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Abstract—Supporting sustainable development for the urban
environment is crucial in the age of rapid urbanisation. Air
pollution modelling is one of the key tools for researchers,
scientists, and urban planners to understand pollution behaviour.
Recent updates in air quality regulations are challenging the
state-of-the-art air pollution modelling techniques by requiring
accurate predictions on a high temporal level, i.e. predictions
at the hourly level rather than the annual level. Current state-
of-the-art models designed to have good prediction accuracy on
the low temporal resolution by assuming that the pollution is in
steady state. Making predictions on higher temporal resolution
violates this assumption and causing inaccurate predictions. We
introduce a novel statistical regression based air pollution model
which produces accurate hourly predictions by using data with
high temporal resolution and advanced regression algorithms.
We conducted an analysis which shows that the state-of-the-art
evaluation techniques (e.g. RMSE) do not describe the nature of
the mispredictions of the models built on different data subsets.
We carried out an extensive input data evaluation experiment
where we concluded that our approach could achieve further
accuracy improvement by training the models on a carefully
selected subset of the input data.

I. INTRODUCTION

There is a recent interest in understanding the hourly

changes of the NO2 air pollution driven by updates in the air

quality directives [1]. Modelling pollution concentration level

on high temporal resolution (hourly levels prediction instead of

annual levels prediction) is the key to doing that [2], [3]. The

current state-of-the-art air dispersion pollution models struggle

to make accurate predictions on the hourly level because

the models depend on unreliable data (e.g. estimated traffic

amount on the roads, vehicle emission data) therefore they are

unable to identify significant episodes when the concentration

levels are temporarily high [2], [4]. Annual concentration level

predictions with these models are close to the observations

as uncertainties in the hourly data smooth out on the annual

time scale [5] however, models using this data suffer to make

accurate hourly predictions.

Statistical regression approaches have been proposed against

the state of the air dispersion models to achieve higher predic-

tion accuracy on annual level [6], [7]. These models consider

topographical, geographical and pollution-related information

around the monitoring location and calculate pollution con-

centration levels based on these features using a statistical

regression algorithm. Land use data (e.g. number of the

buildings or the length of the roads around the monitoring

stations), however, has a very low temporal resolution which

makes the land use regression approach insufficient for hourly

concentration level prediction. Simply including high temporal

resolution data (e.g. weather data) would result in a complex

regression problem [6]. The complex non-linear correlation

relationship in the data [8] makes the predictions hard for the

traditionally used linear regression and it results in low pre-

diction accuracy using the state-of-the-art regression algorithm

[9].

Recent studies [10], [9], [11], [8] use the fundamentals of

land use regression methods to improve the prediction accu-

racy of the standard land use regression model for monthly

and yearly concentration level predictions. To achieve the

desired accuracy improvement, they use different regression

algorithms such as neural network regression [12] or support

vector machine regression [13] however, these studies focused

only on prediction at lower temporal resolution (monthly and

yearly) than hourly concentration level modelling. Applying

these algorithms for prediction of hourly concentration levels

needs the careful investigation on how the non-linear complex

relationship in the data has been exploited to avoid mispredic-

tions.

We propose a novel method for hourly prediction of NO2

concentration levels which exploits the combination of the

usage of complex data and the usage of advanced regression

algorithms. This approach has the advantage of discovering

statistical patterns in the data which are relevant to the

regression problem and does not directly rely on inaccurate

datasets.

We implemented this approach for York, United Kingdom

where the local council operates five regulatory NO2 monitor-

ing stations. We used one of the state-of-the-art air dispersion

models to compare its prediction accuracy with our statistical

regression approach. We created a validation framework to

systematically determine the accuracy of each method.

The contributions of this paper are

• Showing that a statistical regression approach can achieve

the same or even better prediction accuracy as the state

of the art air dispersion methods



• Understanding the data requirements for the statistical

regression approaches

• Describing the benefit of context-dependent combinations

of statistical models trained on various subset of the input

data

The rest of this paper is organised as follows. Section 2

introduces the studies related to our work. Section 3 describes

our methodology to develop the framework to validate our

model. Section 4 explains the results of the validation and

following a discussion about the importance of the results.

The conclusion is given in Section 5.

II. RELATED WORKS

Air dispersion models are modelling the air pollution distri-

bution by using their physical properties combining them with

weather conditions. They assume that the distribution of the

pollution follows a multi-dimensional Gaussian process [14],

[15]. It is the most commonly used method for air pollution

modelling and many extensions of this method developed in

the past (e.g. ADMS-Urban [14], OSPM with canyon mode

for urban canyons [15]). Owen et al. [4] evaluated the ADMS

model and concluded that it shows good annual prediction

accuracy and prediction correlation with observation data in

the London area considering 24 monitoring sites. Hourly

prediction evaluation shows considerable errors however they

did not investigate the root cause of these errors. Vardoulakis

et al. [2] investigated the prediction accuracy of the OSPM

model and the model shows good annual concentration level

prediction accuracy however it underpredicts hourly concen-

tration levels as it uses incorrect emission inventory data.

Briggs et al. [16] developed a statistical regression approach

to annual air pollution modelling. Their method considers to-

pographical, geographical and pollution-related information of

the monitoring location and predicted pollution concentration

levels based on these features using statistical regression algo-

rithm. The motivation for their method is to determine the most

relevant features contribute to the annual concentration level

observed by a monitoring station using statistical approaches.

They and later studies used the following datasets as input

data to the regression: building numbers, building geometry,

road length, road geometry, traffic volumes, land use and

topographical information. With the most relevant features to

the annual concentration level, they could investigate the major

contributors to the air pollution in the investigated area. Cyrys

et al. [7] developed a similar statistical regression method and

their approach could achieve satisfying prediction accuracy in

Munich for annual NO2 levels. Marshall et al. [3] developed

a regression model for the Greater Vancouver area and their

evaluation shows good correlation to annual observation data.

These methods show good prediction accuracy on annual

temporal level but recent studies [17], [5] suggest that this

approach would suffer to make accurate prediction on hourly

temporal level because the data used to train the regression

models only include data has low temporal resolution (e.g.

number of buildings, length of road around the monitoring

station).

Land use regression models are known to limited only to

predict annual and monthly averages, because all the features

are insufficient to be able to predict hourly changes of con-

centration levels. Hoek et al. [17] stated that developing Land

Use Regression model which can produce prediction with

high temporal and spatial resolution is the interest of study.

Isakov et al. [5] indicated that predicting hourly averages of

pollutant concentration levels is challenging. They stated that

one fundamental problem for predicting hourly averages of

concentration levels was to collect data with the necessary

temporal resolution but they were not considering the regres-

sion algorithm quality used for the prediction.

Recent studies [10], [9], [11], [8] however use the funda-

mentals of land use regression methods to improve prediction

accuracy of the standard Land Use Regression model on

monthly and yearly concentration level predictions using dif-

ferent regression algorithms such as neural network regression

[12] or support vector machine regression [13].

Tree induction based regression algorithms [18] are pow-

erful tools for regression problems. They were applied in the

past with success to learn the relationship between the input

data and the observations. Tso et al. [11] used decision tree

regression technique to predict electricity energy consumption

and compared it with other algorithms. They reported that this

algorithm has the advantage of using complex datasets from

different data sources and can discover hidden patterns in the

data. Ensembling the decision tree regression algorithm (such

as the widely used random forest regression [19]) was used

for predicting yearly averages of NO2 by Champendal et al.

[8]. They reported good prediction accuracy against standard

linear regression methods.

Our proposed method uses the idea of the statistical regres-

sion models for hourly NO2 concentration level predictions.

Using this technique allows us to avoid the direct usage of data

where uncertainties (e.g. vehicle emission inventory database)

outweigh the benefit of using it. This technique, however, was

not designed to make hourly predictions and simply applying

high temporal resolution data results in a complex regression

problem. To tackle this issue, we propose the usage of tree

induction based regression algorithms instead of the state-of-

the-art linear regression algorithm.

III. METHODOLOGY

The initial step of implementing an air pollution model is

collecting the necessary data. This step provides the raw data

for the modelling task. We mainly used publicly available

datasets to make our work easily reproducible. The second

step is transforming the raw data into a format which makes

the data processable for the algorithms. We used similar data

transformation steps to other studies [9], [5], [20], [8], [6].

The modelling and evaluation are the last steps which allow

us to systematically determine the accuracy of the differ-

ent methods. We implemented the state-of-the-art validation

framework. We introduce the details of these steps in this

section.



Fig. 1. Heworth monitoring station (left), map of the modelling area (centre), Buffer area for the Fishergate monitoring station (right)

Fig. 2. Distribution and availability of the monitoring data

A. Monitoring and other data

1) Monitoring data: The most important data is the NO2

concentration level data. The City of York Council (CYC)

operates a network of high precision (chemiluminescence-

based) instruments in York to monitor the air quality. We

acquired monitoring data from 5 stations between 1st January

2013 and 31st December 2013. Figure 1 shows the area of

interest with the location of each monitoring station (red stars).

Figure 2 shows a boxplot of these measurements for each

station.

2) Traffic data: Traffic data was provided by the City of

York Council’s Transportation Managment Group. This group

operates a network of automated traffic counters (ATC) across

the city. For our modelling method, we selected the five

units which co-located to the NO2 monitoring stations. The

instruments only provide a simple vehicle count and cannot

give detailed information about different vehicle types (such

as cars, LGVs, HGVs, buses, etc.).

3) Road data: We collected road data using the Open Street

Map database which contains detailed lane information about

each road segment (e.g. lane numbers, allowed directions,

speed limits).

4) Building data: We acquired building data from the

Ordnance Survey’s 2009 version of MastermapTM Topography

layer. This layer gives spatial information (e.g. geometry,

surface area, etc.) about buildings within the area of interest.

5) Land use data: We collected land use data from the

Open Street Map database. The available data describes the

areas (in polygons format) usage scenarios (e.g. leisure, green

areas, farm, etc.).

6) Meteorological data: We acquired meteorological data

from the Weather Underground database using its API to

download data. This database contains observations for cities

and includes temperature, relative humidity, wind speed, wind

direction, and pressure measurements.

7) Time related data: Time-related indicators (e.g. hour of

the day, day of the week, bank holiday, etc.) for our statistical

regression model are important because the regression models

can use this information to discover temporal patterns in the

input data. We also included some York specific event indicator

such as event (e.g. York horse races when tens of thousands of

visitors come to the city leading to significantly higher traffic

volumes than the normal at the certain time of day) indicator

which affects the traffic pattern in the whole city.

B. Data preprocessing

The core idea of the statistical regression approaches [6]

is to extract information around the monitoring station. We

executed the following steps to transform the available data

into useful data for the regression models.

First, we created a 100-meter wide rectangular area (called

the buffer area) and extracted all the spatial information for

each monitoring station. We followed the guidelines (size and

extraction technique) of many previous studies to create the

buffer areas e.g. as followed by [16]. Using the available road

data, we extracted the feature ”road length” that represents the



amount of the road in the buffer area. In addition, we generated

another road data feature called ”lane length” which weights

the road with their lane numbers (so multi-lane roads gives

more value to this feature). We processed the building data

and calculated the number of the buildings and area of the

buildings covered by each buffer area and generated ”build-

ings” and ”buildings area” features. We used the available

land use data to find out the area of the used land and leisure

spaces in the buffer area and we generated the ”landuse area”

and ”leisure area” features. After we merged all the generated

features for each station based on the stations’ locations, we

generated an hourly timestamp feature runs from 1st January

2013 to 31st December 2013 and multiplied the dataset to

give all the timestamps for each station. In the final step, we

merged the weather data and the time-related data based on

the hourly timestamp. Table 1 shows a summary about the

generated dataset.

Feature Unit Source Data group

no2 level ug/m3 CYC -
road length meter Open Street Map R
lane length meter Open Street Map R
buildings - OS Mastermap B

buildings area area OS Mastermap B
landuse area area Open Street Map L
leisure area area Open Street Map L

atc vehicle/hour CYC A
wind direction degree (angle) Weather Underground W

wind speed m/s Weather Underground W
temperature celsius degree Weather Underground W

rain indicator Weather Underground W
pressure hPa Weather Underground W

hour - Generated T
day of week - Generated T

month - Generated T
bank holiday indicator Generated T

race day indicator Generated T

TABLE I
SUMMARY OF THE COLLECTED DATA

C. Methods

We implemented a validation framework to determine the

general accuracy of the proposed model against the state-of-

the-art. This framework consists the state-of-the-art location

based leave one out cross validation (LOOCV) [6], [7], [3].

This validation method allows to build the statistical model

using data from four stations and validate the accuracy com-

paring the prediction of the model at the location of the fifth

station and the observation of the fifth station. Within the

cross-validation method, we applied the root mean squared

error (RMSE) as the accuracy indicator similarly to [7], [3],

[20]. Root mean squared error (RMSE) is defined by the

following equation:

RMSE =

√

1

n

∑

∀i

(yi − ŷi)2 (1)

where n is the number of the observations, yi is the observed

target value, ŷi is the prediction produced by the model.

We run the WinOSPM 5.1.90 software to determine the

accuracy of one of the state-of-the-art air dispersion model for

our modelling scenario. This is the latest implementation of the

OSPM model developed by the Department of Environmental

Science at Aarhus University [15]. This model only needs

weather data and manual entry of street geometry around the

modelled area. All the other data were already prepared in the

software package (e.g. emission inventory data, sun radiation

data, etc.).

We propose to use tree induction based regression algo-

rithms for hourly NO2 concentration level predictions. We

include two of these algorithms: the decision tree regression

and the random forest regression algorithms. We used the

scikit learn library [21] to implement and run the proposed

statistical method as well as other statistical regression ap-

proaches. Using this library gives the advantage of using a

well-established and extensively tested implementation of the

required machine learning algorithms.

Linear regression [22] is a method to create prediction

based on the following equation: ŷ(w, x) = w0 + w1x1 +
... + wmxm, where ŷ is the prediction for the input feature

vector x = {x1, x2, ..., xm}, xi are the features, w0 called

the intercept and wi are the coefficients. There are multiple

ways to calculate weights and scikit learn framework uses the

Ordinary Least Squares optimization where it solves the math-

ematical equation argmin(
∑

∀xi∈X
(ŷi(w, xi)− yi)

2) where

X = {x1, x2, ..., xn} is the set of the feature vectors of the

observations and yi are the target value for each observation.

Linear regression can only discover linear relations between

the target value of the observation and the features, however,

these relations (represented by the coefficients) can be ranked

and described very well if the input data is normalised. This

property of the algorithm established its popularity, because

researchers could understand the main factors of predictions.

The sickit learn framework implementation of this algorithm

has two parameters: ”intercept” what we can choose to include

the intercept to the equation and ”normalize” which forces to

train algorithm to normalize the data before the training. We

refer to this method as LR.

Decision tree regression [18] is a decision tree induction

based regression technique where tree induction algorithms

create a decision tree and every leaf of this tree contains a

prediction value and every other internal node has decision

criteria (for example x4 < 0.5). The decision tree is built to

have the best fit for the training dataset and every prediction

starts at the root, evaluates it, then decides to take the left or

right children (if it is a binary decision tree) then evaluate all

the internal node until it ends at a leaf node where there is

a prediction value. The implementation of the tree induction

algorithm in the scikit learn library contains a parameter

(”leaf”) which stops the tree induction if an internal node

has only the given number of observations (this is a general

technique to avoid overfitting called back-pruning technique).

We refer to this method as DTR.

Random forest regression [19] is an ensemble method based

on the decision tree regression. Instead of training one large



decision tree for the regression, it follows the idea of the

ensemble methods where the algorithms train models (the

parameter ”n estimators” defines the number of the models)

on the subset of the train data (in terms of observations as

well as features) and rank the created sub-models on the

efficiency based on the other part of the training data. With

this procedure, the method can randomly pick up an interesting

part of the data and have a large number of efficient sub-

models. The prediction is based on a voting procedure, where

each sub-model has a vote and based on their weighted average

the final prediction is calculated. We refer to this method as

RFR.

We started to evaluate the OSPM method with the imple-

mented validation framework first. The accuracy of this model

provides a baseline for the statistical regression methods

The first regression approach is only using the LR algorithm

and the land use related data (precisely the road, the building,

and the land use data). Investigating such an approach can pro-

vide information about the difficulties of predicting NO2 with

existing methodologies [6]. The second regression approach is

using the LR algorithm with all the available data. Analysis of

the accuracy of this approach can provide details of prediction

difficulties of the LR algorithm facing complex non-linear

data. Tree induction based regression techniques have been

already sued to make predictions on complex non-linear data.

We included the decision tree regression and the random

forest regression algorithms to determine the accuracy of these

methods on this environmental prediction task. In the last

step, we investigated the data requirements for the statistical

regression methods. It is not clear that which data sources

provide the most relevant data for the regression approach.

Also, it is unknown what is the quality of the collected data.

Using only the most relevant data can increase the accuracy as

the algorithms do not have to deal with data contains errors,

outliers, anomalies which could lead to mispredictions.

IV. EVALUATION

We introduce and discuss the results of the validation

framework. Firstly, we focused on the analysis of the accuracy

of the described methods. Secondly, we investigated the data

requirements for the proposed regression method. Lastly, we

analysed the nature of the prediction error using the proposed

regression method generated on different data subsets.

A. Prediction accuracy of the different air pollution modelling

approaches

We executed a grid parameter search to tune each statistical

regression approach for this regression problem. We used the

normalise and intercept options for the LR algorithm, leaf =

15 for the DTR algorithm and leaf = 9, n estimator = 59 for

the RFR algorithm.

Figure 3 shows the summary of the outcome of the vali-

dation framework. As Briggs et al. [6], and Hoek et al. [17]

assumed, using the LR algorithm with land use related data

introduces more error in the prediction than the state-of-the-art

methods (OSPM in our case). Using data with high temporal

Fig. 3. RMSE error plot of the investigated methods

resolution (weather and time-related data) does not help as the

data becomes more complex and the LR algorithm suffers to

make accurate predictions.

Using the complex data with the DTR method, however,

resulted in an air pollution model which provides the same ac-

curacy as the OSPM model. Using the RFR method increases

the accuracy even further. These algorithms could exploit their

ability to discover the complex non-linear relationship in the

data which makes them appropriate for this regression task as

it produced more accurate predictions than the state-of-the-art

method.

B. Data requirement analysis of the statistical regression

approach

As RFR shows the best accuracy, we were interested in

determining which data (combination of the different subsets

of the originally available data) is the most relevant for this

algorithm. We divided the data into smaller data categories

based on the data sources: ”R”, ”B”, ”L”, ”A”, ”W”, ”T”

represent the road data, building data, land use data, ATC data,

weather data and time-related data, respectively. We then run

our validation method for each combination of the data groups.

The best data subset is the combination of time (”T”) and

weather (”W”) related data only according to our experiment

(Figure 3). This result, however, was unexpected as the RFR

model was trained on 4 stations data still the most accurate

model only uses T+W data which are global and have the

same information at each station.

Figure 4 shows the relative RMSE error analysis of each

combination to the case when we only applied T+W data for

the RFR method. There are only a few cases where adding

more data could partially increase the accuracy, but the overall

(mean of the error of the other data combinations) accuracy

is always worse than the T+W case.

We discovered the same trend during the individual inves-

tigation of all the 64 combinations. Figure 5 shows that not



Fig. 4. RFR+TW method RMSE accuracy considering other input data subsets

Fig. 5. RFR method RMSE accuracy considering different input data subsets

using T+W data introduces error for the prediction. Using only

the weather (”W”) or time (”T”) related data helps to make

more accurate predictions and using T+W data resulted always

in the most accurate predictions.

These results tell us that our proposed statistical regression

approach can achieve better accuracy if we can carefully subset

the input data and use only the time and weather-related data

for our modelling scenario.

C. Detailed error analysis of the proposed method

As the main pollution source is the traffic according to

the local air quality experts, we started to focus on the

usage of ATC (”A”) data. Adding ATC to the RFR+TW

model resulted in increased RMSE error (RFR+TW provides

RMSE of 12.79 ug/m3 meanwhile RFR+TWA provides RMSE

of 13.45ug/m3). This is the reason why our previous data

optimisation procedure did not select the ATC data. It is

important to note that the general RMSE does not give any

details about the nature of the errors. To understand the

error introduced by the use of the ATC data, we analysed

the absolute prediction error and compared the results of the

RFR+TW and RFR+TWA models. Interestingly, both models

produced error episodes where within short time windows,

they couldn’t make accurate predictions, however, these error

episodes of the two models do not overlap. Figure 6 shows an

example where the RFR+TWA model has smaller prediction

errors during the week between 22nd July 2013 and 28th July

2013 at the Fulford monitoring station.

Figure 6 shows that the RFR+TWA model makes more

accurate predictions than the RFR+TW model in some cases.

Having established that RFR+TW and RFR+TWA models

make non-overlapping error episodes, the next objective was to

investigate the accuracy of the RFR+TW and the RFR+TWA

models in some specific prediction situations. To do this, we

analysed the predictions according to specific rules, because it

allows the systematic assessment of the prediction error of the

two models. To find such rules, we used our prior knowledge

about the modelled area. In general, the RFR+TW model

provides the most accurate predictions, however, it does not

use information about the traffic. In cities, traffic peaks twice a

day when commuters flood the roads (so they called morning

and afternoon traffic peak period). We then separated two

different time windows focusing on days where the weather

does not effect the pollution (e.g. the wind speed is low):

• morning: before the morning traffic peak period, when the

pollution has been cleaned out during the night (4AM-

7AM)

• afternoon: during the afternoon traffic peak period, where

traffic is high on the roads and traffic jams are highly

likely (4PM-7PM)

Figure 7 shows the results of analysis of absolute error

in prediction during these time windows using the model

RFR+TW, RFR+TWA, and RFR+WA. We included RFR+WA

for this analysis to investigate the accuracy of a model which

does not have information about the time-related data. In the

morning case, there is no benefit of using more data than the

T+W. Using RFR+TWA model, however, shows less error

in prediction when the traffic is peaking (afternoon case).

Moreover, in this situation, using time-related (”T”) data does

not show relevance as the RFR+TWA and RFR+WA show

similar prediction accuracy.

This result motivates the usage of complex modelling sys-

tem where multiple random forest statistical regression models

are being trained on different subsets of the input data and a

model selector decides what model to use in which situation

to exploit the non-overlapping error episodes of the different

models.

V. CONCLUSION

In this paper, we proposed a novel statistical regression

approach for hourly NO2 concentration level modelling. This

model exploits the random forest regression algorithm and it



Fig. 6. Heatmap of observations, predictions, and errors at the Fulford station
between 22nd July 2013 and 28th July 2013

Fig. 7. Absolute error plot of RFR+TW, RFR+TWA, and RFR+WA at the
morning and afternoon time windows

uses complex input data to make accurate predictions. We

compared our method against the state of the art air dispersion

method. During the evaluation, we confirmed the challenges of

using statistical regression methods for this prediction problem

[17], [5]. The results show that the proposed method produces

more accurate predictions than the state-of-the-art model in our

modelling scenario. Using only the time and weather-related

data to generate the random forest regression model led us

to more accurate predictions than using all the available data.

This result motivated us to further investigate to prediction

errors. The detailed analysis of the prediction errors of the

RFR+TW and RFR+TWA models revealed that RFR+TWA

model makes more accurate predictions in some situations

despite the of the larger general RMSE error of the RFR+TWA

model. To exploit the non-overlapping error episodes produced

by the two models, we investigated two scenarios where we

concluded that using the RFR+TWA or RFR+WA models

consistently provide more accurate predictions on hours where

the traffic is peaking than the RFR+TW model.

Our results show that our statistical regression approach

trained on different subsets of the input data (RFR+TW,

RFR+TWA, etc.) produced different error episodes. We will

investigate the development of the stacking of these mod-

els where the stacking procedure generates the models on

different input data subsets (not only a few variations, e.g.

RFR+TW,RFR+TWA) systematically and this procedure will

find the appropriate rules to use the best model from the

existing model set to make all the hourly predictions as

accurate as possible.

Moreover, integrating this approach into a Geographic In-

formation Systems (GIS) can give a more accurate modelling

tool for urban city planners to make better decisions consid-

ering the environmental effect of the urban processes and it

gives them a better understanding of the air pollution of the

modelling area.
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