SNW and S as separate YSOs, and also consider several filamen-

tary flows feeding Main, MNE and S from the east and south-east,

our model of Main requires a lower stellar mass (7 M⊙), dynamical

mass (stellar + disc + envelope, 7.4 M⊙), and disc radius (∼150 au)

than previous estimates. The total stellar + gas mass of our model

within a 1000 au radius of the stellar source in Main is ∼12 M⊙,

consistent with previous estimates. The 150 au disc radius that we

propose for Main is unresolved by our observations with 400 au

resolution, but ALMA long-baseline data will be able to test our

hypothesis or discard the existence of a true disc on scales <100

au.

For compact source S, as for the case of Main, the observed pro-

file is not a simple two-peaked line. In this case there is a dominant

3We refer to MM1 as a ‘core’ following the convention of using this word for

structures of ∼ 0.03–0.2 pc size (e.g. Bergin & Tafalla 2007). The individual

discs and envelopes in our model are smaller scale structures within the MM1

core.

peak at ∼36 km s−1, with a fainter, redshifted shoulder from ∼40 to

44 km s−1, which in our model comes from the neighbouring com-

pact source SNW (see below). Fig. 5 shows a comparison of the

CH3CN J = 19−18, K = 4, and K = 8 lines for source S resulting

from three model scenarios: an envelope without disc, a disc without

envelope, and a disc + envelope. The line profile of the pure enve-

lope, and more prominently, of the pure disc, have the two peaks

characteristic of rotation, whereas in the disc + envelope model the

peaks are much less noticeable. To reach the desired peak intensity

at the K = 4 transition, we scaled up the density through increasing

the mass accretion rate in the different model scenarios. A pure

envelope needs to become too optically thick over a wide velocity

range, in which case the line is too ‘square-shaped’. Similarly, a

pure disc does not preserve the desired peak intensity at the K = 8

transition. Regarding to the continuum emission, the pure envelope

has low mean and peak intensities (∼1/5 compared to the data at

349 GHz), whereas the pure disc generates intensities that are too

high by ×4. Moreover, only the disc + envelope model shows a line

profile similar to the data in both transitions while maintaining the

correct continuum intensities. Thus, we concluded that a disc + en-

velope is the best model for source S. We included a cavity in this

model too, given that S is the second most massive source. After

spanning the possible range of values for the inclination angle with

respect to the line of sight i and the cavity half-opening angle θh, we

found that i = 30◦ (closer to face-on than to edge-on) and θh = 20◦

match well the observations (see Fig. 7). The results are degenerate,

but more sensitive to variations of the former parameter.
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Two small peaks close to Main and S are reproduced by including

two new compact sources, which we label Main NE (MNE) and

South NW (SNW). The emission from these objects is reproduced

by considering two low-mass sources with a central mass of 0.6 M⊙
surrounded by a pure Ulrich envelope. The model spectrum of SNW

has a significant contribution from the nearby, brighter source S.

Similarly, the spectrum of MNE is influenced by the contribution

from Main (see Fig. 7).

Compact source SE is modelled as a disc + envelope system,

in a similar way to Main and S. There are no previous constraints

on its disc inclination, so we decided to set it to 45◦. The model

reproduces the principal line peak at ∼38 km s−1, but does not re-

produce the fainter blue- and redshifted components (Fig. 7), which

likely arise from contamination of neighbouring molecular lines.

This contamination is also apparent at similar velocity ranges in the

spectra around compact sources E and Ridge, all of them related to

the larger spiral-like filament.

Compact source E does not have any evidence of velocity gradi-

ents in the observational cubes. Therefore, we decided to model it

as a sphere with a power-law density profile and a random velocity

distribution. The velocity dispersion was chosen to reproduce the

observed line-width. This source probably represents a younger,

lower mass, pre-stellar core.

Compact source Ridge is embedded within the spiral-like filament

before it reaches the crowded central part of MM1. Its relatively

high brightness and velocity dispersion motivated us to model it as

a disc-envelope system rather than just a turbulent sphere as was

the case for source E. The model line is brighter and narrower than

in the data, but still matches them reasonably.

We also show in Fig. 7 the zone between Main and S, labelled

as Main-S. In the model, the spectrum of Main-S has contribu-

tions from three compact sources: Main, S and SNW. The good

match illustrates that our model is a reasonable approximation of

the observed system. Table1 lists the final model parameters for the

compact sources.

4.1.2 Accretion filaments

Two types of accretion filaments are included in our global model of

W33A MM1 (see Section 3.1.2): a larger spiral-like filament feeding

MM1 from the outside, and smaller, straight filaments joining pairs

of compact sources. Table 2 lists the parameters of the selected

models.

Fig. 8 shows the moment maps (velocity integrated intensity,

intensity-weighted mean velocity, and intensity weighted veloc-

ity dispersion) of the model and the observational data. It is seen

that the spiral-like ‘feeding’ filament model is a good description

of the observations. This filament approaches the central part of

MM1 coming from the near, north-west side of the observer, and

moves towards the east and away from the observer, to finally turn

towards the observer while merging with MM1 close to compact

source E. We emphasize that the model is physically motivated,

since the velocity field was calculated assuming test particles that

approach from the infinite at rest and follow a parabolic trajectory

in which the mass of the central region of MM1 resides at its fo-

cus. This simple prescription naturally reproduces the blueshifted–

redshifted–blueshifted pattern of the line-of-sight velocity across

the filament as projected on to the plane of the sky. The real fila-

ment seems somewhat more closed and extended than the model

in its far end, something that a purely parabolic trajectory cannot

reproduce. In spite of being quite warm (200 K), an extra velocity

component was needed to reproduce the observed velocity disper-

sion along the trajectory of this filament. We therefore implemented

the reasonable assumption that the filament has radial, transonic

collapse. With γ = 7/5 (diatomic molecules) we set a radial infall

velocity vin = 1.5cs = 1.6 km s−1 (see Section 3.1.2), something

in between the subsonic and supersonic collapse observed towards

low- and high-mass star-forming cores, respectively (e.g. Galván-

Madrid et al. 2009; Keto, Caselli & Rawlings 2015). Adding this

radial component increased the velocity dispersion to levels close

to the observed, although still slightly below. Fig. 9 shows a com-

parison of the model and observed spectra in an aperture containing

the entire spiral-like filament.

The small (length ∼103 au) cylindrical filaments are required to

reproduce the elongated emission joints observed between compact

sources in the line emission maps and the (sub)mm continuum (see

Section 4.2). Again, the models are physically plausible since we

consider that the gas follows Newtonian dynamics and go from

the less massive object to the more massive one. Their length in the

line-of-sight direction is considered to be the same as their projected

size in the plane of the sky. Two such flows go from compact source

E to SE and MNE, and three more go from compact source SE to

Main, S, and MNE. Table 2 lists the selected parameters of these five

filaments. The existence of the two filaments that cross diagonally

(SE→Main and SE→MNE) is not clear, but including them helped

to reproduce line emission extending towards the north-west of

compact source SE. Figs 8 and A1 show that the model cylinders

fill the gaps of emission at the centre of MM1, and that they also

help to reproduce the velocity dispersion between compact sources.

Our small model filaments are homogeneous and do not reproduce

the clumpiness suggested by the data.

Something worth noting is that fixing the starting and ending

point of the cylindrical flows, plus the above-mentioned dynamical

initial condition, automatically sets the line-of-sight arrangement

of sources, allowing us to fully determine the 3D structure of the

model cluster.

4.1.3 The entire W33A MM1 region

Besides the localized features, the model also successfully repro-

duces the global features of W33A MM1. Fig. 8 shows that the

line intensity is dominated by the north–south elongated emission

coming from compact sources Main, MNE, S and SNW, with sec-

ondary peaks at the positions of SE, E, and Ridge, and extended

emission along the spiral-like filament and in the junctions between

compact sources. The overall velocity field is also well reproduced:

the brightest peak in Main is the most blueshifted, as well as the area

going north–south from Main to S on the east side of S. The east

(blueshifted) to west (redshifted) velocity gradient centred on S is

also reproduced. The jump to redshifted emission going from Main

to MNE is also apparent, as well as the middle-velocity (green) val-

ley between MNE-Main-S-SNW and E-SE, and redshifted emission

at the positions of E and on the west side of SE. The overall velocity

pattern of the spiral-like filament is also reproduced, as described

in the previous section. The observed MM1 core is somewhat more

extended than the model, probably due to extended emission not be-

longing to any compact source or filament. The velocity dispersion

maps also match well. The highest velocity dispersion is localized

around the most massive compact source Main, with high peaks

around S. However, the model is short in the velocity dispersion

around compact sources SE and Ridge. This extra observed ve-

locity dispersion could be due to contamination of neighbouring
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Figure 8. Top row: intensity moments for the model CH3CN J = 19−18, K = 4 line. Left: velocity-integrated intensity (moment 0). Centre: intensity-weighted

mean velocity (moment 1) integrated between 25.0 and 49.8 km s−1. Right: intensity-weighted velocity dispersion (σ , moment 2) over the same integration

range as the moment 1. Bottom row: same as top row but for the ALMA data. Cells with intensity below 10 per cent of the peak were masked out. The compact

sources included in the model are marked by crosses (+). The beam is shown in the lower left corner of top left panel.

molecular lines within the velocity integration range for these two

sources (see Fig. 7).

Fig. 9 shows a comparison of the model and observed spectra

averaged in larger apertures containing the entire MM1 core and a

region covering the brightest emission (Main + MNE + S + SNW),

labelled as ‘central’. In the former, it is clear that the model repro-

duces the line centroid and width but is lacking about one-third of

the peak aperture-averaged brightness temperature, i.e. the missing

extended emission mentioned above. The match of the model in the

‘central’ part is better, although still some brightness from extended

emission is missing. Appendix A shows the channel maps of both

the model and ALMA data for further comparison. It is also clear

from these that some extended emission is missing in the model,

but that such emission could not be modelled with a core-scale,

Ulrich-type or spherical envelope.

4.2 (Sub)millimetre dust continuum

Model continuum maps of the thermal dust emission at 220.8 GHz

(1.36 mm) and 349.3 GHz (0.86 mm) and the corresponding ALMA

maps are shown together in Fig. 10. We use an opacity power-law

κ = κ0(ν/ν0)β with an opacity index β = 1.7, typical of the ISM,

and a normalization κ0 = 0.5 cm2 g−1 at 220 GHz as in Galván-

Madrid et al. (2010). The global model was chosen to match well

the 0.86 mm continuum and CH3CN J = 19−18 line, and then the

resulting 1.36 mm flux is calculated.

In Table 3, we list the peak and averaged continuum intensities

over the same apertures used for the line analysis (Figs 7 and 9).

We avoid quoting fluxes4 for the following reasons: (i) The Band 7

and Band 6 beams are about and larger than the 0.2 arcsec apertures

that we use for the compact sources, respectively, and the sources

are also of the order of this size. Thus, fluxes measured over these

apertures do not exactly correspond to the correct source flux. (ii) In

some cases there is crowding between the compact sources and also

with the filaments. Selecting larger apertures compared to the beam

would help to solve the previous point (i), but then the fluxes do

not correspond anymore to those from individual objects. Selecting

smaller apertures helps to isolate individual sources, but the situation

of point (i) gets worse.

For compact source Main, we found that a disc is needed to match

the high and compact continuum intensities. Without a disc, a pure

envelope only produces ∼10 per cent of the needed continuum emis-

sion, and its appearance is more extended than in the observations.

This is a natural consequence of the envelope being less compact

4Throughout this paper, we use the word ‘flux’ to refer to a flux density,

defined as a solid-angle integrated intensity.

MNRAS 478, 2505–2525 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/2/2505/4992323
by University of Leeds - Librarian user
on 22 August 2018



3D radiative transfer modelling of W33A MM1 2517

Figure 9. CH3CN J = 19−18, K = 4 line emission of model and ALMA data compared in large apertures of interest. The header on each panel indicates the

zone of analysis. The bottom right-hand panel is a snapshot of the cube in the velocity channel v = 38.05 km s−1, where white squares show the areas over

which the spectra have been averaged. The cyan markers indicate the centre of the compact sources included in the model.

than the disc (see Fig. 3). Also, the compact appearance of the con-

tinuum and the line data suggests that the disc around Main should

be small. Table 1 shows that the estimated disc radius (152 au) is

the smallest among all sources.

A disc is also necessary to match the continuum emission of

compact sources S, SE, and Ridge. For S, the mean intensity is

dominated by the disc, with important contributions from the SE→S

filament and the close companion SNW. These external agents help

to reproduce the horizontally elongated continuum emission in Band

7 around S (see Fig. 10). The mean intensity in SE has a significant

contribution from the three filamentary flows coming/going from/to

other sources. Source Ridge alters the appearance of the spiral-like

filament, and a disc is needed to match the observational data. On

the other hand, MNE and SNW are not required to host discs to

reproduce their observed continuum.

The mean intensity of the model spiral-like filament matches well

the observations in both bands, but the real emission has inhomo-

geneities besides compact source Ridge that are not included in

the model. An increased density towards Ridge would improve the

match.

The need for the filamentary flows joining pairs of compact

sources is apparent in the continuum images. The bright, elon-

gated features in the middle zones between compact sources are

well reproduced by the global model thanks to the inclusion of the

cylindrical filaments. Similarly to the case of the line emission, the

model lacks some extended emission that could arise from core

emission not belonging to any of the compact sources or filaments.

This extended emission, although morphologically noticeable in

the real observations, amounts to only 22 per cent and 10 per cent

flux on top of what the model, respectively, has at 1.3 and 0.8 mm,

which is within the nominal 10 per cent error in the observational

flux determinations.

Spectral indices were calculated for the large apertures

shown in Fig. 9. The model integrated fluxes for the spiral-like

filament, the central-MM1 region, and the entire MM1 core,

respectively, at 1.3 and 0.8 mm are: Sspiral,1.3mm = 30.0 mJy,

Sspiral,0.8mm = 85.6 mJy, Scentral,1.3mm = 51.1 mJy,

Scentral,0.8mm = 194.0 mJy, SMM1,1.3mm = 102.4 mJy, and

SMM1,0.8mm = 320.6 mJy. The respective fluxes in the ALMA

data are: Sspiral,1.3mm = 34.0 mJy, Sspiral,0.8mm = 85.2 mJy,

Scentral,1.3mm = 71.1 mJy, Scentral,0.8mm = 203.0 mJy,

SMM1,1.3mm = 125.0 mJy, and SMM1,0.8mm = 341.1 mJy. The

free–free contributions were subtracted from the observational

data extrapolating the fluxes of the 7 mm sources in van der Tak &

Menten (2005) and using a free–free spectral index of 1 (see also

Maud et al. 2017; Galván-Madrid et al. 2010). Thus, the obtained

model dust spectral indices are: αspiral = 2.3, αcentral = 2.9, and

αMM1 = 2.5. The observational spectral indices are: αspiral = 2.0,

αcentral = 2.3, and αMM1 = 2.2. The observational indices appear to

be systematically lower than in the model, but taking into account

the absolute uncertainties of about 10 per cent for both sets of

images, the associated error in the spectral index calculation is

±0.3, which makes the model and ALMA measurements consistent

with each other.

We note that the measured spectral indices in the model do not

correspond to the 2 + β that is often expected, and that is valid

only under the Rayleigh–Jeans approximation and the optically thin

regime (e.g. Maud et al. 2013). Optical depth maps show that the

model regions are optically thin on average except for the central

parts of Main and SE, where the mean τ > 0.5. Therefore, we

interpret the low spectral indices as due to significant portions of

the model being out of the Rayleigh–Jeans regime: hν is in general

less than kT, but not much less over large volumes. For example

hν/kT ≈ 0.1 in the spiral-like filament. Although the central region
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Figure 10. 220 GHz (left column) and 349 GHz (right column) continuum images of W33A MM1. Top panels correspond to the model and bottom panels

to the observations. The compact sources included in the model are marked with crosses (+). The beam is shown in the lower left corner of each panel. The

colour bars are shared between panels of the same column.

Table 3. Mean and peak continuum intensities of the modelled and observed regions. The known free–free contributions from Main and SE were extracted in

Main, SE, central-MM1, and MM1 for the data. The measurement apertures are the same as in Figs 7 and 9 except for SE, where we used a larger aperture to

subtract adequately the free–free contribution. The absolute uncertainties are ≈10 per cent for both models and observations.

Region Model Data

220 GHz 220 GHz 349 GHz 349 GHz 220 GHz 220 GHz 349 GHz 349 GHz

Mean

(mJy beam−1)

Peak

(mJy beam−1)

Mean

(mJy beam−1)

Peak

(mJy beam−1)

Mean

(mJy beam−1)

Peak

(mJy beam−1)

Mean

(mJy beam−1)

Peak

(mJy beam−1)

Main 26.2 33.6 67.3 119.7 25.0 44.9 56.8 96.9

MNE 10.8 29.8 19.4 79.1 18.6 49.4 18.1 65.8

S 5.7 15.0 9.0 15.0 12.2 23.6 12.7 16.3

SNW 4.6 18.4 9.7 25.8 11.1 30.7 11.5 24.4

SE 1.0 2.1 3.6 12.7 2.0 1.8 3.6 7.9

E 2.1 2.9 8.5 14.5 5.1 5.5 6.4 7.7

Ridge 1.4 1.9 6.6 10.3 3.6 4.7 5.9 8.0

Main-S 17.9 32.9 33.4 110.2 28.8 50.4 30.2 87.9

Spiral 0.5 3.3 1.6 10.9 1.5 8.9 1.4 8.7

Central-MM1 6.3 33.6 11.7 119.7 11.4 44.9 12.3 96.9

MM1 1.0 33.6 2.4 119.7 2.2 44.9 2.3 96.9
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of MM1 has an elevated optical depth, it is the closest to following

the Rayleigh–Jeans limit, given that the temperatures there are also

substantially higher. It is possible that the origin of the low spectral

indices in the real ALMA maps is the same, warning against readily

interpreting low dust-emission spectral indices as a signature of

grain growth when observations at frequencies larger than 300 GHz

are used.

4.3 CH3CN J = 19−18, K = 8

We now present a calculation of the CH3CN J = 19−18, K = 8

line based on the previously described global model that matches

the K = 4 and continuum observations. For this line, the model

emission is not meant to be a match to the data, but rather a check

of how representative it is of the gas at scales smaller than the

current observational angular resolution.

Figs 11 and 12, respectively, show the spectra around the compact

sources and on the same extended areas of interest as in the presen-

tation of the K = 4 model. The brightness match is reasonably good

for all compact sources except for Main, and the line-width is only

unmatched for MNE. The brighter observed line in Main suggests

that the model should be warmer at radii <100 au. The broader

observed line in MNE could be due to contamination from Main.

We expect to obtain ALMA long-baseline data in the near future to

disentangle this crowded region and produce a more detailed model

of the Main-MNE system. The match to the extended areas (Fig. 12)

is within a factor of 2 in brightness for the large filament and the

entire MM1, and better for the central region. In the latter, there is

some missing emission in the model at velocities close to the peak

velocity of the entire MM1 core (≈38 km s−1). This peak is well

reproduced by the K = 4 model (see Fig. 9).

5 D ISCUSSION

5.1 An accretion filament feeding the fragmented high-mass

core W33A MM1

One of the main results of this study is to show, via 3D radiative

transfer modelling, that the elongated structure north of the MM1

core is an accretion (feeding) flow. The observed kinematics and

modelling show that the filament has both longitudinal and radial

motions, and that it is filled with high-density (≈8 × 107 cm−3,

see Table 2), warm (∼200 K) gas. The velocity dispersion within

this spiral-like filament could only be reproduced if an extra, radial

velocity component was added (see Section 4.1.2). Given the high

density and the existence of fragmentation within the filament –

compact source Ridge –, infall is a plausible explanation to the

observed extra velocity dispersion.

The total gas mass in the model ‘feeding’ filament is 0.41 M⊙,

and its average flow rate is 4.75 × 10−5 M⊙ yr−1. It is possible that

these are lower limits, since less dense, colder gas in the flow would

not emit significantly in the CH3CN lines. For the modelled mass

inflow rate, the depletion time of the filament gas is ∼8.3 × 103 yr,

quite short compared with the few × 105 yr expected for massive

star formation (Zinnecker & Yorke 2007). At first sight, this suggests

that the ‘feeding filament’ could be a transient structure, unless re-

plenishment from larger scales occurs. Several studies have shown

evidence for the continuity of molecular-gas flows from scales of

∼10 pc down to <0.05 pc (e.g. Galván-Madrid et al. 2009; Schnei-

der et al. 2010; Liu et al. 2012; Nakamura et al. 2012; Peretto et al.

2013). For the case of W33A, Galván-Madrid et al. (2010) reported

that MM1 appears to be connected to MM2 by an extension of gas

∼12 000 au long in the northeast-southwest direction, similar to

the orientation of the spiral-like filament. This possible larger-scale

extension of the filament, however, is not modelled in this paper

since it does not emit significantly in the observed CH3CN tran-

sitions. Further evidence for replenishment in W33A comes from

the pc-scale filaments seen in NH3 emission, which converge in

position–position–velocity space at the position of MM1 (Galván-

Madrid et al. 2010).

The rate at which the model spiral-like filament provides mass

to MM1 is an order of magnitude below the combined protostellar

accretion rate of the model compact sources ∼4.6 × 10−4 M⊙ yr−1

(see Table 1), and dominated by the accretion on to Main. We con-

sider two possible interpretations for this: the mismatch between

the protostellar and core accretion rates could mean that the former

will be significantly lower within a few ×104 yr, after the gas reser-

voir in the modelled filaments is depleted. This is consistent with

the onset of ionization in source Main, which hosts a tiny hyper-

compact H II region with an estimated size <100 au (van der Tak &

Menten 2005). On the other hand, it is possible that gas accretion

will continue for longer time-scales if there is the aforementioned

replenishment from larger scales and/or our mass estimates for the

intra-core filaments are lower limits because some gas does not emit

in the modelled CH3CN lines.

Spiral-like structures like the filament feeding MM1 have been

observed both at smaller and larger scales, from low-mass pro-

toplanetary discs/envelopes (102 au, Pérez et al. 2016; Yen et al.

2017), to luminous, cluster-forming clumps (105 au, Wright et al.

2014; Liu et al. 2015). Such spiral structures feeding material to

nascent stellar systems form as a natural consequence of gravi-

tational fragmentation in (radiation) hydrodynamical simulations

(e.g. Bate 2011; Vorobyov, Zakhozhay & Dunham 2013). Our ob-

servations and analytical model look similar to the simulations of

massive star formation presented by Krumholz, Klein & McKee

(2007), who calculated specific predictions for images taken with

ALMA in CH3CN transitions. The synthetic images from those

simulations show spiral filaments with typical length scales of a

few thousand au, feeding a central object that reaches a stellar mass

of 8 M⊙ and a few lower mass companions. Their total gas mass

within ∼1000 au of the central core reaches about 5 M⊙. These

characteristics are similar to those of our analytical model, although

in the Krumholz et al. (2007) simulations such structures arise in

the context of a massive fragmenting disc, whereas our model is ad

hoc.

5.2 Accretion filaments joining pairs of protostars

Another main result of this study is the proposed existence of gas

flows between pairs of compact sources in the cluster-forming envi-

ronment of W33A MM1. The ALMA continuum observations, es-

pecially the higher angular resolution 0.8-mm image, clearly shows

elongations joining some of the compact sources (see Fig. 10). The

two most notable features are between sources E and Main/MNE,

and between SE and S. Table 2 shows that these two are the most

massive among the small filaments, with ∼0.04 M⊙ each. Our

interpretation also explains the observed CH3CN intensity, veloc-

ity field, and velocity dispersion in these inter-source regions (see

Fig. 8). The existence of these features is a robust result, however,

we note that our implementation of their kinematics and morphol-

ogy is just a first-order approximation. Also, the existence of the

two ‘diagonal’ filaments is not without doubt, but their implemen-

tation helped to better reproduce a few fine details seen in the data

(Section 4.1.2).
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Figure 11. Same as Fig. 7 for CH3CN J = 19−18, K = 8.

Figure 12. Same as Fig. 9 for CH3CN J = 19−18, K = 8.

The accretion rate across the E → MNE filament is half of the

feeding rate of the larger, spiral-like filament, suggesting that most

of the gas processed by the latter ends up in the Main/MNE system.

This finding is consistent with models of star (cluster) formation

that emphasize the need for replenishment of gas from cloud to

clump to core to protostellar scales (e.g. Bonnell, Vine & Bate

2004; Smith, Longmore & Bonnell 2009; Ballesteros-Paredes et al.

2015; Vázquez-Semadeni, González-Samaniego & Colı́n 2017).
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5.3 The protostellar objects

One of the unexpected findings of our modelling is that the mass

of the object at the centre of compact source Main is lower

(M⋆,Main = 7 M⊙) than previous estimates. Retrospectively, this

is not surprising, since the increment in angular resolution (×9

in beam area) has unveiled that what we thought was a system

with two sources (Main and SE) has many more components.

The total dynamical mass of the sources in the clustered area

(Main + MNE + S + SNW) amounts to 11.43 M⊙, of which 11 M⊙
are stellar and 0.43 M⊙ are gas. This is in good agreement with

Galván-Madrid et al. (2010), who estimated a stellar mass ∼10 M⊙.

The gas mass that can be inferred from their peak intensity in Main,

which at their resolution roughly corresponds to the clustered area

in the ALMA data, and after correcting for free–free emission and

re-scaling for the new distance, is ∼0.35 M⊙, also similar to our

model result.

With a mass M⋆,Main = 7 M⊙, Main is at the border of what usu-

ally are called intermediate- and high-mass stars. The modelling

of the gas flows suggests that it could accrete a large fraction of

the ∼1 M⊙ gas reservoirs seen in the ALMA data (see Tables 1

and 2). Also, Main could accrete more gas if the aforementioned

replenishment occurs, although it is uncertain. In the following, we

check if the modelled YSO with a stellar mass M⋆,Main = 7 M⊙
is still consistent with the high luminosity of W33A. We note that

the (proto)stellar luminosity is not a free parameter in our mod-

elling, since the temperature structure of the discs and envelopes

are manually set following the prescriptions of Section 3.1. How-

ever, it can be checked what is the resulting luminosity from the

selected parameters (see Table 1). Taking the accretion luminosity as

Lacc = (GM⋆Ṁ)/R⋆, we obtain for Main that Lacc = 2.9 × 103 L⊙.

The accretion rate sets the density structure, the stellar mass sets

the kinematics of the gas around it, and the stellar radius has a

small effect on the model because the normalization of the disc

scale height is proportional to it (see Section 3.1). The complemen-

tary stellar luminosity would be L⋆ = 4πR2
⋆σSBT 4

eff . A (proto)stellar

object bloated by accretion as the one we consider will have an ef-

fective temperature Teff lower than the corresponding ZAMS star

of the same mass (Hosokawa, Yorke & Omukai 2010). Consid-

ering Teff ≈ 104 K, the corresponding stellar luminosity is L⋆ ≈

7.9 × 103 L⊙. Thus, our model gives a total luminosity for Main

LMain ≈ 1.1 × 104 L⊙. The luminosity of W33A on scales of a few

arcmin was considered to be LW33A ∼ 1 × 105 L⊙ (Stier et al. 1984)

for an assumed distance of 3.8 kpc, but the new parallax distance

of 2.4 kpc (Immer et al. 2013) lowers this estimation to LW33A ≈

4 × 104 L⊙. Lin et al. (2016) published SED fitting of molec-

ular clouds at 10 arcsec resolution from combining ground-based

bolometric and Herschel data. We requested their W33 images and

measured the bolometric luminosity within one beam area around

the W33A peak, which roughly corresponds to the area of W33A

MM1 + MM2. We obtain LMM1 + MM2 ≈ 1.8 × 104 L⊙. Therefore,

the luminosity that our model implies for Main and the observed

luminosity at the smallest scales in which it can be measured are

consistent with each other.

Considering the other sources, we find that some of them do

require discs (S, SE, and Ridge), but some others do not (MNE,

SNW, E), to simultaneously match their spectra and continuum

(Section 4). The sources that require discs host the most massive or

more evolved protostellar objects, which could either mean that the

least massive sources are younger, possibly low-mass class 0 YSOs

where disc formation is still occurring (e.g. Li et al. 2017), or that our

observations do not have the sensitivity and resolution to properly

constrain the discs that could be embedded within these fainter

sources. The disc+envelope to (proto)stellar mass ratio is 0.056 for

Main and in the range 0.015–0.044 for the rest of the sources (E is

a pure envelope). These values are not accurately constrained, but

illustrate that most of the compact sources are stellar rather than gas

dominated, although a fraction of the extended emission in the core

could be resolved out by the interferometer.

5.4 A high-mass stellar association in the making

Our modelling gives a distribution of stellar masses within the MM1

core with one massive protostellar object (Main), one of intermedi-

ate mass (S), and four of low mass (SE, MNE, SNW, Ridge), as well

as one pre-stellar core (E) without a central object. This is loosely

reminiscent of a stellar initial mass function (IMF; Salpeter 1955),

although we emphasize that our number of protostellar sources is

small. This result suggests that several physical processes within

the MM1 core, such as further fragmentation into the individual

compact sources, as well as gas flows between them and from their

environment (e.g. Peters et al. 2010; Rosen et al. 2016), could be

relevant for the setting of the IMF. These factors could add in a

complex manner to processes that operate at larger scales (e.g. Oey

2011; Offner et al. 2014), like those behind determining the mass

distribution of cores such as MM1, which also appears to be a de-

creasing function with object mass (e.g. Alves, Lombardi & Lada

2007).

The number of compact sources in our model translates into an

average (proto)stellar density of 1.8 × 105 pc−3, which is still lower

than the 106–108 pc−3 required for (proto)stellar collisions to work

as a significant agent in shaping the nascent stellar association (Zin-

necker & Yorke 2007). Since we detect objects down to a fraction

of a solar mass and sources of lower mass are not relevant for the

required gravitational focusing, we argue that we can rule out stellar

collisions in this particular region.

Close encounters, however, could still be relevant. It can be seen

from Table 1 that the inferred disc radii are from 150 to 350 au, in

good agreement with the observed sizes of low-mass protoplane-

tary discs (e.g. Andrews 2015). This is expected for the low-mass

proto(stars) in our model but is not obvious for Main. One possibility

is that the disc of Main has been truncated due to interactions with

the implied nearby (474 au) source MNE (e.g. Vincke, Breslau &

Pfalzner 2015), or even that MNE is the result of the fragmentation

of the disc around Main (e.g. Vorobyov et al. 2013).

The MM1-forming association appears to be virialized. Taking

into account the entire model mass and a radius of 3500 au, the 1D

escape velocity of the MM1 core is ≈1.3 km s−1. Similarly, the 1D

rms velocity dispersion of the systemic velocities of the compact

sources with respect to the systemic velocity of the entire gas core

(≈38 km s−1) is ≈1.5 km s−1. It could be expected that after star

formation is shut off and the remaining core gas is removed, the

resulting stellar association will be super-virial, i.e. it will have

a velocity dispersion larger than the equilibrium one and will be

dissolved within a few Myr (e.g. Goodwin & Bastian 2006).

6 C O N C L U S I O N S

We have made a multiple-component analytical model of the com-

plex massive star formation region W33A MM1, and performed

radiative-transfer calculations using LIME to predict its observational

appearance and compare it to ALMA images at ≈0.2 arcsec reso-

lution. The model was tailored to match CH3CN lines and dust
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continuum emission from dense and warm gas. Our main conclu-

sions are as follows:

(i) The MM1 core is fragmented into six compact sources within

a 1000 au radius, plus another compact source within the ‘feeding’

spiral-like filament. Some of these sources require the presence of a

disc within an envelope to simultaneously match the high continuum

and line intensities, whereas some others can be modelled as pure

envelopes.

(ii) Compared to previous estimates, we obtain lower masses (M⋆

≈ 7 M⊙, Mdisc + envelope ≈ 0.4 M⊙) and a smaller disc size (Rd ∼ 150

au) for the most luminous (proto)star in the region, known as Main

(LMain ∼ 1.1 × 104 L⊙). This is a consequence of the high-level

of fragmentation found within the core. The total dynamical (stel-

lar+gas) mass of our model is consistent with previous estimations.

(iii) The spiral-like filament converging to MM1 from the north-

west can be convincingly interpreted as an accretion flow feeding

the nascent stellar association. The kinematics of this ∼104 au

length filament is consistent with a parabolic trajectory with focus

at the centre of mass of the MM1 cluster. The filament itself is

fragmenting and appears to have a radial infall velocity component.

(iv) Small filamentary flows of ∼1000 au length between pairs

of (proto)stellar sources are proposed to exist. The most prominent

one, from source E to the massive Main/MNE system, appears to

hoard most of the gas flow rate coming from the larger, spiral-like

filament that feeds the entire MM1 core. Gas replenishment from

clump to core to protostellar scales appears to be key.

(v) The forming stellar association seems to be virialized and may

become super-virial if the remaining gas is removed, favouring the

evaporation of the newly formed stars into the field. The distribution

of (proto)stellar masses is such that there are several low-mass

objects per high-mass star.

A D D I T I O NA L SO F T WA R E

In addition to the software referenced throughout the article, we

used specific PYTHON packages to achieve the modelling: NUMPY (Van

Der Walt et al. 2011), MATPLOTLIB (Hunter 2007), ASTROPY (Astropy

Collaboration et al. 2013), IPYTHON (Pérez & Granger 2007), and

PANDAS (McKinney 2010).
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Vázquez-Semadeni E., González-Samaniego A., Colı́n P., 2017, MNRAS,

467, 1313

Vincke K., Breslau A., Pfalzner S., 2015, A&A, 577, A115

Vorobyov E. I., Zakhozhay O. V., Dunham M. M., 2013, MNRAS, 433,

3256

Whitney B. A., Wood K., Bjorkman J. E., Wolff M. J., 2003, ApJ, 591, 1049

Wilner D. J., Wright M. C. H., Plambeck R. L., 1994, ApJ, 422, 642

Wright M. C. H., Hull C. L. H., Pillai T., Zhao J.-H., Sandell G., 2014, ApJ,

796, 112

Yen H.-W. et al., 2017, A&A, 608, A134

Zhang Q., Hunter T. R., Sridharan T. K., Ho P. T. P., 2002, ApJ, 566, 982

Zinnecker H., Yorke H. W., 2007, ARA&A, 45, 481

APPENDI X A : MODEL AND OBSERV ED

C H A N N E L M A P S

MNRAS 478, 2505–2525 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/2/2505/4992323
by University of Leeds - Librarian user
on 22 August 2018

http://dx.doi.org/10.1126/science.aaf8296
http://dx.doi.org/10.1088/0004-637X/711/2/1017
http://dx.doi.org/10.1146/annurev.aa.19.090181.001033
http://dx.doi.org/10.1111/j.1365-2966.2005.09921.x
http://dx.doi.org/10.1093/mnras/stx404
http://dx.doi.org/10.1086/383120
http://dx.doi.org/10.1093/mnras/stw2153
http://dx.doi.org/10.1086/145971
http://dx.doi.org/10.1051/0004-6361/201321134
http://dx.doi.org/10.1051/0004-6361/201527311
http://dx.doi.org/10.1051/0004-6361/201014481
http://dx.doi.org/10.1051/0004-6361:20041729
http://dx.doi.org/10.1111/j.1365-2966.2009.15621.x
http://dx.doi.org/10.1086/162342
http://dx.doi.org/10.1086/154840
http://dx.doi.org/10.1051/0004-6361:20052872
http://dx.doi.org/10.1086/309011
http://dx.doi.org/10.1093/mnras/stw3229
http://dx.doi.org/10.1051/0004-6361/201425552
http://dx.doi.org/10.1093/mnras/stt970
http://dx.doi.org/10.1086/375415
http://dx.doi.org/10.1086/173757
http://dx.doi.org/10.1088/0004-637X/796/2/112
http://dx.doi.org/10.1086/338278
http://dx.doi.org/10.1146/annurev.astro.44.051905.092549


2524 A. F. Izquierdo et al.

Figure A1. Channel maps for CH3CN J = 19−18, K = 4 in the model (odd rows) and the observations (even rows). The velocity range is from 25.9 to

45.2 km s−1, with a step of 0.84 km s−1 (the separation between channels in the model and the data is 0.42 km s−1). The beam size is shown in the lower left

corner of the panels. A colour bar in the right-hand side of the figure indicates the corresponding intensity.
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APPENDIX B: MODEL LIBRARY

To carry out the modelling of W33A MM1, we developed a set of

libraries to create analytical distributions of physical properties such

as density, temperature, velocity, and molecular abundance. The

package is modular, intended to be user-friendly, and entirely written

in Python. The basic branch of the package allows to reproduce a

single (star-forming) region based on a group of standard models

as the ones referred to in Section 3.1, as well as simpler analytical

distributions such as power-law and homogeneous profiles. The user

has the possibility of defining some combinations of models without

the need of defining a more complex ‘global’ grid, for example, a

Pringle disc embedded in an Ulrich envelope or in a user-defined

power law, or defining gaps and cavities within a region of the

previously invoked model.

For advanced set-ups, the package allows the user to model sets

of individual sources together within a global grid, as it was done in

this paper. The tools for these advanced feature include libraries that

are able to define the overlapping process of individual models, as

well as their translations and rotations. The global grid that allocates

all the user-defined regions is built on the go. Filamentary structures

with cylindrical or parabolic shapes can also be generated within

the global grid.

The output of the modelling package includes data tables with

numerical values of density, temperature, velocity, abundance, and

gas-to-dust ratio for each individual model, and a global data table

with overlapped physical properties (as explained in Section 3.2.1)

in the case that the user decides to join two or more individual

models.

The output was adapted to be the input of the Line Modelling

engine software (LIME; Brinch & Hogerheijde 2010) to obtain predic-

tions of the line and continuum radiation observed from the model.

A header file that reads the input physical properties adequately for

LIME is included in the package. An illustrative example of the use

of the package, from the model definitions to its integration with

LIME, is also included.

The package, named SF3DMODELS, and its documentation are avail-

able through GitHub (https://github.com/andizq/star-forming-regio

ns). We foresee to update the package with more features in the near

future, including model ‘ingestors’ for more recent versions of LIME

and other radiative transfer codes, as well as free–free and recom-

bination line calculations. We kindly ask the reader to refer to this

work or to the related publications of future developments if this

software has been useful for their research.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 478, 2505–2525 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/2/2505/4992323
by University of Leeds - Librarian user
on 22 August 2018

https://github.com/andizq/star-forming-regions

