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ABSTRACT

We present a simple way to incorporate a molecule-field interaction into non-adiabatic molecular dynamics. This makes possible integrated simulation of the
photoexcitaion and the ensuing photodynamics, providing accurate initial conditions that are specific for the particular wave-length and duration of the laser pulse.
The proposed approach is applied to simulate the dynamics of pyrrole photodissociation. The approach is particularly convenient for the use with ab initio Multiple
Cloning approach, but the idea can be implemented in other quantum dynamics methods.

1. Introduction

Since the pioneering paper of Sobolewski and Domcke [1] that
showed the existence of conical intersections in the decay channel of
pyrrole, the mechanisms of its ultrafast photochemistry have been in
the focus of numerous experimental [2-8] and theoretical [9-20]
works. In recent years, the femtosecond experimental techniques have
become particularly popular [5-7]. On the theoretical side, ab initio
direct dynamics methods that can simulate quantum dynamics on the
ultrafast time scale, such as Ab initio Multiple Spawning (AIMS) [21,22]
and Ab initio Multiple Cloning (AIMC) [23,24] techniques, have been
developed. For example, our AIMC simulations of pyrrole photo-
dissociation [19,20] were able to reproduce correctly the main features
of experimental total kinetic energy release (TKER) spectra and velocity
map image (VMI) [7], and shed light on the reaction dynamics at the
time scale of few hundreds of femtoseconds.

In theoretical simulations, Frank-Condon initial conditions are
usually used, when the lowest vibrational state of the ground electronic
state is simply “lifted up” to the excited electronic state. This choice of
initial conditions disregards the dynamics that occurs during the ex-
citation pulse, which is not always a very good approximation, given
that the time scale of the pulse (~ 50 fsec) is not much shorter than that
of the simulated non-adiabatic dynamics (~100-200 fsec). It also does
not take into account the coordinate dependence of transition dipoles,
which can be important especially in the case of symmetry-prohibited
transitions. The most rigorous way to generate proper initial conditions
for the photodynamics initiated by a short laser pulse would be to si-
mulate the very process of electronic excitation together with non-
adiabatic dynamics for the particular frequency, duration and shape of

the laser pulse. In order to do so, the interaction of the molecule with
the laser field must be incorporated into the Hamiltonian.

Direct dynamics simulation of the excitation was implemented in a
number of different ways in framework of AIMS algorithm [25-28]. The
AIMS method, however, was initially designed for treating non-adia-
batic dynamics at conical intersections where the coupling between
states is extremely localized, while coupling with electric field is not
localised. As a result, simulation of electronic excitation in AIMS would
require lot of spawning in order to keep electronic states coupled for a
sufficiently long time. In particular, the resent XFAIMS (eXternal Field
Ab Initio Multiple Spawning) method [27] spawns a new trajectory
twice per optical period, each time the absolute value of the electric
field reaches its maximum. Test simulations for LiH excitation show
that the results provided by XFAIMS are in close agreement with nu-
merically exact quantum dynamics. As an example, the method was
used to simulate the excitation of H,CSO molecules by 0.85fs and
2.54 fs laser pulses and to study the effect of nuclear motion on popu-
lation transfer of during photoexcitation.

In this work, we report the implementation of simultaneous simu-
lations of laser excitation and non-adiabatic dynamics in the Multiple
Cloning framework. AIMC approach is very well suited for such simu-
lations as it is based on Ehrenfest coherent states, which provide a
continuous coupling between electronic states removing the necessity
of extensive spawning. We treat laser field as a Floquet quantum os-
cillator coupled with the molecule through the electric dipole operator.
Floque Hamiltonian was used before with AIMS approach [25,26] but it
was replaces by direct periodic perturbation in a recent XFAIMS
method, which has advantage for ultra-short pulses that exhibit a sig-
nificant uncertainty in frequency. On the other hand, the use of Floque
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Hamiltonian is extremely convenient for the simulation of excitation by
longer pulses in the AIMC framework, as the coupling with laser field
can be handled with almost no extra efforts in exactly the same way as
non-adiabatic coupling in the standard AIMC algorithm. Only one ad-
ditional potential energy surface V, + #w should be introduced re-
presenting the electronic ground state shifted up by one quantum of the
field.

2. Theory

The interaction of the molecular system with external laser field is
usually described by adding a periodic perturbation E-d cos(wt) to a
molecule Hamiltonian, where the amplitude of the field E(t) depends on
time slowly. However, fast oscillations caused by cos(wt) in this addi-
tional term make interaction with the field in the Hamiltonian ex-
tremely inconvenient for numerical simulations. On the other hand, it is
well known that the dynamics in a quantum system with potential
energy surfaces Vy, V; ..., Vi acted upon by a periodic perturbation of
frequency w is equivalent to the dynamics driven by the time in-
dependent Hamiltonian with additional states V, + niw, V; * nhw,
..., Vx = nhw, which are the original states shifted by integer numbers
of the optical field quanta /w. This is known as Floquet Hamiltonian
[29] or the ladder of quasienergies [30].

Floquet theory, which effectively quantises the field, provides easy
and straightforward way to treat the molecule-field interaction. In this
work, we are interested only in the linear absorption and do not con-
sider processes involving more than one photon. In this situation, we
can take into account only zero and one photon quantum states of the
external field, which we denote as |0) and |1). Moreover, as only the
electronic ground sate is populated initially, we do not need to include
any excited states of the molecule for state |1) of the field. Thus, we can
incorporate the process of photoexcitation into our simulations by
adding just one more state, namely Floquet state with the energy
Vo + hw, to our AIMC dynamics! Below, we will refer this Floquet state
as S,, while electronic states for state |0) of the field will be referred as
So, Sl, Sz etc.

Within the framework of AIMC method, the total wave-function |¥
is represented in a trajectory-guided basis I3),):

) = D cu(O)lh, (1)
n (€]
In an original AIMC ansatz, the basis functions I¢,) are composed of
the nuclear and electronic parts. Here we add a third part If) re-
presenting a quantum state of the external field:

I, () = Ix, () Z a’ (1) If),
IS (2)

where |¢;) are the electronic eigenstates of the molecule, and If) re-
presenting the field is either I0) or I1). As it was mentioned above, we
include here only electronic ground state I¢,) of the molecule for state
[1), and all electronic states for state 10) of the field.
As before, a nuclear part [y, (t)) of each basis function is a Gaussian
Coherent State moving along Ehrenfest trajectory:
2a iP,()-(R-R,(t)) i

Ndof 14 o
700 = (2] enp| —ameR, 0y + BOETLD Ly
T n h
3)
with R, and B,(t) representing the coordinate and momentum of the
center of nth Gaussian, and phase y, (t) propagated as

. nﬁn
W=y 4

There are two different approaches to the choice of the electronic
basis functions I¢;) in Eq. (2). Traditionally, adiabatic eigenfunctions
I¢;) = I¢, (r;R)) are used; in this case the non-adiabatic coupling comes

from the kinetic energy operator (—f;—zVR M*lvR) acting onlg, (r;R)) due
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to its parametric dependence on R. Alternatively, electronic part of
each function I3, (t)) can be represented using its own set of diabatic
functions ¢ that coincide with adiabatic eigenfunctions in the centre
of the Gaussian I¢I(")) = I¢, (r;R,(1))). This approach is known as time-
dependent diabatic (TDD) [24,31] basis or moving crude adiabatic
(MCA) [32] basis. The non-adiabatic coupling in TDD basis comes from
the time dependence of basis functions I¢I(")) due to the motion of the
Gaussian.

Calculations in TDD basis are slightly more complicated than those
in an adiabatic basis, as the overlaps between electronic functions I¢I("))
for different Gaussians need now to be calculated and taken into ac-
count in propagation of amplitudes c, (). However, TDD approach has a
number of important advantages: 1) it treats correctly the interaction
between basis functions around very sharp crossings, where adiabatic
approach fails; 2) it naturally accounts for the geometric phase, the
effect of which (although negligible for pyrrole [33]) can modify non-
adiabatic dynamics in profound ways [34]; 3) the non-adiabatic cou-
pling does not have a second order term in TDD basis. The second-order
coupling is difficult to integrate due to divergence of its integrals with
Gaussians [35], and it is usually neglected in non-adiabatic dynamics
simulations; nevertheless, it still can be important in some cases [36].

It can be shown [23] that both adiabatic and TDD approaches lead
to the same set of equations when adiabatic eigenstates ¢, (r;R) change
smoothly with R, i.e., when the overlaps between electronic functions
I¢I(")) for all pairs of Gaussians with non-zero nuclear overlap can be
assumed to be Kronecker’s 8;; and when the second-order non-adiabatic
coupling can be ignored. This approximation usually works well for
small molecules, such as pyrrole, while for large conjugated polymers
and dendrimers, where adiabatic electronic states can change instantly
at trivial unavoided crossings [37] between spatially separated non-
interacting electronic states, the accurate TDD approach should be
used.

For the sake of brevity and in order to be consistent with our pre-
vious works on pyrrole [19,20], we are also using the above approx-
imation (i.e., assume smooth change of adiabatic eigenfunctions) in the
present work. It should be noticed that the choice of adiabatic or TDD
basis is not essential here, and the equations below can be easily
modified to be used in either of them.

The propagation of Ehrenfest amplitudes a,(f") for each trajectory is
described by the same equation as in the standard AIMC

) _ L
4=y 2
1g )

but the matrix elements of Hamiltonian H, ,(J’j% now include, in addition to
the non-adiabatic coupling, the interaction with laser field:

i

ViR, I=J, f=g=10)
—inBMICy;(R,), I#J, f=g=10)
Hifh = {%o(®) + ho, 1=7=0, f=g=1)
Ed®Ry), J=0, f#g
Ed([R,), I=0, f#¢g ©

Here Cy = (¢; (1;R)IVr ¢, (r;R)) are non-adiabatic coupling vectors,
d; = (¢! d |¢;) are transition dipoles, V; are potential energies, and E is
the amplitude of laser field. First two lines in Eq. (6) represent a usual
non-adiabatic Hamiltonian. Third line is a potential energy term for
state I¢,)11), which is shifted by #w with respect to the ground state
I¢,)10) reflecting the energy of a photon. Fourth and fifth lines represent
the coupling between state I¢,) /1) and the excited states of the mole-
cule, which is responsible for electronic excitation associated with the
absorption of a photon. Matrix elements H, I(]’}g are calculated “on the fly”
in the course of dynamics, with potential energies, non-adiabatic cou-
pling vectors, and transitional dipoles given by the electronic structure
code. Thus, Hamiltonian (6) takes into account the coordinate depen-
dence of transition dipoles d; providing the way for correct description
of electron-vibrational coupling during the process of photoexcitation.
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The coupling with the field is no longer oscillatory.

Because we consider only a linear case here, a weak external field is
not affecting the motion of Gaussians, and they are guided by standard
Ehrenfest force:

F=- Z Ia,f IZVE, + Z a,*fa]fCU(V;—V]).

If joy )

Egs. (4)—(7) form a complete set for the propagation of the basis.
The evolution of the total wave-function can be found by sub-
stituting ansatz (1) into the time dependent Schrodinger Equation:

Y GOl 0)60 =13 (Hmn—ih<¢m o4 ¢n<r>>)cn<r>

(€))

The form of Eq. (6) is exactly the same as in the standard AIMC but
the matrix elements H,,, now include additional terms:

2
—%VRM_IVR

Hypn = <xm xn> + 25 @y e G, Vil %)
I
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I

First terms here is a kinetic energy; second and third terms are
potential energies for states |0) and I1) of the field respectively (we take
into account only ground state in the latter case). The forth term is a
usual non-adiabatic coupling, and the fifth term is the coupling between
the molecule and the field. While the matrix element of the kinetic
energy can be calculated analytically, for other matrix elements, we use
a simple approximation proposed in our previous work [23]:

G V()1 23) = Gt um[

. Ot | R=Rn) 0 ) VVI Rpn) + (Ot | R=R) I, ) VV1 (Ryr)
2 ’ (10)

Vi(Rm) + W(in))
2

i — — — _
O 1IC(RMVI ) = E(Xm ¥, ) (BM™C; (R,) + BMIC; (R,)),

(1)

Gin 18l 1) = 5 G 1) (Ry) + Ay (R))E a2

The term <z,bm (t)‘%’ P, (t)> in Eq. (8), which reflects the time de-
pendence of the basis, can be expressed as:

d _ a M)y (1)
<¢m<r>] dtw"(t)> - <xm dtxn> % @yl

.d
+ O ) 20 (@),
Lf

where
xn> +B, <xm

8

Due to approximation (10)-(12), all matrix elements in (9) are cal-
culated from the electronic structure data used for the propagation of
the basis. This allows us to calculate amplitudes c, (t) in post-processing
using the saved trajectory data, as in a standard AIMC algorithm. As the
electronic structure is the most expensive part of on the fly calculations,
quantum coupling between the configurations in our approach comes a
practically no additional computational cost.

13)

dR,

dP,

d - i
EX"> =R, <xm xn> + ot O )

(14)
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3. Cloning

Cloning is the key element of AIMC dynamics that distinguishes it
from the Multi-Configurational Ehrenfest (MCE) [38,39] method. When
cloning is applied, a single Ehrenfest configuration is replaces by two
new configurations, one of which has nonzero amplitudes for only one
electronic state, while the second clone contains contributions of all
other electronic states:

(n)

a
) = )| =i X I+ Y, 0xI¢)le)
lay”| U220 (15)
and
Wi = ) OX 8 + —— ¥ I#)ie) |
I-la’P w.9zap (16)

The amplitudes of the two new configurations are adjusted in such a
way that their total contribution to the whole wave function (1) re-
mains the same as the contribution of the original configuration:

Cp = Cn Ia};')l, cy = c,l\/l—lal(;')lz. 17

In a standard AIMC, cloning is used to allow the bifurcation of the
wave-function at conical intersections. Thus, it is applied when
breaking force

FO) = |a,f|2[vvl— D lag Wv,],
J.g

18

which is the force pulling I¢,)|f) state away from the remaining states,
exceeds a threshold for at least one state, while non-adiabatic coupling
is low at the same time. Thus, trajectory basis functions are usually
cloned just after passing a intersection if, due to the partial population
transfer, two electronic states with different potential energy gradients
have significant Ehrenfest amplitudes.

The above cloning conditions are also applied in the present work for
the non-adiabatic part of the dynamics. However, they a not appropriate for
cloning out the excited states from the initial trajectory. The dynamics now
starts from Floquet state Sy and, while photoexcitation populates other
states, these populations are still very low in the linear case considered in
this paper. Nevertheless, these states need to be cloned out with reasonably
short time intervals: without cloning, the Ehrenfest configuration would
simply follow the trajectory on the state S. It is cloning that initiates the
excited states trajectories which describe the subsequent non-adiabatic dy-
namics. Thus, for the initial Floquet state trajectory, the cloning is per-
formed every time when S; state energy term crosses one of the exited state
energy terms, as illustrated in Fig. 1. Cloning in these crossing points ensures
that the additional classical energy of exited state trajectories corresponds to
the energy of photon. This approach provides sufficiently frequent cloning if
the laser frequency w is chosen in a high absorption region, i.e. close to one
of the transition energies of the molecule.

It should be noticed that although absolute amplitudes of the exited
state trajectories generated as a result of cloning are low, their absolute
values do not have much importance here: they simply reflect a share of
exited molecules in the ensemble and, as such, are determined by the
intensity of laser pulse. What is important are the relative amplitudes of
different excited state trajectories and the relative amplitudes of dif-
ferent states for each of them.

4. Algorithm

The algorithm that we use for modelling photoexcitation is illu-
strated in Fig. 2. We start from the Floquet state S, (i.e., from the
ground state I¢,) of the molecule and state |1) of the external field), and
run a set of trajectories with initial coordinates and momenta randomly
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Fig. 1. The sketch of pyrrole energy terms used in the simulation of photoexcitation dynamics with laser pulse frequencies approximately corresponding to the
energies of So — S; (left) and So — S, (right) transitions. The difference between these two cases is in the position of Floquet state Sy, which is a ground state shifted
by #w. Cloning is applied when Floquet state S, term crosses one of the excited state terms. (Here we show just few crossing points, while their number in reality is

large for multi-dimensional motion.)

generated, as usual, according to Wigner distribution. This initial tra-
jectories are run only for the duration of laser pulse, as state S, does not
participate in non-adiabatic dynamics. Instead it is coupled to the ex-
cited states S;, S,, etc through molecule-field interaction, and this
provides the growth of excited states populations over the duration of
the laser pulse. The use of Ehrenfest approach ensures that the elec-
tronic states remain coupled for a long time helping to treat correctly
the oscillation of the population flux due to transition energy mismatch
during photoexcitation.

Every time the potential energy term for S, state crosses the excited
state term (i.e. when transition energy is exactly equal to the frequency
of the field), the cloning is applied. These cloning events launch a
swarm of trajectories on the excited states S;, So, etc for non-adiabatic
dynamics initiated by the photoexcitation. Those, in turn, can undergo
more clonings while passing through the regions of high non-adiabatic
coupling, now initiated by strong breaking force (18) as in the usual
AIMC dynamics.

When all trajectories are calculated, we use them to propagate basis
sets, which are composed of Gaussian coherent states. Solving Eq. (8)
provides amplitudes c, (t) for the representation (1) of the total wave-
function |¥).

5. Computational details and results

In order to test the proposed approach, the calculations were run to
simulate the process of pyrrole photoexcitation by a 50 fs laser pulse
and its subsequent dissociation. As before [19,20], trajectories were
calculated using AIMS-MOLPRO [40] computational package modified
to incorporate Ehrenfest dynamics, the cloning thresholds were taken as
5x 10 %au for the breaking acceleration of Eq. (18) and
2 x 10" %a.u. for the norm of non-adiabatic coupling vector, and
complete active space self-consistent field (CASSCF) method at SA4-
CAS(8,7)/cc-pVDZ level was used for the electronic structure. The
width of Gaussian functions a was taken as 4.7, 22.7 and 19.0 Bohr 2
for hydrogen, carbon nitrogen atoms respectively, as suggested in Ref.
[41].

Calculations were run for two pulse frequencies w corresponding to
approximate energies of So — S; and Sp — S, transitions of pyrrole. It is
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well known that CASSCF method somewhat overestimate transition
energies, so the frequencies were taken xiwg, = 0.168 Hartree for So — S;
and #wg, = 0.192 Hartree for Sy — S, transition to match our electronic
structure data, not the experimental pyrrole spectrum.

A bunch of 200 trajectories starting from S, state and randomly
generated according to Wigner distribution coordinates and momenta
was run for 50 fs — the duration of the laser pulse. For w = wy;, 1094
So—S1 crossings points and 30 So=S, crossings points were identified,
and the excited state trajectories initiated at these points undergo 229
more clonings during non-adiabatic dynamics, making 1353 branches
in total. For w = wg,, the numbers of S;—S; and So—S, crossing points
were 15 and 1551 respectively, and the number of further cloning
events was 187, making 1753 branches in total.

Fig. 3 presents the time-dependences of electronic state populations
for two pulse frequencies. The results were averaged over all initial
trajectories and 100 random orientations of the molecule with respect
to the laser field. The population of S, state is not shown here for an
obvious reason: it reflects only the share of the molecules that remained
unexcited, which is close to 1 in the linear regime. As a result, the
populations in Fig. 3 are not normalized, and the fact that the total
population in part (B) is larger than in part (A) simply means the higher
rate of absorption at w, frequency.

One can see that the processes of photoexcitation and nonradiative
decay occur on the same time scale. For w = wy;, the growth of S; po-
pulation due to photoexcitation is immediately followed by its relaxa-
tion to a ground state. State S, is practically not involved here, as a
molecule does not have enough energy to go there. For w = wg,, the
excitation to S, is also followed by quick non-adiabatic relaxation, first
to S; and then to S, state. The population of S, states reaches its
maximum at 45 fs; by the end of the pulse, the relaxation dominates
over the photoexcitation making S, populations go down.

Fig. 4 shows calculated total kinetic energy release (TKER) spectrum
for pyrrole photodissociation. To plot this spectrum, each trajectory
leading to dissociation was ascribed a weight based on the final am-
plitudes c, of appropriate basis functions. Then, the spectrum was
smoothed by replacing delta-functions with Gaussian functions
(0 =200cm™Y). The spectra for both values of w were normalized to
simplify the comparison. The experimental [7] TKER spectra of pyrrole
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Fig. 2. The sketch illustrating our algorithm for modelling the photoexcitation.
(A) Initial ground S, state trajectory. (B) Cloning out excited states at crossing
points. (C) The motion and growing of the basis used to solve time-dependent
Schrodinger Equation.

for 250 nm and 238 nm wave-length are shown in the insert. One can
see that the calculated spectrum for higher w is wider, which re-
produces the experimental trend. On the other hand, the calculations do
not show the shift of the position of the main peak as the frequency
increases: the excess of the pumped energy remains in form of the
electronic excitation of the radical, which exhibit larger relative po-
pulation of the exited states in the higher-frequency case (see Fig. 3).
Also, the absolute values of the energies are about 1.5 times on average
higher than in experiment. This can be ascribed to the inaccuracy of
CASSCF electronic structure method, which, in particular, overestimate
transition energies due to the lack of dynamic electron correlations.
Nevertheless, our calculations illustrate the importance of treating the
excitation and non-adiabatic dynamics simultaneously and show that
the proposed approach can capture experimentally observed depen-
dence of the dynamics on excitation pulse frequency and duration.

6. Conclusion

Non-adiabatic dynamics simulations usually apply very primitive
initial conditions where ground vibrational wave packet is simply lifted
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Fig. 3. Electronic state populations as a function of time. Laser pulse fre-
quencies approximately correspond to the transition energies of S; (A) and S,
(B) states. The duration of laser pulse is shown by a dot line. Excitation and
dynamics occur simultaneously.

200

to one of the excited states. In this work, we have proposed the way to
avoid this approximation by modelling the process of photoexciteation
together with the dynamics. In our algorithm, the laser field is treated
using a quantum approach; this allows us to incorporate field-molecule
interaction into a standard AIMC dynamics by simply adding just one
new quantum state that is a ground state shifted by #w and coupled to
excited states through transitions dipoles.

In order to test the method, we have used it to simulate the process
of the photodissociation of pyrrole. The dependence of calculated TKER
spectrum on the laser pulse wave-lengths is in a qualitative agreement
with the experiment, although more calculations for different molecular
systems are needed in order to evaluate the accuracy and efficiency of
the proposed approach.

The proposed idea is very versatile and can be applied not only
together with AIMC but with any technique (e.g., vMCG or MCTDH)
used for the simulations of the ultrafast photodynamics.
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Fig. 4. Calculated TKER spectrum for pyrrole photodissociation by 50 fs laser
pulse. The wave-lengths approximately correspond to the transition energies of
S; (blue) and S, (red) states. An experimental TKER spectra of pyrrole for
250 nm and 238 nm wave-lengths from Ref. [7] are shown in the insert. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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