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Abstract

Two complementary self-consistent field theoretical approaches are
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used to analyze equilibrium structure of binary and ternary brushes

of polyions with different degrees of polymerization. Stratification in

binary brushes is predicted: the shorter chains are entirely embedded

in proximal sublayer depleted of end-points of longer chains while

peripheral sublayer contains exclusively terminal segments of longer

chains. The boundary between sublayers is enriched with counterions

that neutralize residual charge of proximal sublayer. These analytical

predictions for binary brushes are confirmed and extended to ternary

brushes using numerical Scheutjens-Fleer approach.
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1 Introduction

Polyelectrolyte (PE) brushes - layers of ionic macromolecules end-tethered at
interfaces - are widely explored to control elastic, adhesive, and tribological
properties of surfaces operating in contact with aqueous environment.1–4 Be-
cause of the presence of charged monomer units, the brush-forming chains are
capable of pronounced conformational response to variations in such environ-
mental parameters as ionic strength and pH in the solution. Polydispersity of
immobilized polyions could provide additional means to mediate the response
of polymer monolayers.

Brushlike layers of ionized macromolecules are found as motives in natural
objects.5–9 For example, extracellular polymer coatings on microbial surfaces
are composed primary of polysaccharides many of which are charged.9 These
layers are highly polydisperse and can have thickness up to few microns. Im-
mobilized glycoproteins, such as mucins in periciliary layers in airways6 and
aggrecans in synovial joints5 are composed of the core protein decorated by
polysaccharide side chains. Polydispersity of mucins that are self-assembled
from macromonomers, is evidently different from that in the bacterial extra-
cellular layers. A distinct type of the brush polydispersity arises if the teth-
ered macromolecules belong to protein family comprising of several isoforms,
each with strictly monodisperse protein molecules. In this case polydispersity
of the protein layer is dictated by stoichiometry of the participating isoforms.
Typical examples are tau proteins that associate with and stabilize micro-
tubules,8 and neurofilament (NF) proteins that self-assemble in intermediate
filaments in neuronal cells.7

The family of NF proteins comprises of three isoforms with different
molecular weights, abbreviated as L (low),M (middle), andH (high). A typ-
ical self-assembled NF has a cylindrical core decorated by a brush of unstruc-
tured L, M , and H projection domains.In vitro experiments demonstrated
that filament stoichiometry could be manipulated by varying concentrations
of individual isoforms in solution.10,11 Correspondingly, the brushes of pro-
jection domains in self-assembled L proteins or L co-assembled with M and
H chains, would have quite different molecular weight distributions: strictly
monodisperse in pure L filaments, bi-disperse in LM and LH filaments, and
tri-disperse in LMH filaments incorporating all three components. Under
“of cell” experimental conditions charge regulation in NF proteins could be
performed by conventional means of physical chemistry,12 i.e., by variations
in pH and ionic strength in the solution. In this case, the equilibrium degree
of protonation/deprotonation of amino acid residues is dictated by the local
electrostatic potential, and the distribution of electric field becomes a major
factor that determines the brush structure. The self-consistent field simula-

3



tions13 has demonstrated that electrostatic potential in NF brushes exhibits
distinct patterns associated with sublayers of short (L) and long (M , H)
chains. That is, mono, bi- , and tri-dispersity of the molecular weight distri-
bution directly translates in the NF brush structure and shape of the electro-
static potential profile. Therefore, understanding the relationship between
polydispersity of macroions and structural organization of ionized polymer
brushes is a fundamentally important problem for both artificial and natural
PE brushes.

During the past two decades a robust ”grafting from” approach has
been established to create well-defined and sufficiently dense polyelectrolyte
brushes.14 The controlled radical polymerization techniques are usually em-
ployed for surface-initiated polymerization that gives rise to polymer and
polyelectrolyte brushes with relatively narrow molecular weight distributions
of brush-forming chains. Therefore, the results of experimental studies on
structural and adhesive properties of PE brushes are usually rationalized
on the basis of the existing theories for monodisperse polyions. The first
scaling models15–19 established the main regimes of PE brush behavior and
specified power law dependences for brush characteristics under various sol-
vent conditions, salt concentrations, and degrees of ionization. In addition,
the theoretical studies based on the self-consistent field Poisson-Boltzmann
approach20–26 provided a more detailed description of the PE brush internal
organization as well as distributions of mobile ions in salt-free and salt-added
solutions.

The properties of non-ionic polydisperse and mixed polymer brushes have
been thoroughly examined both theoretically and experimentally27–37 (see
also reviews3,14). However, the studies of polydisperse polyelectrolyte brushes
are still rare. The aim of the present paper is to address the effect of polyion
polydispersity by combining the analytical self-consistent field (SCF) ap-
proach with the numerical Scheutjens-Fleer (SF-SCF) modeling of binary
and ternary PE brushes. The rest of the paper is organized as follows. We
start with formulating an approximate analytical theory of binary PE brush
developed in the strong-stretching (SS) approximation (Section 2). The pre-
dictions of the analytical theory are confronted to and supplemented by the
results of the SF-SCF numerical modeling for binary and ternary PE brushes
grafted to neutral surfaces (Section 3). Our conclusions are summarized in
Section 4.
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2 Analytical self-consistent field strong stretch-

ing approximation

2.1 Model

We consider binary brushes formed by strong polyelectrolytes with quenched
(positive) fractional charge α per monomer unit and degrees of polymeriza-
tion N1 and N2 (N2 > N1), respectively. The difference in molecular weights
of shorter and longer chains in accounted for by mismatch parameter

β =
N2 −N1

N1

≥ 0 (1)

The fraction of longer chains (comprising of N2 monomer units) in the brush
is q ≤ 1, and the fraction of shorter chains (comprising of N1 monomer units)
is 1− q ≤ 1.

Figure 1: Schematics of binary polyelectrolyte brush.
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The grafting density of polyions in the brush is σ = 1/s (where s is the
grafting surface area per chain). Hence partial grafting densities of long and
short chains are σ2 = qσ and σ1 = (1 − q)σ, respectively, σ = σ1 + σ2. The
chains are assumed to be intrinsically flexible, that is, the monomer unit size a
coincides with the statistical segment length of the corresponding uncharged
polymer. The latter is assumed to be on the order of the Bjerrum length
lB = e2/(ǫkBT ) ∼= a. The solution contains mobile monovalent counterions
necessary to neutralize bare charge of the brush.

To investigate binary brushes of polyions we use the results of the analyt-
ical SS-SCF theory developed earlier for binary brushes of non-ionic macro-
molecules,31 combined with the Poisson-Boltzmann framework to account for
electrostatic interactions between charged species. This approach has been
used previously to study one-component PE brushes.20,24–26

The analytical SS-SCF method incorporates the self-consistent molecular
potential U(x) acting at polymer chains in the brush.38 The latter is governed
by the presumed Gaussian elasticity of the tethered chains on all length
scales. If intermolecular ionic interactions between charged monomer units
and thermally equilibrated mobile ions dominate over other interactions in
the system, the self-consistent electrostatic potential Ψ(x) in a PE brush can
be directly related to the molecular potential U(x) as

U(x)

kBT
≈ αeΨin(x)

kBT
≡ αψin(x) (2)

where ψin(x) = eΨin(x)/kBT is the electrostatic energy of elementary charge
e in the brush at distance x from the surface measured in kBT units and
subscript ”in” refers to the interior of the brush. It is termed below as
dimensionless electrostatic potential.

Structural properties of a binary PE brush can be conveniently expressed
using those of a reference one-component brush (β = 0) composed of polyions
with length N1 grafted with density 1/s. This case has been treated in
refs,24,25 and we summarize below the relevant results.

2.2 One-component reference PE brush

We consider a monodisperse PE brush with thickness Href in contact with
solution of 1:1 monovalent salt with concentration cs. The latter specifies
the Debye screening length in buffer solution as κ−1 = (8πlBcs)

−1/2. As long
as polyelectrolyte chains exhibit the Gaussian elasticity, the self-consistent
electrostatic potential inside the brush (0 ≤ x ≤ Href ), can be presented as
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ψref,in(x) =
H2

ref − x2

H2
0

+ C(κ) (3)

where H0 is the characteristic electrostatic length,24

H0 =

√
8

3π2
N1α

1/2a (4)

and constant C(κ) is introduced here to shift the reference state for electro-
static potential ψ = 0 from x = Href to x = ∞. Its value is specified in
eq 9 below. The reference state for the electrostatic potential with ψ = 0
at x = ∞ is conventional for salt-added solutions, and is also imposed in
the numerical SF-SCF model which we use below to confront the analytical
predictions.

Application of the Poisson equation,

d2ψref,in(x)

dx2
= −4πlBρref (x) (5)

allows for net charge density ρref in the brush,

ρref (x) = (2πlBH
2
0 )

−1 (6)

and residual (positive) charge per unit area

Q̃ref =

∫ Href

0

ρref (x)dx =
Href

2πlBH2
0

(7)

The latter controls the Gouy-Chapman length

Λ̃ref =
1

2πlBQ̃ref

=
H2

0

Href

of the counterion cloud outside the brush, i.e., at distances x ≥ Href .
Outside of the brush, x > Href , the electrostatic potential ψref,out(x)

coincides with that for a plane with surface (positive) charge number density
Q̃ref . It can be presented as25

ψref,out(x) = 2 ln


(κΛ̃ref +

√
(κΛ̃ref )2 + 1− 1) + (κΛ̃ref −

√
(κΛ̃ref )2 + 1 + 1)e−κ(x−Href )

(κΛ̃ref +
√

(κΛ̃ref )2 + 1− 1)− (κΛ̃ref −
√

(κΛ̃ref )2 + 1 + 1)e−κ(x−Href )




(8)
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We remark that the potential defined by eq 8 vanishes at x→ ∞. The condi-
tion of continuity of the electrostatic potential at the brush edge, ψref,out(Href ) =
ψref,in(Href ), provides the value of salt-dependent constant C(κ) in eq 3,

C(κ) = −2 ln




√
(κΛ̃ref )2 + 1− 1

κΛ̃ref


 (9)

As it follows from eqs 3 and 9, the overall difference in the electrostatic
potential between the grafting surface (x = 0) and x = ∞ arising because of
the presence of the PE brush, ∆ψ = ψ(0)− ψ(∞) = ψ(0), is given by

ψ(0) =
H2

ref

H2
0

+ C(κ) =
H2

ref

H2
0

− 2 ln




√
(κΛ̃ref )2 + 1− 1

κΛ̃ref


 (10)

In low salt solution with κΛ̃ref ≪ 1 constant C(κ) ≈ −2 ln(κΛ̃ref/2), and

ψ(0) increases with the decrease in κ ∼ c
1/2
s as

ψ(0) ≈
H2

ref

H2
0

− 2 ln(
κΛ̃ref

2
) =

H2
ref

H2
0

− 2 ln
κ

2
− 2 ln(

H2
0

Href

) (11)

As it follows from eqs 10 and 11, an increase in the degree of polymerization
N of the tethered polyions weakly affects ∆ψ = ψ(0) at any fixed value of
κ. As we demonstrate below, for system parameters typical for the osmotic
brush regime, the increase in polyion length leads to a finite shift of ψ(0)
on the order of few percent. This quite weak increase in ψ(0) is explained
by accumulation of a larger amount of counterions in the brush with longer
chains, and the corresponding reduction in the number of released counte-
rions. Eq 10 can be used to determine the shift in ψ(0) due to variations
in molecular weight of the tethered polyions in both salt-added and salt-free
solutions.

In the limit of salt-free solution κ ∼ c
1/2
s → 0 the polymer concentra-

tion profile, cref (x), and the distribution of chain free ends, gref (x), in one-
component PE brush can be conveniently presented using reduced variables,
href = Href/H0 and t(x) = x/H0 , as

cref (t) = (2πlBαH
2
0 )

−1[1 + h2ref exp(h
2
ref − t2)] (12)

gref (t) = ζ−1
ref

t

H0


 1 + h2ref√

h2ref − t2
+
√
π exp(h2ref − t2)erf(

√
h2ref − t2)


 (13)
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Here,

erf(y) =
2√
π

∫ y

0

exp(−z2)dz

is the error function, and parameter ζref is defined as

ζref =

√
3

2
α3/2lBN

2
1σa

2

The reduced thickness of the one-component reference brush, href =
Href/H0, in salt-free solution is found from the normalization condition∫ Href

0
cref (x)dx = σN1, and in the case of salt-free solution is specified by the

equation

ζref = href + h2ref

√
π

2
exp(h2ref )erf(href ) (14)

2.3 Binary polyelectrolyte brush

Binary PE brush is obtained from the reference PE brush by extending frac-
tion q of chains up to length N2 = N1(1 + β). The analytical expression for
the self-consistent molecular potential U(x) in a binary non-ionic polymer
brush was obtained in refs.,27,31

U(x) =
3π2

8a2N2
1

{
u2(H(n), H1(n))− x2, x ≤ H1(n)

u2(H(n), H1(n))− u2(x,H1(n)), H1(n) ≤ x ≤ H(n)
(15)

Here subscript (n) indicates neutral state of the brush, H1(n) is the thickness
of sublayer of shorter N1- chains, H(n) is the total brush thickness, while func-
tion u(x,H1(n)) depends on mismatch β = (N2 −N1) /N1between molecular
weights of short and long chains as

u(x,H1(n)) =
1

(1− β2)

[
x− β

√
x2 − (1− β2)H2

1(n)

]
(16)

Molecular potential U(x) in eq 15 ensures segregation of the end-points of
non-ionic N1- and N2-chains: the former distribute their free ends in the
proximal sublayer with thickness H1(n) while the latter delegate their free
ends in the peripheral sublayer with thickness H −H1(n). The sizes of these
two sublayers are governed by fraction q of longer chains. It was demon-
strated31 that in a non-ionic bidisperse brush the polymer density profile
and distribution of the free ends in the proximal sublayer (0 ≤ x ≤ H1(n))
coincide with those in a monodisperse brush of shorter N1- chains. These
analytical predictions were in good agreement with MC simulations.33,40
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According to the analytical SS-SCF approach the molecular potential
U(x) in eq 15 is related to dimensionless electrostatic potential ψ(x) in binary
PE brush via eq 2. Making use of eqs 2, 4 we present the electrostatic
potential ψ in a binary PE brush as

ψ1,2(x) =

{
ψ1(0)− x2

H2

0

, x ≤ H1

ψ1(0)− u2(x,H1)

H2

0

, H1 ≤ x ≤ H
(17)

Here, ψ1(0) is the value of electrostatic potential on the grafting surface,
H1 is the thickness of proximal to the grafting surface sublayer in which
the shorter polyions are confined, H is the overall thickness of the brush,
and β is the relative difference in molecular weights of long and short chains
specified by eq 1. In a binary polyelectrolyte brush with β ≥ 0 the thickness
of proximal layer, H1 = H1(q), and the overall thickness of the brush, H =
H(q), depend on the fraction of long and short chains in the brush. Here
and below we use subscripts 1 and 2 to denote the brush properties in the
proximal (0 ≤ x ≤ H1) and the peripheral (H1 ≤ x ≤ H) sublayers of binary
PE brush, respectively. The proximal sublayer 1 contains all short chains
and the stretched segments of long chains, and no free end-points of long
polyions are found at 0 ≤ x ≤ H1.

At distances x ≥ H (i.e., outside the brush), the electrostatic poten-
tial is given by eq 8 in which Λ̃ref is substituted by the Gouy-Chapmann
length Λ̃ governed by escaped from binary PE brush counterions. The con-
dition of continuity of ψ(x) at x = H provides the ralationship between
ψ1(0), u(H,H1) and still unknown Λ̃ as

ψ1(0)−
u2(H,H1)

H2
0

+ 2 ln




√
(κΛ̃)2 + 1− 1

κΛ̃


 = 0 (18)

Electrostatic potential ψ(x) in eq 17 exhibits two distinct features: (i)
it is continuous at the boundary between sublayers, x = H1; (ii) the first
derivative dψ/dx which is proportional to the strength of electrostatic field,
exhibits a jump at x = H1 from a finite value at x = H1 − 0 to zero at
x = H1 + 0. The latter condition indicates that in the framework of the
analytical SS-SCF approach sublayer 1 is electroneutral.

By applying the Poisson equation, eq 5, and using eq 17 one finds net
charge density in the brush as
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ρ1,2(x) = − 1

4πlB

d2ψ1,2(x)

dx2
= (2πlBH

2
0 )

−1

{
1, 0 ≤ x < H1

d
dx

(
u(x,H1)

du(x,H1)
dx

)
, H1 < x ≤ H

(19)

As it follows from eq 19, net charge density ρ(1)(x) = αc1(H, x) − c
(1)
−
(H, x)

in the proximal sublayer 1 does not depend on distance x from the grafting
surface and coincides with that in reference PE brush of N1-chains (see eq
6), while net charge density ρ2(x) in the peripheral sublayer 2 is a decreasing
function of x. Because net charge density is positive in sublayer 1 (ρ(1)(x) >
0) while its net charge is zero, a finite number δQ1 of mobile counterions per
unit area become trapped between sublayers (at x = H1 − 0) giving rise to
an infinitely narrow double electric layer inside the brush. Evidently, this
double layer disappears in monodisperse brushes of short (q = 0) and long
(q = 1) chains. For values of β 6= 1 the net charge density ρ(x) exhibits
discontinuity at x = H1.

The SS-SCF model therefore predicts that in addition to electric double
layer at the brush edge (x = H) formed by escaped counterions, a second
electric double layer comprising of a finite number δQ1 of counterions per
unit area forms inside the brush at the boundary between sublayers 1 and
2 (x = H1). Although not fully accurate, eqs 2 and 15 offer a surprisingly
good approximation for ψ in a binary PE brush, as demonstrated below by
the numerical SF-SCF calculations.

According to eq 11 the shift δ in the electrostatic potential ψ(0) in a
monodisperse PE brush upon an increase in polyion length from N1 to N2 is
given by

δ = ψN2
(0)− ψN1

(0) = h2ref (N2)− h2ref (N1) + 2 ln

(
N1

N2

)
+ 2 ln

[
href (N2)

href (N1)

]

(20)
Here the reduced thicknesses href (N2) and href (N1) are obtained from

eq 14 with the account of substitution ζref (N2) = (N2/N1)
2ζref (N1) = (1 +

β)2ζref (N1).
In Figure 2 the shift δ in ψ(0) is plotted as a function of β for three

values of ζref (N1) = 10, 20, and 30, corresponding to the osmotic regime
of salt-free reference brush composed of short polyions. As it is seen from
fig. 2, in all cases δ initially rapidly increases with increasing β and then
approaches the plateau with values of δ almost independent of β. The shift
δ remains well below ten percent and decreases with increasing ζref . Inset
in fig. 2 demonstrates the shift δ as a function of reduced inverse Debye
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Figure 2: Shift δ in surface electrostatic potential, δ = ψN2(0) − ψN1(0) in
a one-component brush with N2 = (1 + β)N1 as a function of β in salt-free
solution. β = 0 corresponds to the reference brush of polyions with chain
lengthN1. Values of parameter ζref = 10 (href = 1.33, ζref = 20 (href = 1.50,
ζref = 30 (href = 1.60 indicated near the curves correspond to the reference
brush formed by polyions of length N1. Insert demonstrates dependence of
δ on reduced Debye screening parameter κH0 for β = 1 and q = 0.5.

length κH0 for the values of ζref = 10 and β = 1 (i.e., N2 = 2N1). Two
different regimes in δ-behavior are clearly seen. At low salt corresponding to
κH0 ≪ 1, δ does not depend on the salt concentration (which is indicative
of the osmotic regime) and remains about 6%. At larger salt concentrations
corresponding to κH0 ≫ 1, δ rapidly decreases with apparent exponent −2.
The absolute values of δ in both regimes decrease upon an increase in ζref .

Clearly in a bidisperse brush containing fraction q < 1 of polyions with
length N2 = N1(1 + β), the shift δ(q) in the electrostatic potential ψ(0)
would be smaller compared to monodisperse brush formed by N2-chains,
δ(q) < δ. Therefore in the main, osmotic and salt-dominated regimes of
binary PE brushes we could approximate (with accuracy of few percent) the
electrostatic potential ψ1(0) in a binary PE brush as that in a reference brush
of shorter N1-chains,

ψ1(0) = ψ(0) ≈
H2

ref

H2
0

− 2 ln
κ

2
− 2 ln(

H2
0

Href

) (21)

The imposed in eq 21 independence of ψ(0) of the brush composition q and
mismatch β suggests a conjecture that similarly to non-ionic binary brushes,
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the structure of proximal sublayer 1 coincides with that in a reference PE
brush of N1-chains. That is, the distribution function g1(x) of the free ends
of shorter polyions,

g1(x) ≈ gref (x), 0 ≤ x ≤ H1 (22)

while polymer density profile in sublayer 1,

c1(x) ≈ cref (x), 0 ≤ x ≤ H1

The normalization condition
∫ H1

0

g1(x)dx = q (23)

together with eqs 22 and 13 allow for thickness H1 of sublayer 1 in binary
PE brush. Introduction of the reduced thickness h1 = H1/H0 of proximal
sublayer 1 reduces eq 23 to

√
h2ref − h21 +

√
π

2
h2ref exp(h

2
ref − h21)erf(

√
h2ref − h21) = ζrefq (24)

As it follows from eq 24, the reduced thickness h1 monotonously decreases as
a function of q from h1 = href at q = 0 to h1 = 0 at q = 1. In the framework
of the imposed approximation h1 is independent of β, i.e., independent of
length N2 of the longer chains.

The Gouy-Chapmann length Λ̃ in eq 18 can be evaluated as follows.
Because sublayer 1 does not contribute mobile counterions in the peripheral
sublayer 2, electric double layer at the brush boundary x = H is created only
by counterions escaped from sublayer 2. Their number per unit area,

Q̃2 =

∫ H

H1

ρ2(x)dx =
1

2πlBH0

u(H,H1)

(
du(x,H1)

dx

)

H

specifies the Gouy-Chapman length Λ̃ for the tail of escaped counterions as

Λ̃ =
1

2πlBQ̃2

= H0
1

u(h, h1)
(

du(t,h1)
dt

)
h

(25)

Therefore, eqs 17, 21 and 25 specify the total thickness H of binary PE
brush.

The electrostatic potential ψ in a binary PE brush has therefore three
distinct regimes than can be traced via the SF-SCF numerical calculations
that incorporate the exact numerical solution for ψ on the Poisson-Boltzmann
level. In the following section we address the assumptions adopted above by
confronting the analytical predictions with the results of SF-SCF model. The
details about SF-SCF approach can be found elsewhere (see, e.g., ref.39).
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3 Numerical SF-SCF model of binary and ternary

PE brushes

3.1 Binary PE brush

We now present the data of SF-SCF numerical calculations that provide a
more detailed picture of binary PE brush structure.

3.1.1 Electrostatic potential.

In Figure 3 we present the electrostatic potential ψ as a function of x2

calculated for different fractions q = 0, 0.1, 0.3, and 0.5 of longer polyions
with fixed length N2 in a binary PE brush. For selected value of q = 0.1
the boundaries between different regimes of ψ are indicated by arrows. In
sublayer 1 (i.e., at x < H1), ψ(x

2) demonstrates almost perfect straight
line consistent with eq 17. In sublayer 2 (H1 < x < H), the parabolic
dependence of ψ with diminished numerical prefactor (1 + β)−2 is recovered
in the vicinity of the upper boundary of this regime, x = H. Here, the slopes
of ψ(x2) (indicated by solid lines with the corresponding color) remain almost
the same for different values of q, consistent with the analytical estimate in
eq 17. The brush boundary x = H is estimated from the deviation of the
ψ(x2) dependence from the straight line due to the counterion tail extended
to distances x > H.

In Figures 4a and 4b we present the electrostatic potential ψ calculated
for fixed fraction q = 0.5 of longer polyions with varying molecular weights
of longer chains N2. In accordance with the expectations, position H1 of
the first sublayer (indicated in Figures 4a and 4b) does not change with
an increase in N2, and the electrostatic potential ψ1(x

2) in the proximal
sublayer 1 is described by a straight line, common for all values of N2. An
increase in N2 leads to the shift of the parabolic segment of ψ2 (indicated by
dashed lines in Figure 4a) to larger values of x accompanied by the decrease
in slope of ψ2(x

2). Both observations are consistent with eq 17.
In Figure 4b the same data is plotted as a function of x2 for x ≤ H1 and

as a function of u2(x) for x ≥ H1 with value of H1 adopted from fig. 4a.
In accordance with eq 17 the SF-SCF data collapse on a common straight
line confirming the predicted in eq 17 shape of ψ2. Deviations of ψ from the
straight line correspond to entering the region of the counterion tail (x ≥ H),
the position of the brush edge x = H are indicated for different values of N2

by the circles.
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3.1.2 Structural properties.

We now focus on the equilibrium structural properties of binary PE brushes
in more details. The effect of increasing length N2 of longer chains on the
structure of binary PE brush is illustrated in Figures 5a-5b in which we
present partial (that is, for short and long chains separately) monomer den-
sity profiles and the chain ends distributions in binary brushes with a fixed
fraction q = 0.5 of longer chains. Similar trends upon an increase in length
N2 of longer polyions are observed if the fraction q of longer chains in a binary
PE brush is fixed at values 0.1 and 0.3 (not shown). As it is indicated by
the density profiles and chain ends distributions in Figures 5, the two-layer
structure of the brush is apparent at N2 ≥ N1. Upon an increase in N2 (at
fixed q = 0.5) the peripheral sublayer 2 becomes more extended, whereas the
density distributions for short and long chains (and, consequently their sum)
in the proximal sublayer 1 remain unchanged. The position of the boundary
between sublayers 1 and 2 remains independent of the length N2 of longer
chains as well. Remarkably the concentration of monomer units of shorter
chains in sublayer 1 decreases as a function of distance from the grafting
surface and vanishes at the boundary between the two sublayers, whereas
the concentration of monomers of longer chains increases as a function of x
within sublayer 1 and decreases within sublayer 2.

A divergence of the distribution function of the chain ends at the brush
edge x = H (as described by eq 13 for monodisperse PE brushes) is smeared
out by the thermal fluctuations and is manifested as a characteristic shoulder
in g2(x) close to the edge of the brush (see Figures 5b, 5d). The overall
chain ends distribution in binary PE brush exhibits two distinct maxima
corresponding to the end-points of shorter and longer chains, respectively. As
it is seen in Figure 5b, there is almost no overlap between partial distributions
of the chain ends: all the end-points of the shorter polyions are found in
sublayer 1, with no ends of longer chains. All the end-points of longer chains
are in the peripheral sublayer 2. This observation validates the two-layer
model exploited above by the analytical SS-SCF theory. The distribution of
free ends as well as partial density profiles for shorter chains in sublayer 1
are not affected by increasing length of the longer polyions.

The net charge densities inside and outside the brush are presented in
Figure 6. The shapes of net charge density profiles ρ(x) presented in Figure
6 demonstrate reasonable agreement with expectations of the analytical the-
ory: The net charge density is low (positive) and virtually constant within
each sublayer, and exhibits a sharp local minimum at the boundary between
sublayers 1 and 2. The appearance of this minimum points to accumulation
of counterions in a narrow cloud localized at the boundary between the layers.
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These counterions neutralize the residual charge of the sublayer 1. Another
cloud of counterions which neutralize the residual charge of sublayer 2 is
located beyond the edge of brush.

In Figure 7 we examine the effect of varying fraction of long chains
q on the brush structure. In this case the lengths of both short and long
chains are kept constant (N1 = 150 and N2 = 500), but fraction q of longer
chains in the brush increases from q = 0 (reference one component brush)
to q = 0.5. As one can see from Figure 7, the monomer density profile in
the proximal sublayer 1 remains nearly identical to that in a reference brush,
but an increase in q leads to the progressive decrease in width H1 of sublayer
1, in accordance with eq 24. The partial distributions of the free ends of
long and short chains do not overlap, and the distribution of the ends of
short chains in the inner layer remains identical to that in a reference brush
and only the width of the inner layer, which serves as the cut-off length for
the distribution of the shorter chain ends, is displaced to smaller values of x
upon an increase in q. The distribution of the free ends of longer chains is
qualitatively similar to that in a one-component brush, i.e., exhibits a broad
maximum and a characteristic shoulder close to the edge of the brush. The
overall thickness of the brush is an increasing function of q which is a result
of decreasing width of sublayer 1 accompanied by the increasing width of
sublayer 2.

In Figure 9 we compare the numerical SF-SCF results with predictions
of eq 24 for thickness H1 of the proximal sublayer as a function of fraction
q of longer chains in binary PE brush. In the SF-SCF calculations H1 was
estimated from the position of maximum in net charge density distribution
at the boudary between sublayers. As one can see from the figure, the ap-
proximate analytical theory reasonable well describes the q-dependence of
the proximal layer thickness as log as the fraction of long chains remains
below ≈ 0.5.

The response of the binary PE brush to variations in the ionic strength
(controlled by added in the solution monovalent salt) is illustrated in Figure

10. As we can see from Figure 10, binary PE brush retains two-layer (strat-
ified) structure upon an increase in the salt concentration. As expected, at
low and moderate salt concentrations the proximal sublayer of the brush re-
mains intact while the peripheral sublayer contracts, and the characteristic
shoulder in the distribution of end-points of long chains disappears. Fur-
ther increase in the salt concentration results in contraction of the proximal
sublayer and progressive displacement of the boundary between sublayers
towards the grafting surface.
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3.2 Ternary PE brush

To explore further the effect of polydispersity on structural properties of PE
brushes we have performed SF-SCF calculations for ternary brushes com-
prising of the chains with three different lengths, N1 ≤ N2 ≤ N3, in equal
proportion. We start with the reference brush with N1 = N2 = N3 = 300 and
then progressively diminish the value of N1 from 300 to 250 and simultane-
ously increase the value of N3 from 300 to 350 by keeping constant N2 = 300
and N1 +N2 +N3 = 900.

As one can see in Figure 11a, the increasing polydispersity has minor
effect on the overall density profiles, which remain close to that in the ref-
erence monodisperse brush. Close inspection indicates, however, that the
polymer concentration profile progressively changes the shape from convex
to concave and the total thickness of the brush slightly increases.

The evolution of the cumulative distribution of the chain ends shown in
Figure 11b is more pronounced, and at sufficiently large polydispersity one
can distinguish three modes (three maxima) in the distribution that can be
ascribed to three populations of the polyions. The analysis of partial density
profiles and partial chain ends distributions presented in respective Figures
11c and 11d unambiguously points to stratification of the brush into three
sublayers: all the end segments of short, medium and long chains are found
in the proximal, middle and peripheral sublayers, respectively. Remarkably,
at small polydispersity, ∆N = N3−N2 = N2−N1 = 10, the partial distribu-
tions of the chain ends are considerably overlapped. However, an increase in
∆N up to 50 results in substantial narrowing of the overlapping zones. The
boundaries between sublayers become sharper indicating the appearance of
three distinctive modes in the cumulative end segments distribution. Re-
markably, partial end-point distributions for short and medium chains are
nearly symmetric whereas the ends distribution for long chains keeps char-
acteristic for a PE brush shape with a shoulder close to the brush edge.

The PE brush stratification is manifested also in partial density profiles
presented in fig.11c. The density profile of the short chains retains the same
shape as in a one-component brush or as in the proximal sublayer in the
binary PE brush. Partial density profiles of the medium and long chains
both have the shape similar to that of the density profile of long chains in
a binary brush: they are non-monotonic and pass through maxima at the
boundaries of the corresponding sublayers.

Finally, in Figure 12 the net charge density profile in ternary brush is
presented. Similarly to the case of binary PE brushes, the charge density
exhibits sharp minima at the boundaries between sublayers, whereas it re-
mains fairly constant within each sublayer. Remarkably, the minima become
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deeper and sharper (narrower) upon an increase in ∆N , but for each value of
∆N minimum at the boundary between the peripheral and middle sublayers
remains deeper than that at the boundary between the proximal and middle
sublayers.

4 Discussion and Conclusions

In the present paper we have investigated the effect of bi- and tri-dispersity
of long charged macromolecules on structural and responsive properties of
planar polyelectrolyte brushes. We focused here on the analysis of PE brush
structure in low salt solutions in which the long-range ionic interactions are
manifested at most. An approximate two-layer analytical model correctly
predicts the general trends in the binary PE brush behavior. That is, ver-
tical stratification of the free ends of short and long polyions and formation
of intermediate electric double layer at the boundary between the sublay-
ers. The analytical theory provides a reasonable description of the electro-
static potential profile in PE brush, and of the sublayer comprised of shorter
polyions. The predictions of approximate analytical theory are systemati-
cally compared to the results of numerical SF-SCF modelling. By using the
SF-SCF approach we have also studied conformational response of binary
PE brushes to variations in ionic strength in the solution.

The numerical SF-SCF calculations confirm that binary PE brushes ex-
hibit stratification and segregation of the end-points of short and long chains
into proximal and peripheral sublayers, respectively. The thickness of prox-
imal sublayer of short chains is controlled by fraction q of long chains, but
is independent of their length, N2. The relative width of the boundary be-
tween sublayers, specified as an overlap zone between distributions of short
and long chains, decreases upon an increase in the difference between N1 and
N2.

The stratified organization of binary PE brush determines its specific
response to external stimuli. We have demonstrated that moderate increase
in the ionic strength in the solution affects primarily the conformations of
long chains in peripheral layer, whereas short chains retain their extension
up to high salt concentrations.

An interesting outcome of the theory is the prediction of electric double
layer with accumulation of counterions at the boundary between sublayers
of short and long polyions. The cumulative (negative) charge of these coun-
terions matches residual (positive) charge of the proximal sublayer. These
features, i.e., stratification (segregation) of the free ends of polyions with dif-
ferent lengths, and accumulation of counterions at the boundaries between
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sublayers are observed also for ternary brushes that allowed us to anticipate
that they are inherent for multicomponent polyelectrolyte brushes.

Similarly to the case of non-ionic brushes, the end-point distributions of
polyions with close degrees of polymerization become strongly overlapped
upon approaching the limit of continuous chain polydispersity, and the poly-
mer density profile changes its shape from convex to concave.

We are currently unaware of the experimental realizations of synthetic
bi- and tri- disperse PE brushes on which we could check our theoretical
predictions. However, the theoretical results obtained in this study might
provide insights in the results of in vitro experiments on NF proteins in so-
lutions. Although the presented theory is formulated for planar PE brushes,
the shape of electrostatic potential ψ(z) remains the same in the cylindri-
cal geometry of a binary PE brush provided that depletion of the free chain
ends near cylindrical core (appearance of dead zone) is neglected. Moreover,
while an absolute value of ∆ψ = ψ(0) decreases upon additions of salt in the
solution, the shape of ψ(z) would not change if the tethered polyions remain
noticeably stretched. Therefore, predominant accumulation of counterions
in sublayer of short chains as well as at the internal boundary in a binary
PE brush is feasible in a wide range of conditions.

In case when in addition to monovalent counterions a small amount of
divalent counterions is added into the solution, their accumulation inside PE
brush is expected even at rather small concentrations c2,bulk in the solution.
For example, the ratios of average concentrations c2 of bivalent counterions
in sublayer of shorter chains to the bulk value c2,bulk ≪ cs in a binary PE
brush with values of the parameters: N1 = 150, N2 = 500, α = 0.2, q = 0.4,
σ = 0.001, were estimated by the SF-SCF calculations as c2/c2,bulk ≈ 25
under low salt conditions (cs = 10−3M , c2,bulk = 10−5M), and c2/c2,bulk
≈ 2 under high salt conditions (cs = 10−1M , c2,bulk = 10−3M). Note that
latter conditions are close to physiological ones. As we discuss below, the
accumulation of bivalent counterions in a PE brush might be responsible for
the enhanced internal cross-bridging in NF filaments in solutions.

In vitro association of NF proteins in intermediate filaments and forma-
tion of hydrogel networks are thoroughly investigated experimentally (see,
e.g.,41 and references therein). It is established that short L chains are oblig-
atory for self-assembly of NF isoforms in solutions.10,11 Predominance of L
chains in the mixed filaments suggests an estimate for the fraction of long
chains as q ≃ 0.4.43 Due to higher absolute values of the electrostatic po-
tential in sublayer of short L chains, it accumulates counterions that could
mediate local protonation/deprotonation of amino acid residues. The sub-
layer of L chains could also attract bivalent (e.g., Ca++, Mg++) counterions
from the solution, that are believed to participate in cross-linking attributed
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to M and H projection domains.42

The in vitro experiments performed on filaments composed of L and M
proteins (no H chains in the solution) demonstrated that osmotic pressure -
interfilament distance profiles in solutions of pure L and mixed LM filaments
are practically identical.11 In particular, L−L and LM−LM repulsions start
at almost the same threshold interfilament distance, pointing at close values
of the NF brush thickness in individual L and mixed LM filaments. In the
first approximation the projection domains of L proteins can be envisioned as
negatively charged polyelectrolytes with number of monomer units N1 = 142
and the average degree of ionization αL ≃ 0.25. The projection domains
of M proteins can be envisioned as negatively charged polyelectrolytes with
number of monomer units N2 = 504, and the average degree of ionization
αM ≃ 0.1 − 0.15, depending on the level of their phosphorylation.43 The
latter values are less but close to the degree of ionization αL of L projection
domains. According to the theory presented in this paper, large mismatch
β = (N2 − N1)/N1 ≃ 2.5 in molecular weights of almost equally ionized
L and M projections would lead to a larger thickness of individual LM
filament compared to pure L filament unless the additional, not accounted
in the theory interactions (e.g., cross-bridging) come into play.

The observed similarity of pressure-distance profiles for L and LM fila-
ments11 suggests that the extended conformations of M chains in LM fila-
ments could change to resemble the typical conformations of L chains. In
particular, in a dilute solution with non-interacting LM filaments, M chain
could bend backwards with its terminal carboxyl segment penetrating sub-
layer of L chains, and making internal cross-links promoted by the accu-
mulated bivalent ions in sublayer of L chains. Although such bending is
unfavorable electrostatically and decreases also conformational entropy ofM
chains, overall increase in the free energy could be overruled by the free en-
ergy gain due to cross-links incorporating hydrophobic aminoacid residues,
leading eventually to looped configurations ofM chains in LM filament, sta-
bilized by bivalent counterions. An increase in the solution osmotic pressure
decreases the average distance between filaments and could trigger bridging
attraction with (partial) substitution of internal cross-links by interfilament
cross-bridges, and formation of hydrogel network of LM filaments.

The proposed (hypothetical) arguments to rationalize similarity of pressure-
distance profiles in aqueous solutions of L and LM filaments are consistent
with the established in vivo cross-bridging mechanism incorporating whole
projection domains of M proteins.44 A more quantitative comparison be-
tween the theory and experiments could be performed on mixed brushes
of L and M projections, designed similar to already existing monodisperse
brushes of H projections.45
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Figure 3: Electrostatic potentiual in a reference one-compotent brush with
N1 = N2 = 150 and binary brush with N1 = 150, N2 = 500 and fraction of
long chains q = 01; 03; 05 plotted as a function of square distance from the
surface. The position of the upper edge of the brush H and thickness of the
proximal layer H1 are indicated by arrows.σ = 10−3. Color code for different
values of q explained at the figures.
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(a) (b)

Figure 4: Electrostatic potential in one-component reference polyelectrolyte
brush with N1 = N2 = 150 and binary polyelectrolyte brushes with short
chains length N1 = 150 and varied long chains length N2 = 200, 250, 300
at constant fraction q = 0.5 of long chains as a function of x2 (a) and as a
function of x2 in the range x ≤ H1 and a function of u2 in the range x ≥ H1

(b).σ = 10−3. Color code for different N2 explained at the figures.

(a) (b)

Figure 5: Partial polymer density profiles (a) and distributions of free chain
ends (b) in reference one-component polyelectrolyte brush with N1 = N2 =
150 and binary polyelectrolyte brushes with N1 = 150 and N2 = 200, 250, 300
at constant fraction q = 0.5 of long chains, σ = 10−3. Color code for different
N2 explained at the figures.
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(a) (b)

Figure 6: Local net charge density ρ(x) (a) and integral charge Q̃(x) =∫ x

0
ρ(x′)dx′ per unit area (b) in one-component reference polyelectrolyte

brush with N1 = N2 = 150 and binary polyelectrolyte brushes with short
chains length N1 = 150 and varied long chains length N2 = 200, 250, 300 at
constant fraction q = 0.5 of long chains. σ = 10−3. Color code for different
N2 explained at the figures.

(a) (b)

Figure 7: Partial polymer density profiles (a) and distributions of free chain
ends (b) in reference one-component polyelectrolyte brush with N1 = N2 =
150 and binary polyelectrolyte brushes with N1 = 150, N2 = 500 at varied
fraction q = 0.1; 0.3; 0.5 of long chains, σ = 10−3. Color code for different
values of q explained at the figures.
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(a) (b)

Figure 8: Local net charge density ρ(x) (a) and integral charge Q̃(x) =∫ x

0
ρ(x′)dx′ per unit area (b) in one-component reference polyelectrolyte

brush with N1 = N2 = 150 and in binary polyelectrolyte brushes with
N1 = 150, N2 = 500 at varied fraction q = 0.1; 0.3; 0.5 of long chains.
σ = 10−3. Color code for different values of q explained at the figures.
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Figure 9: The reduced thinkness h1 of the proximal layer in a binary poly-
electrolyte brush with N1 = 150, N2 = 300, σ = 10−3 as a function of fraction
q of long chains in the brush. The continuous curve corresponds to the pre-
diction of the analytical theory, eq 24. The points corresponds to the results
of the SF-SCF numerical calculations.
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(a) (b)

Figure 10: Polymer density profile (a) and free chain ends distribution (b)
in binary polyelectrolyte brushes with N1 = 150, N2 = 500 with the fraction
q = 0.5 of long chains at varied salt concentration. σ = 10−3. Color code for
different values of salt concentration explained at the figures.

(a) (b)

Figure 11: Partial polymer density profiles (a) and distributions of free chain
ends (b) in reference one-component polyelectrolyte brush with N1 = N2 =
N3 = 300 and ternary polyelectrolyte brushes with N2 = 300 and varied
length of shorter,N1 = 280, 270, 250, and longer, N3 = 900 − N1 − N2 =
320, 330, 350 chains. The fractions q1 = q2 = q3 = 1/3 of chains of different
lengths are the same. σ = 10−3. Color code for different values of N1 and
N3 explained at the figures.
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(a) (b)

Figure 12: Local net charge density ρ(x) (a) and integral charge Q̃(x) =∫ x

0
ρ(x′)dx′ per unit area (b) in one-component reference polyelectrolyte

brush with N1 = N2 = N3 = 300 and in ternary polyelectrolyte brushes
at varied lengths N1 and N3 of shorter and longer chains, respectively. Other
parameters are explained in the legend to Figure 11.
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