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Abstract Mountain wave (MW) propagation and dynamics extending into the upper mesosphere
accompanying weak forcing are examined using in situ and remote-sensing measurements aboard the
National Science Foundation/National Center for Atmospheric Research Gulfstream V (GV) research aircraft
and the German Aerospace Center Falcon. The measurements were obtained during Falcon flights FF9 and
FF10 and GV Research Flight RF22 of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) performed
over Mount Cook, New Zealand, on 12 and 13 July 2014. In situ measurements revealed both trapped lee
waves having zonal wavelengths of λx ~ 12 km and less, and larger-scale, vertically propagating MWs
primarily at λx ~ 20–60 km and ~100–300 km extending from west to ~400 km east of Mount Cook. GV
Rayleigh lidar measurements from 25- to 60-km altitudes showed that the weak forcing and zonal winds that
increased from ~12m/s at 12 km to ~40 and 130m/s at 30 and 55 km, respectively, enabled largely linear MW
propagation and strong amplitude growth with altitude into the mesosphere. GV Na lidar and airglow imager
measurements revealed an extensive MW response from ~70 to 87 km with large amplitudes and vertical
displacements at λx ~ 40–300 km but with both decreasing with altitude approaching a critical level near
90 km. These MWs exhibited large-scale MW breaking and among the largest sustained momentum fluxes
observed in the mesosphere. UK Met Office Unified Model simulations of the RF22 MW event captured many
aspects of the observed MW field and revealed that despite the dominant large-scale MW responses in the
stratosphere, the major momentum fluxes accompanied smaller-scale waves.

1. Introduction

Gravity waves (GWs) contribute significantly to the structure and variability of the atmosphere over a wide
range of spatial and temporal scales from the surface into the thermosphere. Their importance derives from
their many sources, ubiquity (they are virtually always present), diverse interactions, major contributions to
energy and momentum transport, and generation of instabilities and turbulence that account for local
energy and momentum deposition (see reviews of these dynamics by Staquet & Sommeria, 2002; Fritts &
Alexander, 2003; Sutherland, 2010; Nappo, 2002; and Bühler, 2014).

Multiple processes are now understood to excite GWs having a wide range of scales throughout the atmo-
sphere. Important sources at lower altitudes include orography, deep convection, jet streams, and frontal sys-
tems. Orographic GWs, or mountain waves (MWs), arise wherever there is significant terrain, have spatial
scales dictated by the terrain scales and cross-mountain flows, and can have both upstream and downstream
influences. The horizontal scales that readily achieve higher altitudes can be as small as ~10–20 km and as
large as ~200 km or larger, but their dynamics and ability to propagate to higher altitudes depend strongly
on the intervening wind and stability profiles and whether these dynamics are linear or nonlinear (e.g.,
Bramberger et al., 2017; Durran, 1990; Grubišić et al., 2008; Klemp & Lilly, 1978; Lilly & Kennedy, 1973; Lilly
& Lester, 1974; Nastrom & Fritts, 1992; Shutts & Vosper, 2011; R. B. Smith et al., 2008; Vosper, 2015; Vosper
et al., 2016). Where strong zonal winds extend into the stratosphere, orographic sources lead to the
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middle- to high-latitude GW hot spots identified in high-resolution satellite radiance data (e.g., Eckermann &
Preusse, 1999; Hendricks et al., 2014; Jiang et al., 2003; Wu & Eckermann, 2008).

Deep convection yields GWs that have similar horizontal scales to MWs but often more nearly isotropic pro-
pagation and responses at higher altitudes, depending on the character of the source and propagation envir-
onments (e.g., Fovell et al., 1992; Horinouchi et al., 2002; Lane et al., 2001; Pfister et al., 1993; Yue et al., 2009).
While deep convection can occur in many regions, preferred locations such as the Intertropical Convergence
Zone and major cyclones such as hurricanes contribute most to the global statistics seen in satellite radiance
and GPS data and modeled responses in these regions (e.g., Liu et al., 2014; Tsuda et al., 2000). Frontal sys-
tems and jet streams are likewise significant sources of GWs but often at larger scales than typically arise from
orography and deep convection (Fritts & Nastrom, 1992; Guest et al., 2000; Hirota & Niki, 1985; Plougonven &
Snyder, 2007; Plougonven & Zhang, 2014; Thomas et al., 1992; Uccellini & Koch, 1987; Zhang, 2004). Of these
sources, orography and convection often lead to GWs having larger intrinsic frequencies, ωi, whereas frontal
systems and jet streams more typically yield smaller ωi due to their larger horizontal-to-vertical
wavelength ratios.

The influences of these various GWs depend on their amplitudes, momentum fluxes, and propagation to
higher altitudes. Those having larger vertical group velocities (e.g., convective and orographic GWs with lar-
ger ωi and vertical wavelengths, λz) more easily penetrate to high altitudes and achieve large amplitudes and
momentum fluxes. Those having smaller vertical group velocities (e.g., frontal and jet stream GWs) with smal-
ler ωi and λz can nevertheless penetrate to high altitudes and achieve large amplitudes under suitable pro-
pagation conditions. However, their momentum fluxes are typically smaller because of their larger
horizontal scales (see, e.g., Fritts & Alexander, 2003; Plougonven & Zhang, 2014).

GWs that achieve large amplitudes and momentum fluxes often induce strong wave-wave interactions,
wave/mean-flow interactions, and/or local instabilities and turbulence that act as sources of additional
GWs. Wave-wave interactions yield energy transfers among modes within the GW spectrum that can couple
very different scales without dissipation, drive the GW field toward an equilibrium spectrum, and compete
with local instabilities in reducing primary GW amplitudes (e.g., Dong & Yeh, 1988; Dunkerton, 1989; Fritts
et al., 2013; Fritts, Wang, et al., 2016; Grimshaw, 1988; Hines, 1991; Huang et al., 2007, 2009, 2011;
Klostermeyer, 1991; McComas & Bretherton, 1977; Sonmor & Klaassen, 1997; Vanneste, 1995; Yeh & Liu, 1981).

Momentum transport by GW packets localized in one, two, or three dimensions (1-D, 2-D, or 3-D) can induce
local mean flow accelerations that have several effects. One-dimensional localization (in altitude or time)
induces distortions of the GW phase structure due to self-acceleration dynamics or modulational instabilities
at sufficiently high ωi (Dosser & Sutherland, 2011; Fritts et al., 2015; Sutherland, 2006a, 2006b).

Induced mean flows due to localization of large-amplitude GWs in 2-D or 3-D yield strong forcing of second-
ary GWs having scales and orientations dictated by the packet scales of the initial GW (Vadas, 2007; Vadas &
Fritts, 2001). Secondary GWs that are excited at larger vertical scales can propagate to much higher altitudes
because of their much larger horizontal phase speeds and vertical group velocities than the primary GWs.
Importantly, secondary generation due to local GW momentum transport often precedes the occurrence
of instabilities and dissipation (e.g., Fritts et al., 2015), in contrast to the assumption in earlier analytic studies
of these dynamics (Vadas, 2007; Vadas & Fritts, 2001).

Secondary GWs can also arise at scales comparable to, or smaller than, the initial GW due to various local GW
instability dynamics that arise in idealized or multiscale environments. Important classes include self-
acceleration instabilities, GW breaking, Kelvin-Helmholtz instabilities, and intrusion events that can have var-
ious orientations relative to the plane of GW propagation (e.g., Dunkerton, 1989; Fritts et al., 2009a; Fritts et al.,
2013; Fritts, Wang, et al., 2016; Fritts et al., 2017; Fritts & Rastogi, 1985; Lelong & Dunkerton, 1998; Lombard &
Riley, 1996; Sonmor & Klaassen, 1997). These instabilities can lead to additional GW generation at the instabil-
ity scales (e.g., Bühler et al., 1999; Chimonas & Grant, 1984; Fritts, 1984; Scinocca & Ford, 2000).

Thus, there is considerable evidence for important GW interactions, instability dynamics, and transports
throughout the atmosphere. Indeed, many insights into these dynamics in the troposphere and lower strato-
sphere have come from parallel measurements and modeling efforts, often focused on MWs due to their
known locations (see overview papers by Bougeault et al., 2001; Grubišić & Lewis, 2004; R. B. Smith et al.,
2007; Grubišić et al., 2008; Fritts, Smith, et al., 2016). Until recently, however, there have been no observations
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that have simultaneously quantified GW amplitudes, horizontal and vertical scales, propagation, and instabil-
ity dynamics from their sources at lower altitudes to their regions of dissipation at higher altitudes.

The first program to do so was the Deep Propagating Gravity Wave Experiment (DEEPWAVE), which
employed new remote-sensing instruments aboard the National Science Foundation/National Center for
Atmospheric Research Gulfstream V (GV) research aircraft and was performed over and around New
Zealand (NZ) during June and July 2014. DEEPWAVE also employed the German DLR Falcon research aircraft
and extensive ground-based instrumentation on the NZ South Island (SI) and Tasmania (Fritts, Smith, et al.,
2016). These data are enabling multiple studies of various GW dynamics from the surface to ~100 km (e.g.,
Bossert et al., 2015, 2017; Bramberger et al., 2017; Eckermann et al., 2016; Heale et al., 2017; Kaifler et al.,
2015; Kruse & Smith, 2015; Pautet et al., 2016; R. B. Smith et al., 2016).

DEEPWAVE airborne measurements were performed during austral winter in order to address mountain
wave responses extending to high altitudes in a strong zonal wind environment and to avoid the potential
for cessation of deep MW propagation by a stratospheric sudden warming. NZ was chosen as the primary
research target given that this is a major Southern Hemisphere hotspot of GW activity in satellite measure-
ments in the stratosphere that was easily accessed from the Christchurch airport, which has excellent support
facilities. Existing ground-based instruments on SI were supplemented with additional radars, balloons, lidars,
and airglow imagers on SI and Tasmania, most of which began observations prior to flight operations and
several that continuedmonths beyond flight operations. An overview of the DEEPWAVE program, the various
aircraft and ground-based instruments, the various research flights, and examples of significant results and
key findings was provided by Fritts, Smith, et al. (2016).

Our goal in this paper is to describe the MW dynamics observed on Research Flight 22 (RF22), which exam-
ined the structure and evolution of MW responses to weak flow across the SI terrain. RF22 proved to be an
interesting case, with weak MW forcing and a mean wind environment that enabled largely linear propaga-
tion and strong amplitude growth into the upper stratosphere and lower mesosphere. This yielded very large
MW amplitudes, vertical displacements, and momentum fluxes in the mesosphere, followed by strong break-
ing below a critical level near 90 km and excitation of secondary GWs propagating to higher altitudes (Bossert
et al., 2017).

Section 2 defines the parameters to be discussed and the relations between them in varying wind and tem-
perature (or stability) profiles. Section 3 describes DEEPWAVE flight planning, meteorological conditions, and
the background fields during 12 and 13 July as defined by ground-based measurements, radiosondes,
Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard the Thermosphere,
Ionosphere, Mesosphere Energetics Dynamics satellite, the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System, and the NAVy Global Environment Model (NAVGEM) rea-
nalyses. Flight-level MW fields, scales, and momentum fluxes defined by Falcon and GV flights on 12 and 13
July are described in section 4. Sections 5 and 6, respectively, describe stratospheric and mesospheric MWs
and possible other GWs as seen by the GV lidars and airglow instruments. Section 7 describes UK Met
Office Unified Model (UM) simulations performed for comparisons with RF22 measurements and to assess
resolution impacts on the MW fields and momentum fluxes. The implications of these results for MW propa-
gation, momentum fluxes, and forcing at higher altitudes, and their relation to previous measurements, are
described in section 8. Section 9 presents our summary and conclusions.

2. GW Parameters and Relations

Given the diverse measurements we employ in this study, and our desire to infer MW and more general GW
characteristics, scales, amplitudes, and likelihood of wave breaking, we summarize here the relations among
GW andmean parameters dictated by the equations of motion. For this purpose, we assume that motions are
linear, inviscid, Boussinesq, and 2-D (no Coriolis force) in a vertical plane along the direction of MW propaga-
tion and that mean fields are uniform horizontally and slowly varying in altitude. Then the total wind, tem-
perature, potential temperature, pressure, and density fields, (u,v,w), T, θ, p, and ρ, may be written as ϕ (x,y,
z,t) = ϕ0(z,t) + ϕ0(x,y,z,t), with ϕ0(x,z,t) = ϕ0exp [i (kx + ly +mz� ωt)], where the subscript 0 and primes denote
mean and perturbation quantities, u0 = U, v0 = V,ϕ0 grows as ez/2H for scale height H, with respect to themean
quantities for T, θ, p, and ρ for conservative motions, and eastward u0 and U, northward v0, and upward w0 are
positive. Additionally, GW horizontal and vertical wavenumbers and wavelengths are related by |k| = 2π/λx,
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|l| = 2π/λy, and |m| = 2π/λz, with the sign convention that k > 0, l > 0, and m < 0 for eastward, northward,
and upward GW propagation. Additionally, the intrinsic and ground-based GW frequencies are related by
ωi = ω � khUh = kh (c � Uh) = khci. Here |kh| = (k2 + l2)1/2, |uh0| = (u02 + v02)1/2, Uh, c, and ci are the GW hor-
izontal wavenumber and velocity perturbation, mean wind, and GW horizontal phase speed and intrinsic
phase speed along kh. The local buoyancy frequency squared is N2(z) = (g/θ)(dθ/dz), with mean N0

2(z) for
θ = θ0, g is gravitational acceleration, and λz ≪ 4πH, except where ωi approaches N due to increasing |c� U|
or decreasing N.

Useful relations obtained with the above assumptions include the following:

ku
0 þ lv

0 þmw
0 ¼ 0; (1)

p
0 ¼ �ρ0 N0

2 � ωi
2

� �
w

0
=mωi ¼ ρ0ωiuh

0
=kh (2)

θ
0
=θ0 ¼ �iN0

2w
0
=gωi ¼ iN0

2uh
0
=g N0

2 � ωi
2

� �1=2
(3)

For hydrostatic GWs (i.e., k2 ≪ m2), we also obtain the following:

λz ¼ 2π c � Uhð Þ=N0 (4)

∣uh
0
∣ ¼ g=N0ð Þ∣T 0

=T0∣ (5)

∣duh
0
=dz∣ ¼ ∣muh

0
∣ ¼ aN0;where a ¼ ∣ dθ

0
=dz

� �
∣= dθ0=dzð Þ ¼ ∣uh

0
= c � Uhð Þ∣ (6ab)

Here a = 1 is the nondimensional GW amplitude at which insipient overturning occurs, hence near which
wave breaking and instabilities are likely to arise (e.g., Fritts et al., 2009a, 2009b).

Vertical energy (EF) andmomentum (MF) fluxes along Falcon flights 9 and 10 (FF9 and FF10), and GV Research
Flight 22 (RF22) flight tracks are related for linear, steady MW flows and may be written as follows (Eliassen &
Palm, 1961; R. B. Smith et al., 2016), where angle brackets denote averages over the appropriate MW phases:

MF ¼ ρ < u
0
w

0
> (7)

EF ¼< p
0
w

0
>¼ ρN0 < u

0
w

0
> =m ¼ U MF (8)

Another useful relation for general GWs is

cgz ¼ ωi=mð Þ 1� ωi
2=N0

2
� �

(9)

where cgz is GW vertical group velocity. Finally, m is real (imaginary) for vertically propagating (evanescent)
GWs, implying different relative phases in equation (1) in the two cases.

3. Flight Planning, Meteorological Conditions, and Background Fields
3.1. Flight Planning

Forecasts by the various global and mesoscale models employed for DEEPWAVE flight planning (see Fritts,
Smith, et al., 2016, Table 3) anticipated moderate to strong winds (~10–20 m/s) below 700 hPa over the cen-
tral SI early on 12 July with significant weakening later on 12 July and into 13 July (all in universal time, UT). At
this late stage in the DEEPWAVE field program, most RFs targeting MW responses had occurred when MW
forcing was relatively strong (especially RF9, 10, 12, 13, and 16; see Figure 1 at left). However, ground-based
instruments at Lauder had observed very strong MW responses at ~70–90 km on 21 June when MW forcing
was expected to also be very weak (see, e.g., Fritts, Smith, et al., 2016, Figure 13). Thus, the forecast conditions
for 13 July were judged to be a good opportunity to explore the transition from strong to much weaker MW
forcing conditions and the responses at higher altitudes. To sample this transition, the Falcon flew FF9 and
FF10 with ~200-km MC2 flight legs at ~10.7 km centered at ~19:00 and 23:45 UT on 12 July. Thereafter,
the GV flew RF22, comprising four ~550-km E-W MC1 flight legs at ~12 km from ~06 to 09 UT on 13 July (see
Figure 1 at right).
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3.2. Cross-Mountain and Flight-Level Winds

Horizontal winds over SI from ECMWF operational analyses at 0.5° resolution are shown at 06 and 18 UT on 12
July and at 06 UT on 13 July at 700 and 200 hPa, respectively, in the left and middle panels of Figure 2. These
confirm the forecast wind field evolution and reveal that MW forcing had largely ceased by Leg 1 of RF22. At
06 UT on 12 July, there was a pronounced low-pressure system off the SW end of SI that accounted for a sig-
nificant pressure gradient at 700 hPa (see the dense geopotential height contours at 06 UT on 12 July) along
SI and the strong forecast and observed winds toward the SSE at 700 and 200 hPa. This system evolved
rapidly, however, and the strong pressure gradient weakened significantly by 18 UT on 12 July and even
further by 06 UT on 13 July.

3.3. Radiosonde u, v, and T Profiles

Figures 3 and 4 display u, v, and T profiles obtained by nine radiosondes launched from Lauder from 11:40 on
12 July to 02:38 UT on 13 July and from Hokitika at 05 and 08 UT on 13 July. Also shown with the Hokitika
radiosonde wind profiles at low altitudes in Figure 4 are hourly mean winds from the wind profiler at
Hokitika spanning the full radiosonde interval.

Lauder wind profiles reveal initial, strong cross-mountain winds at 2–3 km of ~15–20 m/s toward the south-
east (see the top left panels in Figures 3 and 4) that generally decreased and rotated counterclockwise there-
after. Higher in the troposphere, sustained positive U and increasing negative V with altitude and time up to
~11 km strongly favored MWs having northwest-southeast alignments with phases along the spine of the
Southern Alps. See, for example, the ECMWF T0 field at 200 hPa at bottom right in Figure 2, the negative cor-
relations of larger-scale MW u0 and v0 in Falcon measurements at 10.7 km in Figure 6, and to a lesser degree
the negative larger-scale u0 and v0 correlations in the GV measurements at 12 km in Figure 7.

Referring to Figure 4, we see that cross-mountain zonal winds decreased to near 0 at Lauder and Hokitika
throughout 12 July and that u0, v0, and T0 fluctuations at λz < 5 km likewise decreased strongly over this inter-
val. These profiles suggest that MW forcing largely ceased during 12 July and that any MW responses at
higher altitudes must have been excited at earlier times. Importantly, however, the overall decrease exhibited
significant modulation, with u ~ 10–13, 15–18, ~10, and ~0 m/s at ~16–18, 19–21, ~24, and ~03 UT, respec-
tively, from 12 to 13 July.

Radiosonde profiles from Lauder also revealed increasing Uwith altitude in the stratosphere from ~12–17 km
and above ~25 km, and V increasing more uniformly above ~11 km, with U and V reaching ~50 and 10 m/s at
30 km, respectively. These winds and shears would have induced small ci or critical levels implying dissipation
and amplitude suppression for MWs propagating toward the northwest or north northwest. They also would
have enabled MWs propagating toward the west and southwest with larger ci to emerge as the dominant

Figure 1. MWdrag predicted by continuous 6-kmWRF run comparing RF22 with other significant MW forcing events (left).
New Zealand South Island orography and FF9, FF10, and RF22 flight tracks (right). MW =mountain wave; FF = Falcon flight;
RF = Research Flight; GW = Gravity wave; WRF = Weather and Research Forecast model.
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components at higher altitudes (see the T0 fields in the ECMWF reanalysis at 70 and 1 hPa in the top and
middle panels at right in Figure 2). These increases in U and V below 30 km are expected to have allowed
continued MW increases in λz and amplitudes to at least 30 km, except between ~17 and 25 km, where
amplitudes may have been constrained by more uniform zonal winds.

The radiosonde u, v, and T profiles also exhibit apparent MW perturbations about the mean profiles through-
out this interval, in a number of cases at scales, altitudes, and times that appear to correlate with changing
mean winds at these and lower altitudes. At the earlier times accompanying strong cross-mountain flow,
the MWs had λz ~ 2–5 km that appear to have increased in amplitude with altitude to ~17 km but decreased
above to ~25 km. The latter suggests potential dissipation accompanying superposed large-amplitude MWs
at these altitudes.

Figure 2. ECMWF 700- and 200-hPa winds (left andmiddle columns) at 06 and 18 UT on 12 July and 06 UT on 13 July (top to bottom). ECMWF T0 at 200, 70, and 1 hPa
(right, bottom to top) at 12 UT on 12 July. Wind barbs are 5 m/s. Magnitudes are shown with color bars at bottom. ECMWF = European Centre for Medium-Range
Weather Forecasts.
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At later times extending into the RF22 flight, apparent MW amplitudes decreased strongly with time through-
out the lower stratosphere. Only at altitudes of ~10–17 kmwere there clear and persistent MW features in the
u (z) and T (z) profiles having λz ~ 4 km. This value is consistent with λz estimated from equation (4) with
U ~ 13 m/s and N ~ 0.01 s�1 at these altitudes. Importantly, both u (z) and T (z) profiles also reveal significant
MW amplitude reductions at these altitudes accompanying significantly weakened forcing by ~20 UT on 12
July and continuing thereafter.

Figure 3. Lauder (left column) and Hokitika (right column) radiosonde zonal and meridional winds and temperatures (top to bottom) on 12 and 13 July (see
legends for times).
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From equations (4) and (9), we see that cgz ~ Uλz/λx ~ U2/λx for hydostatic MWs propagating zonally. Hence,
the MWs that will persist the longest at any altitude will have small ωi, λz/λx, and U. For given U, MWs having
larger ωi (or λz/λx) will escape to higher altitudes more quickly. This likely accounts for the persistence of
λz ~ 4 km MWs in the lower stratosphere having similar vertical phase structures and amplitudes over
Lauder and Hokitika, implying primary contributions at small λx at the latest times (see the similar strato-
spheric profiles at late times in Figures 3 and 4).

Figure 4. As in Figure 3 up to 12 km. Also shown at top and middle right are Hokitika wind profiler (solid lines) zonal and meridional winds below 3 km.
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3.4. SABER, Meteor Radar, and NAVGEM u, v, and T Profiles

Limb T profiles obtained by SABER aboard the Thermosphere, Ionosphere,
Mesosphere Energetics Dynamics satellite centered at ~45.4 and 41.5°S
along an ascending orbit slightly east of the NZ SI during RF22 are shown
at the top in Figure 5a (see Bossert et al., 2015, for further details). The pro-
files are somewhat similar, with the differences potentially reflecting varia-
tions in the large-scale MW responses in the lee of the Southern Alps at
~40 km and above where MW amplitudes became large (see Figures 8–
12 below). The SABER T profiles also reveal dT/dz approaching the adia-
batic lapse rate at altitudes of ~70–72 and ~78–82 km. The upper altitudes
are those at which strong MW overturning was implied by the GV sodium
lidar observations discussed in section 6. SABER T profiles thus provided
both the large-scale context and some evidence of the local MW dynamics
occurring during RF22.

Zonal and meridional winds measured by the meteor radar at Kingston,
Tasmania, and obtained from the NAVGEM T119L74 reanalysis
(Eckermann et al., 2018) from 03 to 09 UT on 13 July centered on Lauder
are shown in Figures 5b and 5c. The differences between the radar and
reanalysis winds above ~80 km likely reflect the 23° of longitude and 2°
of latitude separation between the two sites, as well as the inference of a
large semidiurnal tide at these latitudes on 13 July measured by the
meteor radar and implied by NAVGEM reanalysis. At lower altitudes,
NAVGEM indicates an expected zonal wind maximum of U~130 m/s
centered slightly below 60 km spanning the 03–09 UT interval that agrees
closely with that in the ECMWF analysis shown by Bossert et al. (2015).

Despite differences between the Kingston meteor radar and NAVGEM rea-
nalysis winds at specific times, both data sets also suggest approach to a
critical level near 90 km for MWs having largely zonal alignments. The con-
sequence of a critical level would have been strong overturning and dissi-
pation of large-amplitude MWs where increasing u0 approached or
exceeded decreasing U. Na lidar measurements discussed in section 6
were consistent with this expectation.

4. Flight-Level MW Characterization and Evolution
4.1. Flight-Level Measurements and Correlations

In situ measurements of u0, v0, w0, p0, and θ0 at ~10.7 km along MC2
occurred on Leg 4 of FF9 and FF10 centered at ~19:00 and 23:45 UT
on 12 July (see Figures 6a–6e at bottom and top, respectively, in each
panel); also, see Bramberger et al. (2017) for more details of the
Falcon flight-level data. These flight legs were nearly parallel to flight-
level winds and nearly normal to the MW phases at flight altitudes,
based on ECMWF wind and T0 fields and radiosonde winds at 200 hPa
at these times (e.g., Figure 2, middle and right columns, and Figure 4,
top and middle left). Hence, measured λh were very nearly the true
values on these Falcon flight legs.

The ~200-km Falcon flight legs exhibited peak u0, v0, and w0 of ~10, 8, and
3 m/s, respectively, with the larger u0, v0, p0, and θ0 occurring at λh ~ 20–
100 km or larger primarily over and downstream of Mount Cook.
Significant perturbations were also seen at smaller scales, λh ~ 5–
15 km, especially in w0 and θ0, and at intermediate scales at smaller
amplitudes in all fields. Importantly, it was the intermediate to larger λh

Figure 5. Nearest SABER temperature profiles at 41.5 and 45.4°S and their
average centered near ~12:39 UT on 13 July (a). NAVGEM reanalysis zonal
and meridional winds from 03 to 09 UT on 13 July (b and c). Thick lines in
wind profiles are hourly means from the Kingston meteor radar. SABER =
Sounding of the Atmosphere using Broadband Emission Radiometry;
NAVGEM = NAVy Global Environment Model.
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(~20–150 km) that accounted for the major vertical fluxes of horizontal momentum (per unit mass),
<uh0w0>, along the flight legs.

Cumulative <uh0w0> (i.e., the integrated uh0w0 beginning at the furthest upstream end of each flight leg) are
shown for FF9 and FF10 in Figure 6f (also, see the discussion of wavelet spectra below). The major contribu-
tions on FF9 (labeled 1) spanned ~100 km over and downstream of the highest terrain, with the major con-
tributions by the larger λh.

The large w0 at λh ~ 10–12 km on FF9 were largely in quadrature with v0 at these scales, hence a largely
trapped (or ducted) lee wave response within the layer of large dT/dz (large N2) at ~10–12 km seen in the
Lauder radiosondes in Figures 3 and 4.

Both the larger λh <uh0w0> and the trapped MW responses over the terrain were much smaller on FF10, con-
sistent with the decreasing U across the terrain throughout 12 July.

By comparison, the contributions of λh < 10 km to the cumulative <uh0w0> over and downstream of the
major terrain were very small on FF9 and FF10. Finally, the very similar character (and phases) of the
responses seen in FF9 and FF10 in situ measurements, at larger and smaller scales, provided further evidence
that the dominant contributions to these two fields comprised MWs rather than responses to other potential
GW sources at these times.

Figure 6. Flight-level u, v, w, p, θ0, and cumulative <u0w0> (a–f) for FF9 and FF10 (lower and upper lines in each panel).
MC2 terrain is shown in (g); red lines in (c) show a 10-km running mean amplified by 7. FF = Falcon flight; MF =
momentum flux.
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Comparable in situ measurements at ~12 km by the GV during RF22 for the MC1 flight legs centered at ~6:34,
7:22, 8:08, and 8:52 UT on 13 July are shown in Figure 7. These data revealed similar or larger scales than those
seen earlier by FF9 and FF10 but having smaller peak amplitudes and momentum fluxes accompanying the
weakening flow over SI at lower altitudes. The flight-level winds and MW orientations appeared not to have
changed appreciably from FF9 and FF10, and the somewhat larger λx seen by the GV along flight track MC1
were roughly consistent with those expected for the MWs measured by the Falcon along MC2 ~7–10 hr ear-
lier. The ~550-km RF22 flight legs also revealed significant responses extending to λx ~ 100–300 km or larger,
the smaller of which may have been the larger λh seen on FF9 and FF10. Importantly, however, the major
upstream u0 minimum, which was roughly over Mount Cook on FF9 and FF10, was nearly ~100 km down-
stream on the GV flight legs. This may have been a consequence either of decreasing cross-mountain flow
extending into 13 July or MW phase differences due to different flight altitudes between FF9, FF10, and
RF22 (see below).

As in the FF9 and FF10 in situ data, the largest contributions to negative<u0w0> during RF22 occurred down-
stream of Mount Cook on the earlier MC1 flight legs, and the strong similarities of the four responses again
supported the argument that these were largely MW fields arising from airflow over SI at earlier times.

Apart from the sensitivity of RF22 measurements to larger λx, due to its longer flight legs, a significant differ-
ence between the FF9–10 and RF22 flight-level responses was the character of the u field downstream from
Mount Cook. Referring to Figures 6a and 7a, we note that u increased downstream in the FF9–10

Figure 7. As in Figure 6 for the four legs of RF22 (bottom to top in each panel). (g) The MC1 terrain. Flight legs in (f) are
labeled to distinguish the evolving cumulative <u0w0>. RF = Research Flight; MF = momentum flux.
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Figure 8. Wavelet u02(k) spectra and <u0w0> (k) cospectra as functions of position with respect to Mount Cook and horizontally integrated profiles (left and right
columns) for RF22 Legs 1–4 (top to bottom rows). Red (black) lines are wavelet (Fourier) profiles smoothed to the same resolutions specified in the wavelet trans-
form. RF = Research Flight; MF = momentum flux.
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measurements but decreased downstream in the RF22 measurements. While there was a significant interval
between FF9 and FF10, and also between FF10 and RF22, theMW response appeared relatively stationary over
the first interval and over the duration of RF22. Hence, changing forcing conditions appear unlikely to have
accounted for the different behavior of u in the lee of Mount Cook, apart from decreasing MW amplitudes
due to weakening forcing. These flights also differed by ~1.3 km in altitude, however, and in an
environment with small Uh and large N, we expect a small λz = 2πUh/N from equation (4) for hydrostatic
MWs. With Uh ~ 12–15 m/s and mean N ~ 0.02–0.04 s�1, depending on altitude, we expect λz ~ 2–4 km, so
a 1.3-km altitude difference suggests a significant MWphase variation, whichmay account for the u0 behavior.

To examine the w0
fluctuations accompanying the larger-scale MW responses seen in u0 by FF9–10 and RF22,

low-passw0
fields (10-km runningmean, multiplied by 7) are shownwith red lines in thew0 panels in Figures 6

and 7. Those on Leg 1 revealed an approximately antiphase relation with k< 0,m< 0, small l, and w0/u0 < 0 in
equation (1), confirming the expected upward and largely westward phase tilt for vertically propagating
MWs. As noted above, these MWs are expected to have been hydrostatic for λx ~ 20 km and larger at these
altitudes. A nonzonal MW orientation, however, would imply a larger uh0 and smaller λh than seen in Figure 7.
A closer inspection of the correlations in Figures 6 and 7 reveals evidence for various orientations at different
λh and locations in all flights.

Figure 9. Rayleigh lidar T0(x,z) averaged over 1 min (~12.5 km) and 3 km in altitude for the four legs of RF22 (a–d). The black
triangle at bottom shows the location of Mount Cook.
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Turning to the p0 fluctuations shown in Figures 6d and 7d, we see p0 and u0 to have been strongly
anticorrelated at MW λx ~ 100–300 km extending throughout each flight leg. This is expected for
westward propagating MWs with ωi = �kU, which yields p0 = �ρ0Uuh0 from equation (2). Similar
correlations were also seen at MW λx ~ 80–100 km over the orography in Figure 6 and at λx ~ 30–100 km
extending to ~200 km east in Figure 7 and were again consistent with upward propagation and
energy fluxes.

Figure 10. AIRS T0(x,y) at 2 hPa (~43 km, a and b) on 13 July. Left and right images in (a) are at 01:41 and 03:19 UT on
ascending passes; left and right images in (b) are at 12:48 and 14:27 UT on descending passes. Lower images are UM
predictions at 02 and 14 UT (c and d) on 13 July. AIRS = Atmospheric Infrared Sounder; RF = Research Flight; UM =
Unified Model.
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At smaller scales, for example, λx ~ 10–20 km over the orography in Figure 6, u0 and w0 were more nearly in
quadrature with p0, indicating that smaller-scale MWs more easily experienced partial reflection and/or trap-
ping near the altitude of elevated dT/dz and N2(z) and variable mean winds above the tropopause (see
Figure 3). This was because penetration of a region having variable N2(z) and mean winds was more efficient
for GWs having larger λh/λz for fixed λz (e.g., Fritts et al., 2018). The energy densities and fluxes implied by
these correlations are discussed in greater detail in section 4.1.

The θ0 fluctuations during RF22 are shown in Figure 7e. These reveal apparent responses to vertically propa-
gating MWs at larger scales and to trapped lee waves at smaller scales that exhibited various correlations
among and θ0, u0, and w0. We expect θ0 to have been in approximate quadrature with u0 and w0 for vertically
propagating GWs. We also expect θ0 to have been in approximate quadrature with w0 but more nearly in
phase or antiphase with u0 for trapped lee waves (see equation (3)) that readily arise in environments having
variable structure in U (z) and N2(z), such as seen by R. B. Smith et al. (2008) in the Terrain-induced Rotor

Figure 11. GV AMTM and IR camera composite imaging along Legs 1–4 (a–d). Red arrows show a distance of 500 km along
each flight leg; the red dots show Mount Cook. The temperature scale is shown at lower left in (d). GV = Gulfstream V; IR =
infrared.
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EXperiment and in numerical simulations of multiscale flows by Fritts et al. (2013) and Fritts, Smith, et al.
(2016). Specifically, the lowest two θ0 plots exhibited clear maxima ~230 km eastward of Mount Cook
somewhat downstream (eastward) of eastward u0 maxima and w0 minima, as expected for a westward
propagating MW.

Evidence of trapped lee waves at λx ~ 6–8 km is provided by θ0 maxima upstream of (leading) w0 maxima by
~π/2 where both quantities were large (see these data between 300 and 400 km downstream during the first
two flight legs). Correlations are clear in these cases because the GV was at 12 km throughout RF22, at which
upstream soundings revealed an enhanced N2 at these times (see Figures 3 and 4, bottom right), hence larger
θ0 for given u0 and w0. Correlations of θ0 with u0 and w0 are less pronounced during the third and fourth flight
legs due to significantly decreased MW forcing prior to RF22 (see Figure 3, top row).

Finally, cumulative MW <u0w0> on RF22 began on Leg 1 at ~10% of that seen by FF9 on 12 July and
decreased to nearly 0 by Leg 4, due to cessation of MW forcing prior to this flight.

4.2. Flight-Level MW Energy and Momentum Flux Wavelet Spectra on 13 July

We now employ Morlet wavelet analyses to examine the evolutions of MW u0 variance, σu
2, and zonal MFs per

unit mass, <u0w0>, for the RF22 flight legs, following R. B. Smith et al. (2016), and assuming primarily zonal
MW propagation for convenience. These wavelet spectra were computed in order to identify the dominant
λx and locations of major contributions. These, and their integrations along the RF22 flight tracks, are shown
in Figure 8.

The σu
2 spectra and flight leg integrations in the left column in Figure 8 reveal that the dominant variances at

these times occurred at λx ~ 100–300 km, with significantly smaller contributions (~10%) at λx ~ 40–80 km
and very little at λx < 40 km. These spectra also exhibit significant variability in the u0 variances from leg to
leg that are also seen in the flight-level u0 in Figure 7a. The most probable explanation for this variability at
flight level is the highly variable wind field over Lauder spanning the ~6–12 hr prior to RF22. Specifically, U
(z) at MW forcing altitudes of ~1–3 km was seen at top right in Figure 4 to decrease from ~15 m/s to ~0

Figure 12. Wing camera images at four times on Leg 1 (a, b, d, and e) and at one time on Leg 4 (c and f). Images a–c are
viewing north, and images d–f are viewing south.
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from ~19 UT on 12 July to 2:38 UT on 13 July. These decreases resulted in generally decreasing MW forcing
and T0(z) seen to occur late on 12 July and the apparent absence of MW T0 in the two T (z) profiles early on 13
July at bottom in Figure 4. However, note the variable cross-mountain flow seen in Figure 4 within the overall
decrease in U (z) at these times discussed above.

Finally, we note that the much weaker u0 variances at smaller λx during RF22 relative to those inferred from
the flight-level data for FF9 and FF10 in Figure 6 were due to the much larger MW cgz at smaller λx; see
equation (9) for a uniform MW λz for hydrostatic MWs. Thus, the MWs having the largest λx were the last to
be seen at flight altitudes as the forcing diminished.

In contrast, the<u0w0> spectra and flight leg integrations at the right column in Figure 8 show that the domi-
nant local contributions at any one time most often accompanied GW motions having λx ~ 10–60 km. Of
these, those having λx ~ 10 km or less were almost certainly trapped lee waves, given the oscillatory character
of their <u0w0> on short zonal scales. Those at intermediate λx ~ 20–80 km were also often somewhat oscil-
latory but at larger zonal scales more commensurate with their λx. The oscillatory character of these MW
responses was likely a consequence of MW reflections approaching the U (z) maximum of ~130 m/s at
~55–60 km expected for λx ~ 2πU/N ~ 40 km, at whichωi = kU approached N0, yielding cgz ~ 0 and MW reflec-
tion; see equation (9). Indeed, only at the larger scales, λx ~ 40–200 km (and larger on Leg 1 and largely absent
on Leg 4), were there regions of systematic negative <u0w0> extending over significant downstream dis-
tances (due in part to their longer wavelengths), as seen in Figure 7f discussed above.

5. Stratospheric MWs and Possible Other GWs
5.1. GV Rayleigh Lidar T0(x,z) Cross Sections

Temperature perturbations measured with the GV Rayleigh lidar at altitudes from 25 to 60 km along the four
flight legs performed on RF22 are shown in Figure 9. These fields reveal larger-scale GWs having λx ~ 150–
200 km and ~250–300 km that appear to have been relatively stationary in space, but decreasing in time, that
were largely consistent with the decreasing forcing discussed above. The larger of these extended from
~200–300 km downstream to ~100 km or more upstream of Mount Cook. The stationary phase and its close
correspondence with the underlying terrain are persuasive evidence that this is a large-scale MW.

This MW exhibited a λz that increased from ~10 km at ~35 km to ~30 km or larger at ~50–55 km. The latter is
consistent with that expected for a hydrostatic MW from equation (4) at ~60 km, for example, λz = 2πU/
N0 ~ 40 km due to its increasing U with altitude. The MW T0 likewise increased strongly with altitude, varying
from a few K or smaller below 35 km to ~20 K or larger at 60 km.

The λx ~ 150–200 km response was more prevalent above ~40 km on Legs 1 and 2, began ~100 km in the lee
of Mount Cook, and decreased more rapidly with time. Specifically, it appeared to counter the positive T0

phase of the λx ~ 250–300 km MW beyond ~150–200 km in the lee of Mount Cook, and it yielded very sig-
nificant T0 enhancements above ~50 km at ~50 and 200 km in the lee of Mount Cook. Thereafter, it appeared
to be replaced above ~50 km by the longer MW, which had a smaller cgz, hence a longer residence time at all
altitudes. These responses were also consistent with a MW interpretation at these scales (and with the flight-
level observations in Figures 6 and 7), given their different cgz and the weakening forcing and variable pro-
pagation environment at lower altitudes. Both of these longer MWs appear to have achieved a T0 ~ 20 K at
60 km but at difference times.

Seen at smaller λx ~ 20–80 km above ~45 km are additional GWs that had either much larger λz or evanescent
behavior. We also interpret these GWs as MWs because of consistency of their λx with flight-level observa-
tions, their occurrence primarily in the lee of the Southern Alps (Figures 6–8), and their largely negative
<u0w0> at these locations (see right column of Figure 8). As noted above, the strong zonal winds seen in
the NAVGEM reanalysis (Figure 5) at 55–60 km caused MWs with λx ~ 40 km and less to become evanescent
at these altitudes and reflect, accounting for their vertical phase structures seen in Figure 9. MW λx greater
than about 40 km would have continued to propagate vertically but become strongly nonhydrostatic at
the U maximum, thus achieving finite but larger λz than hydrostatic MWs. These MW amplitudes were
T0 ~ 10–20 K or larger, and those that propagated to higher altitudes increase in amplitude into
the mesosphere.
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Referring to equations (5) and (6ab), we infer a hydrostatic MW uh0 ~ 40 m/s for T0 = 20 K and a MW amplitude
a ~ 0.3, well below a ~ 1 required for MW breaking. The larger λz for nonhydrostatic MWs at λx ~ 40–80 km
imply that they had smaller a for comparable T0. Hence, both the hydrostatic and nonhydrostatic MWs seen
in Figure 9 would have increased in amplitude as ~ez/2H (apart from diminution due to horizontal dispersion)
as they propagated to higher altitudes. As they did so, however, U decreased rapidly with increasing altitude
above 60 km, such that a ~ |u0|/U increased rapidly and approached or exceeded a ~ 1 somewhat
above ~70 km.

5.2. AIRS T0(x,y)

Stratospheric nadir radiances from 15 μm CO2 emissions measured by the Atmospheric Infrared Sounder
(AIRS) channels were used in near-real time during DEEPWAVE to image GWs at altitudes otherwise acces-
sible only by the GV Rayleigh lidar (Fritts, Smith, et al., 2016). Figures 10a and 10b show inferred tempera-
ture perturbations from a ~2-hPa (~43 km) AIRS radiance channel. Each panel shows successive overpass
swaths separated by ~98 min. Ascending overpass data (Figure 10a) were obtained at ~01:41 and 03:19
UT (right and left swaths); descending data (Figure 10b) were obtained at ~12:48 and 14:27 UT (right and
left swaths). The most relevant swaths were those ~3 hr before and ~4 hr after RF22 Legs 1 and 4, respec-
tively. The later (Figure 10a) ascending T0(x,y) field exhibits large-scale MW perturbations aligned ~NNW-
SSE that were negative over and downstream of Mount Cook and positive ~150 km to the east and west
(see the RF22 flight track shown in red); thus, they were distinctly different than along the major orogra-
phy as seen at lower altitudes. Importantly, these T0 variations along the flight track (red lines) agreed clo-
sely with those seen by the GV Rayleigh lidar on all flight legs extending to ~6 hr later. However, the AIRS
T0 ~ 2–3 K maxima and minima were substantially smaller than the lidar T0 ~ 8–10 K at ~43 km, due to the
significant averaging depths of the nadir radiance kernel function compared to the MW λz ~ 15 km at
this altitude.

The latter AIRS composite image suggests significant variability in the MW field in time and that large-scale
MWs persisted to much later times in the middle-to-upper stratosphere due to their small cgz, despite cessa-
tion of forcing near 00 UT on 13 July.

6. Mesospheric MWs

As noted previously, MW responses in the mesosphere during RF22 were large and extended from λx ~ 30–
300 km. Clear links between large-scale MWs in the stratosphere and mesosphere during RF22 enabled by
largely linear propagation over ~70 km in altitude due to relatively weak forcing were noted previously by
Fritts, Smith, et al. (2016). Bossert et al. (2017) showed that the smaller λx in the mesosphere were primarily
secondary GWs that were most apparent in the warm phases of the larger-scale MW discussed above.
Here we examine in greater detail the coherence of MWs from the stratosphere into the mesosphere, the evi-
dence for MW breaking, the evolution of the MW field with altitude, and the associated MW
momentum fluxes.

6.1. GV AMTM and IR Camera Observations

The horizontal structures of the MW (and other GW) field observed in the OH airglow at ~87 km along
and across each of the RF22 flight legs are shown in Figure 11. Images for each flight leg are a com-
posite from the central cross-track pixel rows of the GV overhead Advanced Mesosphere Temperature
Mapper (AMTM) and infrared (IR) wing cameras imaging the OH layer to the north and south. Together,
these comprise a cross-track field of view of ~900 km and define the apparent scales and orientations
of multiple MWs, secondary GWs (e.g., Bossert et al., 2015), and potentially other GWs at multiple sites,
scales, and amplitudes spanning the ~4-hr duration of RF22.

Dominant OH brightness and T0 variations accompanied the larger-scale MWs that were seen to vary
slowly over the duration of RF22. The largest scales were λx ~ 200 and ~300 km to the north and south,
respectively, on each leg that were fairly stationary in time, implying an anticlockwise rotation of the MW
phase from west to east. The airglow features thus had phase alignments varying from nearly N-S at the
western edge of these measurements to roughly NNW-SSE that were roughly consistent with that seen in
the AIRS image at top right in Figure 10. These structures did exhibit temporal variability, however, sug-
gesting either modulation of the dominant MW amplitude or a superposition of MWs at different scales
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that varied between successive flight legs. The approximate stationarity of these structures, and their
apparent upward extension from MW features at the same scales seen at lower altitudes, is compelling
evidence that these variations were due to the MW field itself, rather than to GWs from other sources.
Also seen were intermediate and smaller scales of λh ~ 15–150 km that were much more variable along
each leg and between successive legs.

Examples of the larger-scale spatial and temporal variability include the following:

1. weaker modulations of brightness in the NW and NE quadrants on Legs 1 and 3,
2. weaker responses in T0 north of the flight track on Leg 3, and
3. weaker modulations of brightness in the SW and SE quadrants on Legs 1 and 2.

Smaller-scale structures were highly variable, for reasons described, in part, by Bossert et al. (2015). In those
cases, which focused on the AMTM overhead imaging, the dominant small-scale variances were correlated to
a high degree with regions where the larger-scale MWs yielded a maximum T0. However, there were multiple
additional sites that exhibited similar, apparently transient, intermediate- and smaller-scale GWs and poten-
tial instabilities that may or may not have hadMW origins. Those at intermediate scales, λh ~ 40–150 km, were
seen in all phases of the λh ~ 200–300 km MW. In contrast, those at small apparent scales, λh ~ 15–40 km,
appear to have occurred primarily in the brighter (warmer) phase of the λh ~ 200–300 km MW.
Importantly, true λh differed from apparent λh for GWs having nonzero phase propagation with only single
pixel row sampling.

The clearest examples of intermediate-scale λh ~ 40–150 km variations are seen in the slowly varying bright-
ness between successive flight legs to the north from ~170–175°E. The roughly stationary character of these
features, and the agreement of their scales with those seen at lower altitudes, suggest that these brightness
variations were also due to MWs that propagated from below and penetrated the strong zonal jet peaking at
~55–60 km noted above.

To aid in the interpretation of the smaller-scale GWs having λh ~ 15–40 km, we show in Figure 12 airglow
brightness images from the side-viewing cameras at four times on Leg 1 and both north and south views
at one time on Leg 4. Whereas the images in Figure 12 capture the true spatial structures of the various
GWs in the field of view, the composite images in Figure 11 overestimate or underestimate λx (effectively a
spatial Doppler shift) if GW phase propagation is along or opposite to the GV flight direction, respectively.
This yields an apparent λx = λxo (UGV + c)/UGV and an implied c = UGV (λx/λxo � 1) inferred by comparing
the true and composite images.

The composite and true images in Figures 11 and 12 reveal the following λx ~ 15–40 km features:

1. GWs at multiple sites along Leg 1 exhibited approximately zonal alignments (~N-S phases), steepening,
and roughly linear phases (also see the supporting information Movie S1).

2. GWs seen at small λx at multiple sites exhibited strong shifting to smaller λx, implying large eastward
phase speeds, especially on Legs 1 and 3.

3. Multiple GWs during Leg 3 exhibited similar evolutions and motions as on Leg 1.
4. Similar GW scales, structures, and evolutions occurred during Legs 2 and 4 but in these cases having more

variable phase motions.

AMTM and airglow camera images described above reveal a dynamically active and highly variable environ-
ment spanning apparent GW scales of λx ~ 15–300 km at ~87 km. The dominant time scale at larger spatial
scales appears to be roughly the separation between flight Legs 1 and 3 (and Legs 2 and 4), ~94 min, given
the strong modulations of λx ~ 200-km u0 variances at flight level (Figure 8) and airglow brightness on alter-
nating legs. These slow, large-scale λx ~ 200 km variations appear to have imposed variability in the character,
especially the rapid eastward phase motions, of the λx ~ 15–40 km GWs seen on Legs 1 and 3. The faster of
these yielded λx ~ 0.6–0.7λx0 and implied c ~ 60–80 m/s for UGV ~ 210 m/s, hence eastward propagation at
~87 km at c� U ~ 30–40 m/s with respect to U ~ 30–40 m/s at these times (see Figure 5b). These GWs cannot
have arisen in the troposphere or lower stratosphere, due to the strong zonal jet at ~55 km. Nor could they
easily have propagated from sources far upstream, given their λz ~ 10 km or larger implied by their observed
c. Hence, they were most likely secondary GWs generated by MW breaking at lower altitudes in the
mesosphere (e.g., Bossert et al., 2015).
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6.2. GV Na Lidar Mixing Ratios

Na density measurements by the GV Na lidar during RF22 extended from ~70 to above 100 km. These data
were used to provide estimates of the mean and perturbation Na mixing ratios, RNa0(z) and RNa0(x,z) along
each flight leg (see Figure 13), in order to explore MW dynamics in the mesosphere with the highest possible
resolution, ~3.6 km along track and 1.8 km in altitude. Laser locking was sporadic on Legs 2 and 3, however;
hence a low-pass filter having a passband of 100 s (~24 km) and a stop band of 50 s (~12 km) retained MWs at
λx ~ 30 km and larger (see Bossert et al., 2018, for further details). These data enabled identification of MW λx,
vertical and horizontal parcel displacements, ζ 0(x,z), and regions of overturning within the MW field.

Figure 13. Estimated Na mixing ratios, RNa (x,z), at the bottom side of the Na layer for the four legs of RF22 (a–d). Note the
peak-to-peak excursions exceeding ~10 km on each leg. White ovals and horizontal lines show the cases and central alti-
tudes of the MW features used to compute local <u0w0> estimates. The +’s show the ζ 0 extrema estimated from RNa.
Central times for the four flight legs were ~6:33, 7:20, 8:07, and 8:52 UT. RF = Research Flight.
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Ourmethod was as follows. We assumed dRNa/dt ~ 0, implying that RNa is a good tracer of MW ζ 0(x,z). This was
justified by detailed Na chemistry modeling of MW modulations of the Na layer, where RNa was predicted to
be elevated by at most ~20% due to adiabatic warming accompanying downward ζ 0 of ~5–6 km over three
MW cycles (also see Bossert et al., 2018). Hence, to be conservative, the deepest downward MW ζ 0 were esti-
mated from measured RNa 50% higher than the lowest contour. We also assumed that dθ/dt = 0, given the
short MW intrinsic period, TMW = 2π/ωi ~ 20 min, and T0(z,t), H (z,t), N0(z,t), U0(z,t), and other parameters esti-
mated from SABER T (z) and NAVGEM reanalysis fields. Together, these enabled estimates of MW (1) T0(x,z)
and λx from RNa0(x,z); (2) λz from λx, N0(z,t), and U0(z,t); (3) u0 and w0 from these quantities using equations (1)
and (3); and (4) peak<u0w0> for several specific MW features discussed in section 6.3 below (see Bossert et al.,
2018, for a more complete description of the Na chemistry modeling).

RNa (x,z) cross sections in Figure 13 reveal MW responses at λx ~ 30–300 km, with peak-to-peak ζ 0 ~ 10–11 km
at the smaller (and steeper) λx on each leg (see the maximum ζ 0 excursions shown with white +’s in
Figures 13a–13c). On all legs, the largest upward ζ 0 at the higher altitudes occurred over and upstream
of Mount Cook and were consistent with the weaker airglow brightness that correlated well with negative
T0 in these MWs (see the correlations along each leg near the flight tracks in Figure 11). The longer MWs
made major contributions to upward ζ 0 in this region because they extended further upstream at lower
and higher altitudes than MWs having smaller λx due to the shallower propagation angles and dispersion
for larger λx (see Figures 6–9 and 11).

The largest apparent downward ζ 0 occurred at ~100–150 km downstream of Mount Cook. These ζ 0 were lar-
ger than any observed in the mesosphere by any ground-based Na lidar to date of which we are aware. They
also implied very large u0 and w0, and among the largest local estimates of GW <u0w0> in the mesosphere
inferred from other observations to date (see below).

Also seen in Figure 13 is evidence of initial MW overturning and incipient breaking (dRNa/dz< 0) at the down-
stream edges of the deeper descending RNa0 maxima and of potential prior mixing upstream on all legs (see
the less coherent features also having dRNa/dz< 0 at several sites). These features are only seen clearly above
~75 km and suggest that the MWs required further amplitude growth from T0 ~ 20 K at 60 km (see discussion
of Figure 9) to achieve overturning amplitudes. For reference, conservative propagation and continuing
exponential growth would yield a further increase by ~3 times (and overturning amplitudes, T0 > 50 K)
above ~75 km.

A summary of the more significant results of this section includes the following:

1. Deep tongues of elevated RNa extended up to ~5–6 km below their equilibrium altitudes, with chemical
enhancements of as much as 20% extending the lower extrema.

2. True peak-to-peak ζ 0 were ~10 km or larger on each leg and as large as ~9 km between adjacent MW
minima and maxima (especially Legs 1–3).

3. Steeper phase slopes occurred at smaller λx (Leg 1 at upper left, Leg 3 at upper right).
4. Regions of dRNa/dz < 0 indicated deep overturning in MW field at ~75–84 km.
5. Less coherent and distinct RNa variations at ~75–84 km suggested 3-D instabilities and mixing at multiple

sites where MW amplitudes were strongly reduced.

6.3. GV Na Lidar MW Momentum Fluxes

The RNa (x,z) fields discussed above imply very large MW amplitudes and momentum fluxes peaking at alti-
tudes where instability dynamics driven by increasing amplitudes and decreasing U (z) began to occur. We
expect these dynamics to have constrained MW amplitudes to a ~ 1 or somewhat above, hence strongly
decreasing ζ 0, T0, and u0 below a MW critical level near 90 km where U = 0 (assuming largely zonal propaga-
tion). The RNa (x,z) fields in Figure 13 reveal this to have been the case.

We now employ the RNa fields in Figure 13 to provide estimates of momentum fluxes (per unit mass),<u0w0>,
where RNa variations are well defined. We first estimate the peak-to-peak vertical displacements over a MW λx
at the lowest altitudes where the largest excursions are easily defined. Because there aremultiple superposed
MWs, the maximum upward and downward ζ 0 are not generally symmetric; hence, upward excursions were
defined by the upper +’s in Figures 13a–13c, and downward excursions were defined by the average altitudes
of the two lower excursions (lower two +’s) in Figures 13a–13c. The peak-to-peak depths (central altitudes) for
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the three MW structures in the white ovals on Legs 1–3 were 5.1 (76.6), 6.1 (78.5), and 6.9 (79.4) km, respec-
tively. Those on Leg 4 exhibit superpositions that preclude clear identification of a single large-amplitude
MW. Importantly, in the three cases considered, the smallest dRNa/dz at the central were very near 0, implying
an amplitude a = |u0|/U = 1 to a very good approximation.

The SABER T (z) at top in Figure 5 implies a mean gradient dT0/dz ~�3 K/km (see dashed line fit) and a mean
N0 = 0.0175 s�1 for T0 = 200 K. Thus, ζ 0 = 1 km implies T0 = �6.5 K for conservative displacements, and equa-
tion (5) yields |uh0| = (g/N0)|T0/T0| = 17.65 m/s for hydrostatic MWs. The inferred MW displacements then imply
u0 ~ 46, 54, and 61 m/s on Legs 1–3, respectively. Inspection of the NAVGEM U at these times suggests inter-
polated U ~ 64, 48, and 45 m/s at the respective central altitudes of the ζ 0 estimates. The inferred u0 ~ 48 m/s
for the MW on Leg 1 is less than the NAVGEM U, in contradiction to that implied by a = 1 for this MW. In con-
trast, the inferred u0 ~ 54 and 61 m/s for the MWs on Legs 2 and 3 are larger than the NAVGEM U at these
altitudes and times, also in contradiction to those implied by a = 1. We note, however, that the Kingston
meteor radar zonal winds (measured ~1,800 km to the west) are likewise larger than those from NAVGEM.
Hence, we will use RNa and U inferred from the Na lidar measurements, with a = |u0|/U = 1, as the best esti-
mates of λz ~ 2πU/N0 and w0 ~ �λzu0/λx.

We estimate λx ~ 57, 75, and 63 km for the three cases from the descending phases of high RNa and λz and w0

using U = u0. The latter yield λz ~ 17, 20, and 22 km and w0 ~ 14, 15, and 22 m/s. These estimates yield peak
momentum flux estimates of <u0w0> = � (2πg2/N0

3)(T0/T)2(U/λx) of ~300, 390, and 650 m2/s2 for the three
cases, assuming hydrostatic MWs. The corresponding wavelength ratios are λz/λx ~ 0.30, 0.27, and 0.35.
These reveal that the highlighted MWs were nonhydrostatic and thus had larger nonhydrostatic λznh and
<u0w0> nh by factors of (1 � λz

2/λx
2)�1/2. For the MW events discussed here, these factors are 1.05, 1.04,

and 1.07, yielding more accurate <u0w0> nh ~ 310, 410, and 690 m2/s2.

Given the above relations for <u0w0> and<u0w0> nh, their uncertainties are dictated by those in N0, T0/T ~ ζ 0

in RNa (z), λx, and U. SABER T (z) in Figure 5 suggest a roughly uniform dT0/dz from 50 to 90 km with indepen-
dent potential T0 and dT0/dz uncertainties of ~5 and 10%, implying an uncertainty in N0

3 of ~20%.
Uncertainties in RNa (z) and inferred ζ 0 and T0/T are estimated to each be ~10%, hence ~20% for (T0/T)2.
Those in λx are estimated at ~10%, while those in U are judged to also have a 10% uncertainty, given the
RNa fields and gradients, and high-resolution modeling showing strong GW breaking and amplitude con-
straints at a = |u0|/U ~ 1 (Fritts et al., 2009a, 2009b). These independent uncertainty estimates lead to a cumu-
lative uncertainty of ~60% in the estimates of <u0w0>.

While the uncertainty estimates are large, the<u0w0> estimates are very large. Even assuming the minimum
estimates, these imply very large momentum flux divergence and local flow accelerations accompanyingMW
dissipation that must have occurred below a MW critical level anticipated by NAVGEM and the Kingston
meteor radar to have occured near 90 km. Further discussion of these results, their comparisons with others,
and their implications is provided in section 8.

7. Met Office UM Simulations

As noted above, the Falcon and GV flights on 12 and 13 July spanned an interval of rapidly decreasing MW
forcing. This resulted in significant reductions in flight-level MW amplitudes and vertical momentum fluxes
but more delayed and sustained responses at larger MW λx and higher altitudes due to their slower vertical
propagation and larger propagation depths (see Figures 6–9).

To aid the interpretation of these observations, the UM (Version 10.4), was employed for five simulations hav-
ing horizontal resolutions of 2, 4, 8, 16, and 32 km. The simulations were initialized at 12 UT on 12 July 2014,
prior to the interval of strong mean wind accelerations and decelerations preceding the FF9, FF10, and RF22
flights (see Figure 4).

UM simulations over SI employed a rotated latitude/longitude grid nested within a global UM forecast initi-
alized with the Met Office operational analysis, 118 levels up to 78 km, and a damping layer above 58.5 km.
The 2-km resolution simulation employed 1,100 × 1,100 grid points centered on the SI. The range of resolu-
tions was specifically intended to explore the impact of model resolution on the resolvedMW amplitudes and
momentum fluxes with increasing altitude. Additional UM details are provided by Vosper et al. (2016).
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UM outputs for RF22 were used to generate along-track vertical (x,z) and horizontal (x,y) cross sections of T0

and vertical profiles and wavenumber spectra of momentum fluxes for comparisons with GV airborne lidar
and imager observations and to aid the interpretation of the RF22 observations. Specific outputs examined
below include the following:

1. T0(x,z) cross sections along flight track MC1 on 13 July, computed by removing domain mean T0(z);
2. T0(x,y) cross sections in the stratosphere, computed by subtracting T (x,y) from an equivalent simulation

without NZ terrain;
3. ρ <u0w0> (z) and ρ <v0w0> (z) profiles from ~6 to 62 km averaged over the local UM domain and from 05

to 09 UT; the velocity perturbations are computed by removing fields from the flat orography run at each
time; and

4. ρ <u0w0> zonal wavenumber spectra computed from the hourly flux data in item (3) above; spectra
are presented for all five simulations at 30 km and also for the 2-km resolution simulation at 40, 50,
and 58 km.

7.1. UM T0(x,z) Cross Sections

T0(x,z) cross sections from the 2-km resolution UM simulation extending ~550 km along the MC1 flight
track at altitudes from 10 to 78 km at 00, 03, 06, and 09 UT on 13 July are shown in Figure 14. The
altitudes and horizontal extent within the dashed rectangle in each panel correspond to the altitudes
shown for the GV Rayleigh lidar in Figure 9; the distance scales are the same in Figures 9 and 14 for
easy reference. Note, however, that the lidar data correspond to only the two later cross sections in
Figure 14.

Figure 14. Met Office UM T0 fields along flight track MC1 at 00, 03, 06, and 09 UT (a–d). (c and d) At the approximate
times of the Rayleigh and Na lidar measurements on Legs 3 and 4 shown in Figures 9 and 13. Horizontal dashed lines
show the upper and lower altitudes of the Rayleigh lidar measurements in Figure 9. Vertical dashed lines show the
location of Mount Cook for comparison with the AMTM, IR camera, and lidar fields shown in Figures 8, 11, and 13. Also
note the different color scales here compared to those in Figure 9 (smaller by 4 times). UM = Unified Model; IR =
infrared.
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The UM T0(x,z) fields in Figure 14 exhibit variations of λz with altitude that reflect the varying Uh (z,t) and
N0(z,t) for each component of the MW field in accordance with equation (4). For largely zonal alignments,
λz ~ 5–10 km are implied from ~10–30 km up to ~03 UT on 13 July, and these scales are seen in the UM
fields at these times and altitudes. From ~30 to 60 km, however, U increases from ~40 to ~130 m/s,
enabling λz ~ 30 km or larger between ~40 and 70 km, and a local maximum λz ~ 40 km at the U (z) peak
(see Figure 14 at 03–09 UT and equation (4)). λz in the UM decrease above ~60 km due to decreasing U (z),
which implies a MW critical level near 90 km. MW amplitudes and λz above ~60 km are influenced by the
UM damping layer beginning at 58.5 km, however, and thus likely depart increasingly from reality at
higher altitudes. In contast, variations of λx with altitude and time are dictated by the terrain scales and
cgz ~ λz/TMW ~ U/TMW for a MW period TMW ~ λx; this supports the statement above that MWs with large
λx require long times to reach high altitudes where small U imply small cgz at lower altitudes.

The weakening cross-mountain flow and apparent cessation of MW forcing that began near 12 UT on 12 July
(see Figure 4, top row) effectively decouples the MW response from the forcing prior to RF22. This accounts
for the weakening of the larger λx (~300 km) MWs below ~30 km and the decreasing amplitudes of the smal-
ler λx (~20–80 km) MWs throughout the model domain over the interval displayed in Figure 14. In contrast,
the ~100–200 km MWs in the UM fields persist to later times. The ~300-km MW even increases in amplitude
at higher altitudes over this interval due to its very small cgz =ωi/m = λzU/λx and hence long residence times at
lower altitudes.

We now turn to a comparison of the UM MW T0(x,z) cross sections within the dashed rectangles in Figure 14
with the GV Rayleigh lidar T0(x,z) observations in Figure 9. Note that the GV Rayleigh lidar fields roughly span
the final two times shown for the UM.

There are many similarities that suggest that the high-resolution UM has succeeded in capturing the major
features of the observed event. Both the observations and the model exhibit MW responses from λx ~ 30–
300 km, with the largest scales predominant below ~35 km, and the intermediate and smaller scales, λx ~ 30–
200 km, becoming important above ~40 km. Approximate agreement is also seen in the phases of the
observed ~300 km MW with those seen in the UM, and in the λx ~ 150–200 km at ~40 km and above down-
stream of Mount Cook beginning and after 03 UT (Figures 9 and 14b–14d). Finally, both observations and the
UM results reveal a decrease in large- and intermediate-scale MW activity below ~45 km by ~09 UT but hav-
ing large-scale responses that persist to much later times than the cessation of forcing near 00 UT on 13 July.
These similarities indicate that the UM captured key aspects of the MW forcing and propagation at the full
range of λx observed.

There are also differences, however, and these are seen primarily in the amplitudes and timing of the MW
responses predicted by the UM relative to the Rayleigh lidar observations. While the overall character of
the MW response, that is, the phase structures and locations of the various components, are realistic,
the amplitudes in the UM are roughly half those in the observations at λx > 100 km throughout the com-
mon altitude range. As an example, the large-scale MW exhibiting a phase variation from warmer west-
ward to colder eastward over Mount Cook has a maximum amplitude of T0 ~ 8 K in the observed fields
at ~35–40 km on Legs 1 and 2 at ~6:30–7:20 UT and of T0 ~ 3–4 K at 03–09 UT in the UM. UM amplitudes
are even smaller at λx < 100 km at ~50–60 km altitudes, where both UM and lidar MW amplitudes are
better defined.

Another significant difference is the timing of the intermediate- and smaller-scale MWs, λx ~ 30–150 km,
at altitudes of ~40 km and above. These MWs were seen in section 4.1 to be significant at flight level
during FF9 centered at ~19 UT on 12 July but to diminish dramatically at flight level thereafter on
FF10 and RF22. Given their sustained forcing prior to FF9 and their relatively large cgz, they would easily
have reached the upper stratosphere and mesosphere by 00 UT on 13 July. UM results are consistent
with this expectation, exhibiting significant responses at these scales extending to ~60 km, above which
the smaller scales are preferentially removed by the UM sponge layer above 58.5 km. These MWs are still
significant in the UM T (x,z) field at 03 UT on 13 July (Figure 14b) but diminish significantly by 06 UT and
almost entirely by 09 UT. In contrast, the Rayleigh lidar data reveal that the intermediate-scale MWs,
λx ~ 80–150 km, decrease in amplitude very slowly over the duration of RF22, while the smaller scales,
λx ~ 30–80 km, decrease very little.
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There are several possible reasons for the above differences. In the case of the amplitude variations at lower
altitudes, it is likely that there is significant numerical dissipation in the UM where λz and cgz are very small,
as is the case in the lower stratosphere and especially in the troposphere having even smaller U (z); see
Figures 4 and 14. Specifically, numerical dissipation is a function of spatial resolution, and the UM results
here at the highest spatial resolution may nevertheless allow significant dissipation where spatial scales
are small (see section 7.4).

At higher altitudes, λz and cgz are very large, and UM resolution is not an issue. The UM sponge layer begin-
ning at 58.5 km is designed to damp all motions at higher altitudes independent of their spatial scales. This
damping will act on all MWs occurring above 58.5 km, hence potentially reducing amplitudes of the smaller-
scale MWs that reflect at these altitudes due to the large U (z). We consider it unlikely, however, that this
damping would reduce reflected MW amplitudes appreciably at lower altitudes. Another possible mechan-
ism accounting for smaller-scale features in the MW field at higher altitudes is nonlinearity of the large-scale
MW, as seen to occur at higher altitudes in the 2-D simulation of the RF22 event by Heale et al. (2017). But the
large-scale MWs in the UM simulation do not reach amplitudes sufficient to become nonlinear, and the
smaller-scale MWs are seen at flight altitudes (see Figure 8). Thus, at present, the only viable explanation
for cessation of smaller-scale MWs at higher altitudes prior to their disappearance in the Rayleigh lidar data
appears to be limitations of the UM to accurately account for MW excitation and initial propagation where λz
and cgz are very small in the troposphere and lower stratosphere at earlier times.

7.2. UM T0(x,y) Cross Sections

An additional evaluation of UMMWpredictions is enabled by AIRS temperatures at 2 hPa (~43 km) in the stra-
tosphere shown in Figures 10a and 10b. As noted above, each AIRS image is composed of two ascending or
descending measurements separated by ~98 min, but only the second ascending image is useful here. UM
T0(x,y) cross sections at 02 and 14 UT between the successive AIRS measurements in each panel are shown
in Figures 10c and 10d.

The eastern edge of the AIRS nadir T0(x,y) image at 03:19 UT on 13 July (Figure 10a) was seen in section 5.1 to
be in reasonable agreement with the Rayleigh lidar T0(x, z = 43 km) along RF22 Leg 1 at ~6:32 UT roughly 3 hr
later. However, this AIRS image and the UM T0(x,y) field 79min earlier in Figure 10c do not agree in their domi-
nant MW scales or their phase orientations. The explanation for these differences appears to be the long time
required for the λx ~ 300 km MW to propagate from mountain top to 43 km. With cgz = λz

2/λxTb and the ver-
tical variations of λz and Tb, this time is ~15 hr after attainment of full forcing at mountain top, which is after 03
UT on 13 July, given the initiation of the UM simulation at 12 UT on 12 July. Hence, the UM T0(x,y) field was
necessarily dominated by MWs having smaller λx at this time.

The implications of UM and AIRS field comparisons in the stratosphere are several. Examples include the
following:

1. The UM appears to capture the dominant MW scales and orientations seen in the stratosphere and the
mesosphere, though with a delay arising from a UM initiation that was too late to describe the
λx ~ 300 km MW responses in the stratosphere seen early on RF22.

2. Comparable AIRS and UM T0 extrema in the stratosphere imply significant UM T0 underestimates, given
known AIRS underestimates due to deep weighting functions.

3. AIRS and UM fields suggest that the RF22 MW event duration in the stratosphere and mesosphere
extended to significantly later times than the aircraft measurements.

7.3. UM ρ <u0w0> (z) and ρ <v0w0> (z) Profiles

Profiles of zonal andmeridional momentum fluxes averaged over the UM domain from 06 to 09 UT on 13 July
are shown in Figure 15a. The largely westward momentum fluxes are consistent with the dominant MW
orientations observed in the stratosphere and mesosphere. Significant reductions in their magnitudes with
altitude below ~9 km appear to reflect constraints on MW amplitudes by weak winds in the troposphere con-
tributing to strongly decreasing MW activity at flight level spanning RF22 (see Figures 4, top row, and 7).
Increasing U (z) up to ~15 km (Figure 3, top row) enabled MWs to propagate conservatively at these altitudes,
above which more uniform U (z) between ~15 and 25 km again suppressed increasing MW amplitudes with
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altitude. Importantly, however, the strongly decreasing ρ<u0w0> does not
preclude significant MW responses at 60 km and above.

7.4. UM ρ <u0w0> (k) Zonal Wavenumber Spectra

We now consider the spectral distributions of MW momentum flux, their
variations in altitude, and their dependence on UM spatial resolution. As
above, these are averaged over the full UM domain and from 06 to 09
UT. Variations in altitude (Figure 15b) are explored with spectra at 30, 40,
50, and 58 km to avoid influences of the sponge layer at higher altitudes.
The dominant contributions at all altitudes occur at λx ~ 100 km and smal-
ler, despite the smaller contributions at larger λx exhibiting a peak
at λx ~ 150 km.

These spectra reveal systematic reductions in MW MFs for λx < 200 km
with each increase in altitude and with the reductions increasing strongly
with decreasing λx. Specifically, spectral amplitudes decrease from 30 to
58 km by ~20% at λx = 50 km, ~90% at λx = 30 km, and ~100% at λx = 20 km.
The larger reductions at decreasing λx are caused by MW reflections in the
increasing U (z) with altitude, with larger λx reflecting at higher altitudes. As
noted in section 4.2, λx ~ 40-km MWs will reflect near the peak U (z), while
smaller λx MWs will reflect where cgz = 0 or λx ~ 2πU/N. Hence, the spectral
evolution in altitude has a clear physical basis.

Turning to the spectral variations with UM resolution (Figure 15c), we see
decreases in MWmomentum fluxes that vary strongly with k. IncreasingΔx
causes the mean MW wavelength to shift from λx ~ 50 km to ~150 km as
Δx increases from 2 km to 32 km. At smaller λx, larger Δx, and likely coarser
Δz than required, also strongly limit momentum fluxes.

8. Discussion

Early airborne and theoretical studies spanning more than six decades
revealed the potential for MWs extending into the lower stratosphere
and above under suitable propagation conditions (e.g., Bretherton, 1969;
Lilly & Kennedy, 1973; Lilly, 1978; Schoeberl, 1985; McFarlane, 1987; and
additional references cited by Grubišić & Lewis, 2004; Grubišić et al.,
2008; and Fritts, Smith, et al., 2016). More recent airborne and modeling
studies further advanced our understanding of MW penetration into, and
effects in, the stratosphere and above (Bacmeister, 1993; Bacmeister &
Gray, 1990; Bacmeister & Schoeberl, 1989; Doyle et al., 2005; Doyle et al.,
2011; Sato et al., 2009; Sato et al., 2012; Satomura & Sato, 1999; R. B.
Smith et al., 2008; Vosper, 2015; Vosper et al., 2016). Satellite measure-
ments emphasized the frequent occurrence of, and contributions to mean
temperature variances by, MWs in the winter stratosphere (Alexander
et al., 2009; Alexander & Teitelbaum, 2007; Eckermann et al., 2007;
Eckermann & Preusse, 1999; Hendricks et al., 2014; Jiang et al., 2002;
Plougonven et al., 2008; Preusse et al., 2002).

Predictions of MWs in the mesosphere were first confirmed by ground-
based airglow imaging over the Andes and NZ by S. Smith et al. (2009,
2013). These initial observations, and advancing lidar and imaging capabil-
ities, were among the many scientific opportunities and open questions
that motivated DEEPWAVE (Fritts, Smith, et al., 2016). To date, multiple
DEEPWAVE studies have addressed a diversity of MW dynamics extending
to altitudes of ~90 km and of their effects extending to higher altitudes
(e.g., Bossert et al., 2015, 2017; Bramberger et al., 2017; Broutman et al.,

Figure 15. Met Office UM domain-integrated ρ <u0w0> and ρ <v0w0> (a),
ρ <u0w0> (k) spectra at 30, 40, 50, and 58 km (b), and ρ <u0w0> (k) spectra
at 30 km at horizontal resolutions of Δx = 2, 4, 8, 16, and 32 km (c; see
legends in all panels). Vertical dashed lines in (b) and (c) show representative
λx. UM = Unified Model.
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2017; Eckermann et al., 2016; Fritts, Smith, et al., 2016; Kaifler et al., 2015; Pautet et al., 2016). Similar MW and
more general GW studies are now being performed using ground-based lidars, radars, and airglow imagers
(e.g., Baumgarten et al., 2015; Hecht et al., 2018). To our knowledge, however, no other studies have
approximated the capabilities of DEEPWAVE airborne measurements to quantify MW, and more general
GW, horizontal and vertical scales, temporal variability, and their linear and nonlinear dynamics from ~0
to 100 km.

All DEEPWAVE flights addressing MW dynamics prior to 12 and 13 July were performed under relatively
strong forcing conditions. However, ground-based measurements on 21 June revealed very strong MWs in
the mesosphere over Lauder to the southeast of Mount Aspiring (see Figure 1, right) during weak forcing.
These observations were a major motivation for RF22 on 12 and 13 July, during which decreasing cross-
mountain flow was anticipated. In the 21 June case, the mean flow was toward the northeast and thus more
nearly along than across the Southern Alps. The orography appears to have accounted for the MW scales
(λx ~ 30–80 km) and alignments (N-S to NNW-SSE) seen in the mesosphere in that case (Fritts, Smith, et al.,
2016; Figure 13). For example, see the ~30- to 80-km terrain features aligned roughly N-S to the south of
Mount Cook in Figure 1. The weak forcing in that case also apparently enabled linear propagation and con-
tinuous amplitude growth with altitude into the mesosphere until decreasing U (z) in the upper mesosphere
caused MW breaking (a ~ 1) beginning at ~75 km.

A second case of relatively weak forcing accompanied MWs excited by moderate flow over the low-
orography Auckland Islands observed on RF23 performed on 14 July (e.g., Broutman et al., 2017;
Eckermann et al., 2016; Pautet et al., 2016). MW propagation during RF23 exhibited strong horizontal disper-
sion due to the local source. This enabled linear Fourier ray modeling to describe the response extending into
the upper mesosphere very well up to the point of MW breaking approaching a critical level observed in the
GV AMTM and Na lidar measurements in the lee of the Auckland Islands.

These DEEPWAVE observations have revealed a previously unappreciated potential for strong MW forcing
in the mesosphere when MW forcing is weak and strong stratospheric winds enable largely linear propa-
gation to higher altitudes. In such cases, MW amplitudes and momentum deposition in the mesosphere
can be appreciable and may extend over regions much larger than the underlying orography. These
responses differ in significant ways from those under strong forcing conditions, in which MW responses
are larger and more intermittent at lower altitudes, momentum deposition is implied throughout the
atmospheric column, and secondary GWs play major roles at higher altitudes (e.g., Bossert et al., 2017;
Bramberger et al., 2017).

9. Summary and Conclusions

Many studies of GW dynamics employing correlative measurements have made significant contributions to
our understanding over many years. In themajority of cases, however, these studies were confined in altitude
and did not link GW sources with their effects at higher altitudes. Even fewer were able to define GW horizon-
tal and vertical scales, orientations, intrinsic properties, and consequences of GW breaking spanning multiple
GW periods. DEEPWAVE overcame these obstacles through comprehensive, full-column measurements
where MW responses were confined to the same region throughout their event durations.

Results for the DEEPWAVE RF22 event presented in this paper reveal largely linear excitation of vertically pro-
pagating MWs and trapped lee waves accompanying weak flow over the complex SI orography spanning 12–
13 July 2014. MWs at λh ~ 20–300 km readily reached the upper stratosphere with significant amplitudes,
though potentially exhibiting localized dissipation at lower altitudes where λz and cgz were very small due
to weak, decreasing, or nearly uniform U (z).

MWs having λh< 40 km apparently became evanescent and reflected near the U (z) maximum at ~55–60 km,
thus limiting the amplitudes of these MWs at higher altitudes. Larger-λhMWs that propagated into the meso-
sphere achieved overturning amplitudes at ~75–84 km, implying strong breaking and instabilities, secondary
GW generation (e.g., Bossert et al., 2015, 2017), and MW dissipation below a critical level near 90 km. Peak-to-
peak vertical displacements accompanying these dynamics exceeded 10 km on every RF22 flight leg.
Estimated displacements and related T0 for the larger individual MWs led to momentum flux estimates of
310, 410, and 690 m2/s2, which are a decade or more larger than zonal mean magnitudes at these altitudes.
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UM simulations of this event capture many of the characteristics of the observed MW field throughout the
atmosphere, in particular, the dominant scales, orientations, and spatial and temporal variability. They also
suggest that the major momentum fluxes (~70%) occur at λx < 100 km, despite dominance of the T0 and
u0 fields by MWs at larger scales. However, the UM significantly underestimates MW amplitudes at all altitudes
and was unable to replicate large observed λx ~ 300 km seen by AIRS at 43 km at 03:19 UT on 13 July. We
attribute this to very small λz and cgz following a UM initialization at 12 UT on 12 July.

The implications of this study are that linear MW propagation into the mesosphere can occur when forcing is
weak and there is a suitable propagation channel to high altitudes. In such cases, momentum fluxes can
become very large in the mesosphere and may extend over a region significantly larger than the forcing oro-
graphy. This differs significantly from other DEEPWAVE cases where either strong forcing or weak strato-
spheric winds drive initial MW breaking and momentum deposition at much lower altitudes.

These and other DEEPWAVE results have significant implications for parameterizations of MW and more gen-
eral GW propagation and influences throughout the atmospheric column (e.g., Bossert et al., 2015, 2017;
Bramberger et al. (2017); Eckermann et al. (2016); Fritts, Smith, et al. (2016); Kaifler et al. (2015); Pautet et al.
(2016); R. B. Smith et al. (2016). These include the following:

1. Orographic forcing often yields multiple MW scales and orientations, and the dominant responses often
have primary kh along the cross-mountain flow.

2. Horizontal dispersion leads to extended horizontal responses and forcing in the stratosphere and meso-
sphere that violate the typical general circulation model single-column approximation.

3. Small λz and cgz where (c � Uh) is small can delay high-altitude responses by many hours.
4. The linear view of GW breaking is wrong: Breaking is intermittent, it does not eliminate the GW, and the

GW can again achieve large amplitudes at higher altitudes.
5. Even when larger-scale (λh ~ 100–300 km) MWs are observed, the major momentum fluxes are typically

associated with λh < 100 km.
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