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Abstract (100-120 words) 
 
There have been substantial advances in the application of molecular modelling and simulation to drug 
discovery in recent years, as massive increases in computer power are coupled with continued 
development in the underlying methods and understanding of how to apply them.  Here, we survey 
recent advances in one particular area – predicting how a known ligand binds to a particular protein.  
We focus on the four contributing classes of calculation: predicting where a binding site is on a protein; 
characterizing where chemical functional groups will bind to that site; molecular docking to generate a 
binding mode for a ligand and dynamics simulations to refine that pose and allow for protein 
conformation change.  Examples of successful application are provided for each class. 
 
Highlights  
 
1. Mixed solvent dynamics can characterise what will bind to a site on a protein 
2. Dynamic docking approaches can allow for protein flexibility in ligand binding 
3. Modern computing allows more realistic estimates of protein-ligand interaction energy 
 
  



Introduction 
 
The majority of drug discovery projects begin with identification of a small molecule compound which 
binds to a defined site on a specific biological molecule (usually a protein), affecting the function of 
that target protein. This initial hit is then optimized to incorporate adequate drug-like properties 
(affinity, selectivity, efficacy, ADME, etc.) into a candidate compound that generates the desired 
therapeutic effect and is suitable for clinical trials.   
 
Over the past thirty years, there has been a steady increase in the use of structure-based methods in 
this drug discovery process where models of how compounds bind to the target can allow rational 
design of the required improvements in the compounds.  For some targets, experimental methods can 
provide structural information with sufficient throughput and speed to interactively guide the 
structure-based design.  For example, X-ray crystallography provides an atomic level picture of how 
compounds bind and NMR spectroscopy can provide varying levels of information on interactions 
between the compound and the protein, such as whether a compound binds, where it is binding to and 
(in some limited cases) a structure of the compound binding to the target. However, it is often not 
possible to generate such structures with sufficient speed to inform decisions about compound 
optimization.  
 
In this review, we survey recent developments in the computational methods that predict how 
compounds bind to their protein target using either an experimentally determined structure of the 
target or a model based on sequence homology.  Some of the methods can be used to screen 
compound libraries (real or virtual) for initial hits; in addition, the methods can help to guide 
optimization of compounds in structure-based design.  These applications are not discussed in detail 
here.  What we focus on are the methods that, once a compound is demonstrated to bind, can be used 
to predict the position and orientation or “pose” of the compound binding.  As summarized in Figure 1, 
we have loosely divided these methods into four categories: (1) identifying binding sites; (2) 
characterizing the potential of a binding site to bind chemical matter; (3) predicting the position and 
orientation (or pose) of compound binding and (4) dynamic docking to explore both the energetics of 
binding and conformational change to refine the pose.  Before summarizing these in turn, we first 
survey some history and the issue that underpins all molecular modelling – the ability to estimate 
energy of interaction. 
 
Origins of the methods 
 
A more detailed description of the origins of structure-based design methods is provided elsewhere[1] 
but there are three influential developments that should be highlighted – CHARMM[2], GRID[3] and 
DOCK[4]. The Karplus group developed molecular dynamics (MD) simulations of a protein in 1977[2], 
which led to the development of the CHARMM[5] (Chemistry at Harvard Molecular Mechanics) 
program which became a central platform for many molecular simulation methods over the following 
decades.  One of the most influential developments for structure-based drug discovery in the 1980s 
was the program GRID from Goodford[3].  This introduced the idea of characterizing what types of 
chemical functionality would bind to a binding site by calculating the energy of interaction between the 
protein and a functional group at each point on a grid.  Finally, there is the DOCK program from the 



Kuntz group[4] which was the first widely used program for computationally docking compounds into 
the structure of a protein.  Although some of the ideas within these programs were built on the work 
of others, the programs (and their authors) became major promoters of the ideas of using 
computational methods to characterize and predict how compounds can bind to proteins and formed 
the foundation of the current generation of methods. 
 
Predicting the energy of interaction between protein and ligand – scoring functions 
 
All structure-based design methods critically rely on an estimate of the energy of interaction between a 
ligand (or probe) and the protein.  Most approaches still rely on the rather simplistic treatment 
established in the early methods[2-4] where the non-covalent interactions are treated with simple 
Coulombic (for electrostatics) or Lennard-Jones (for van der Waals) interaction potentials but there is 
increasing use of more sophisticated treatments.  The theoretical bases for these more advanced 
calculations were established a long time ago.  What has changed in recent years is the relentless 
increase in computer power allowing these methods to be applied within a realistic timeframe.  There 
are three main areas to highlight.   
 
The first are the perturbation methods[6] which calculate changes in free energy by performing 
extensive MD while transforming (in this case the compound) from one chemical structure to another.  
The second is a number of approaches for more extensive treatment of electrostatics: for example 
with Poisson-Boltzman or Generalised Born models within a molecular mechanics calculation (called 
MM-PBSA and MM-GBSA) – this can account for bulk solvent effects[7]; or using explicit quantum 
mechanics for part of the model within a molecular mechanics model to account more fully for both 
electrostatics[8] and metal ion charges[9]. Finally, there has been a growing realization that water 
molecules, both their stability and their interaction networks, can make important contributions to the 
thermodynamics of ligand binding[10,11].  However, even with these advances, our ability to predict 
the thermodynamics from a static model of a protein-ligand structure is still far from predictive.  
Nonetheless, the methods have been central to recent successes in structure-based design, such as 
potent non-nucleoside reverse transcriptase inhibitors [12] and other examples described below. 
 
Pocket Detection  
 
The first challenge of SBDD is identifying where the ligand binds, for which geometry-based and 
energy-based programs have been successfully developed[13]. Geometry-based programs such as 
CAVITY[14] or fpocket[15] identify the largest and deepest cavities within a static structure; examples 
of successful use are identification of two new allosteric sites in the crystal structure of PHGDH in 
which virtual screening (VS) identified compounds with anti-tumor activity[16] and cavity detection in 
models of the intrinsically disordered protein Myc for which VS identified cell active compounds[17]. 
Another method uses hidden Markov models to identify cryptic pockets which can then be exploited as 
allosteric sites[18].  The more difficult to identify pockets are where a flexible model of the protein is 
needed to identify previously unidentified cavities. In these cases, energy-based methods similar to 
those used to identify protein-ligand hot-spots[19,20] can be used to map the protein surface 
repeatedly while exploring low energy conformers of side chains. Such calculations complement some 
of the experimental methods which explore transient sites and can be incorporated into strategies for 



ligand design[21,22].  Finally, a comprehensive review[23] summarises the large number of methods 
developed to compare binding sites on the basis of protein structural information, with many examples 
of how this has been used in ligand design. 
 
Solvent Mapping/Probe mapping 
 
Many approaches have evolved to characterize what will bind to a site since the original GRID (which 
uses a point probe[3]) and MCSS (which was the first example of using functional groups [24]).  A 
number of groups[19,20] have developed variations on mixed solvent dynamics (reviewed in [25]), 
where simulations use as many as 16 different chemical probes to explore what could bind to (a usually 
flexible) binding site.  In one ambitious study[26], the methods identified key interaction hot spots on 
an ensemble of structures derived from MD simulations of x-ray structures and homology models from 
which VS identified an FGF-23 antagonist.  The optimized compound was subsequently demonstrated 
to have activity in mouse models.   
 
A more specific example is the characterization of water molecules in protein structures.  Programs like  
WaterMap[11] and MDMix[20] can identify which water molecules are energetically favorable to 
displace in compound optimization.  One striking example is the identification of two high energy 
waters in the binding site of the FGFR kinase in the presence of a lead compound, which could be 
displaced by modification of the scaffold leading to Rogaratinib (BAY 1163877), a pan FGFR 
inhibitor[27]; another example is identification of Acetyl-CoA carboxylase inhibitors which are active in 
animal models of obesity and diabetes[28].     
 
A variant on solvent mapping is hybrid structure- and ligand- based methods.  One example is the 
ALTA-VS strategy[29], where pharmacophoric features are derived from the ligands.  A virtual library of 
rigid fragments is constructed cutting all the rotatable bonds of the compounds in an available library 
and then computationally docking each fragment into the binding site, then evaluating energy of 
interaction (in this case using an MM-GBSA force field). The best scoring fragments can then be used as 
pharmacophoric points to direct VS.  A more extreme example of this type of approach is where 
compounds validated as binding after VS against a homology model is used to refine the homology 
model for more comprehensive modelling[30]. 
 
Pose prediction and refinement 
 
Once a binding pocket has been identified and characterized, the next step is to predict the binding 
pose of a ligand in that site – molecular docking.  Assessing how well different programs can make this 
prediction has been a continuous industry for the molecular modelling community (see our own work 
with the program, rDock[31]).  A recent paper[32]  provides one of the more comprehensive studies of 
the past 5 years, assessing how well the experimentally observed pose can be predicted by ten 
different programs for a test set of 2002 protein-ligand crystal structures.  There are two main criteria 
on which programs can be assessed: can the program generate the correct binding pose?, and does the 
scoring function successfully identify this pose as the most favored?  In general, where receptor 
flexibility is not important, the correct pose can be generated and although for some protein families, 
there was reasonable correlation between docking scores and experimental binding affinities, the 



ranking of the binding affinity was not well predicted across the whole dataset.  
 
Success can be improved by combining docking with alternate scoring schemes.  MM-GBSA can be 
used to rank order docking hits with some exciting examples[33-35].  A more recent development is 
dynamic approaches such as DUck[36] (Figure 1). DUck uses steered MD where a virtual “force” is 
applied to pull the ligand out of the binding site, while performing MD simulations to calculate the 
energetic cost of breaking a key hydrogen bond between a ligand and the protein.  The theoretical 
relationship is tenuous, but this could be taken as related to the activation energy for the interaction, 
which will affect the binding energy.  Another approach is free energy perturbation (introduced in [6]) 
with a number of examples[37-39].  
  

Dynamic Docking 
 
The evaluation of docking programs[32] usually tests for re-docking a ligand into the protein 
conformation obtained in the protein ligand crystal structure. What is more challenging (but the more 
realistic application scenario) is to predict the binding pose where there is some adjustment in the 
detailed conformation of the protein binding site. There are a number of approaches to address this 
problem. The first is to use different conformations of the protein as the target for docking.  Ensembles 
of conformations for the protein can be generated by MD[40,41] or different experimental crystal 
structures can be used[42] as a project proceeds and more crystal structures obtained. One recent 
method development is a fast algorithm for sampling flexible protein-ligand conformations (known as 
PELE[43]) that was able to reproduce ligand induced side chain rearrangements and small main chain 
protein movement in a set of protein-ligand complexes, and performed better than MD simulations 
and induced fit docking.  
 
A second approach is to account for receptor flexibility while docking and there have been a number of 
recent reviews[44-46] which survey progress. The methods rely on substantial computer power, so at 
present can only be applied to a few compounds and are more applicable for hit to lead optimization 
rather than hit identification. The methods fall into two main categories – those requiring an a priori 
definition of the pathway for conformational change and those that do not.  In a recent publication[47] 
an induced fit docking protocol is used to generate possible conformational changes that enable ligand 
binding.  These possible conformations are then assessed using metadynamics, a computational device 
to encourage a molecular simulation to explore across the possible conformations available, by 
introducing energy terms which discourage the simulation returning to conformations that have 
already been visited. Significant improvement in the quality of docking is reported across 42 test 
systems.  
 
There are a number of recent publications where the simulation is unsteered and explores 
conformational change unsupervised.  In one case[48], a technique called potential scaled MD was 
used to predict the binding pose in two test cases with conformational change.  The method works by 
lowering the barrier between conformational states, in some ways emulating use of a high 
temperature.  An alternate unsupervised method is adaptive electrostatic bias[49] where the 
electrostatic interactions are modulated depending on proximity of the ligand to the binding site – this 



also reduces the barrier to conformational change.  These new dynamics methods complement more 
conventional MD, as in the FGF example discussed above [26].  
 
This is a promising new concept for which several retrospective examples have emerged - for example 
adaptive sampling allowed high throughput MD of a small fragment library for CXCL2[50], while there 
are even examples of long MD simulation used for in silico fragment screening[51], which also 
emphasizes the power of GPU-accelerated computational power in structure-based drug design.   
 
Concluding remarks 
 
The October 1st, 1981 edition of Fortune magazine heralded a “New Industrial Revolution” in which 
drugs can be designed by computer. The pharmaceutical industry has encountered waves of new 
technology (e.g. combinatorial chemistry, genomics).  In most cases, it takes many years (decades) for 
the methods but also the expertise to develop so that the methods can make effective contributions to 
the drug discovery process.  Structure-based, computational methods have suffered more than most 
new technologies in achieving this routine, productive phase.  However, the techniques have now 
made recognizable contributions to the design of more than 50 compounds in clinical trials[52] and to 
several drugs on the market[53].  
 
In this mini-review, we have focused on new developments in methods for just one aspect of SBDD – 
predicting how compounds bind to their target.  What we have not discussed in detail is how these 
methods (combined with advances in predicting strength of protein-ligand binding) are now 
contributing to an increasing number of success stories where potent compounds are being identified 
for a range of targets.  Looking back over the past forty years, perhaps it has not been an “industrial 
revolution”, but more a continuous scientific evolution. Steady improvements in quality of the 
methods and understanding of how they can be used has led to increased acceptance and confidence 
so that the medicinal chemistry community now can appreciate how SBDD methods can contribute to 
the drug design process. 
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Figure Legend 
Methods for predicting ligand binding modes illustrated through an example of calculations for the 
kinase, CDK2 (protein structure taken from the PDB code: 1CKP). A) Binding site prediction by 
fpocket[15] (default settings) by clustering solvent inaccessible spheres and disregarding solvent 
exposed spheres. A “druggability” score is assigned to each predicted pocket. In this example, Site I, 
obtained the highest score (0.8), while the remaining eight pockets score very low (<0.1). B) Polar hot 
spots identified through mixed solvent MD simulations using MDMix[20]. Ethanol and water were used 
to probe the binding pocket, from which high and low energy areas are identified. The low energy 
areas probed by ethanol (deep purple), help to identify donor or acceptor features that could be 
exploited by ligand binding. Water (cyan) and hydrophobic (yellow) sites are also probed. C) These hot 
spots were then used to guide docking of the ligand from PDB structure 1PXM. Docking was performed 



with rDock[31], using a donor as a pharmacophoric restraint (sphere) to interact with the backbone of 
LEU78 (yellow dashed line) in the CDK2 structure. D) This was followed by pose refinement using 
MD[54] to explore the flexibility of the pocket; for example, the yellow surface indicates possibility for 
a clash between ligand and protein.           
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