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Heterogeneous localisation 
of membrane proteins in 
Staphylococcus aureus
Felix Weihsͷ, Katarzyna Wacnikͷ, Robert D. Turnerͷ, Siân Culley  ͸ǡ͹, Ricardo Henriques  ͸ǡ͹ & 

Simon J. Fosterͷ

The bacterial cytoplasmic membrane is the interface between the cell and its environment, with 

multiple membrane proteins serving its many functions. However, how these proteins are organised 

to permit optimal physiological processes is largely unknownǤ Based on our initial Ƥndings that ͸ 
phospholipid biosynthetic enzymes (PlsY and CdsA) localise heterogeneously in the membrane of 

the bacterium Staphylococcus aureus, we have analysed the localisation of other key membrane 

proteins. A range of protein fusions were constructed and used in conjunction with quantitative image 

analysis. Enzymes involved in phospholipid biosynthesis as well as the lipid raft marker FloT exhibited 

a heterogeneous localisation pattern. However, the secretion associated SecY protein, was more 

homogeneously distributed in the membraneǤ A FRETǦbased system also identiƤed novel colocalisation 
between phospholipid biosynthesis enzymes and the respiratory protein CydB revealing a likely larger 

network of partnersǤ PlsY localisation was found to be dose dependent but not to be aơected by 
membrane lipid composition. Disruption of the activity of the essential cell division organiser FtsZ, 

using the inhibitor PCͷͿͶͽ͸͹ led to loss of PlsY localisationǡ revealing a link to cell division and a 
possible role for FtsZ in functions not strictly associated with septum formation.

he ability of organisms to grow and proliferate requires the coordination of all aspects of cellular physiology. 
Bacteria are arguably the simplest form of life without a nucleus and organelles. However, there must be a close 
coordination of events between the cytoplasm and the cell wall to allow growth and division. he cytoplasmic 
membrane is the interface between the cytoplasm and the external environment and is required for viability, 
nutrient acquisition, signalling and myriad other processes. he membrane is made up of a lipid bilayer studded 
with an array of integral and peripheral proteins along with other biopolymers. How membrane proteins are 
organised to optimise their function is largely unknown, as are those components involved in such coordination.

In bacteria, prominent systems involved in membrane protein organisation have been studied in detail. Firstly, 
the actin-homologue MreB acts as a spatial organiser by positioning cell wall synthesis enzymes around the 
cytoplasmic membrane of Escherichia coli allowing maintenance of the characteristic rod-shape1–6. In Bacillus 
subtilis, MreB creates membrane regions with increased luidity which may afect membrane protein difusion 
and functionally organise the bacterial membrane7. Secondly, the scafolding protein FtsZ is an early arrival at the 
division-site forming the Z-ring required for the recruitment of later, cytoplasmic and membrane-associated divi-
sion proteins8,9. he recruited proteins coordinate the synthesis of lipids and peptidoglycan. Finally, the selection 
of the division-site in many bacteria is determined by further membrane organising components such as the Min 
proteins, that can use existing geometrical cues in the cell to place the Z-ring at the middle of the cell10–12. In both 
E. coli and B. subtilis the Min system acts to identify the polar regions to inhibit FtsZ polymerisation in regions 
other than the mid-cell10,11.

he bacterium Staphylococcus aureus lacks both MreB and the Min system13. hus, S. aureus is a useful model 
in which to study the properties of membrane proteins and to ask the question: How do bacteria localise mem-
brane proteins in the absence of known organisers?
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he study of phospholipid synthesis enzymes in S. aureus has led to the discovery of a colocalised punc-
tate patterned distribution of the two membrane proteins PlsY and CdsA14. he absence of PlsY causes severe 
morphological defects and misplaced division septa. Furthermore, the localisation of the septally located 
cell-division proteins EzrA and PBP2 were afected in PlsY-depleted cells, which may explain the observed aber-
rant cell-division. It seemed unlikely that PlsY was the key protein for the localisation of this protein network and 
the focus was directed the MreCD proteins that are known to function as spatial organisers in other bacteria. S. 
aureus lacks MreB and little is known about the role of MreC and MreD15. he deletion of mreC showed no efect 
on staphylococcal cells, but an mreD null mutant is afected in the localisation of PlsY and CdsA14. Further exper-
iments revealed that MreD is also localised in a similar punctate pattern to PlsY and CdsA, showing that MreD 
might be involved in the establishment of this supramolecular structure14. he observed punctate distribution is 
explicable in terms of the properties of the proteins themselves. he shape of proteins or protein complexes in the 
membrane can modulate the local curvature and thereby create a local disturbance of difusion which can result 
in a patterned distribution of membrane proteins14.

his study aimed to identify components required for the observed membrane protein distribution and to test 
the efect of a variety of inhibitors and genetic interventions. Furthermore, the distribution of a range of mem-
brane proteins was determined to understand the breadth of that phenomenon.

Results
Enzymes involved in phospholipid synthesis are distributed heterogeneously in the mem-
brane of S. aureus. PlsY is localised heterogeneously in the membrane of S. aureus forming clearly observ-
able puncta of accumulated molecules (Fig. S1a). Counterstaining with the luorescent D-amino acid HADA 
(7-hydroxycoumarin-3-carboxylic acid-amino-D-alanine) that labels peptidoglycan synthesis16, shows that 
PlsY localises to the septum in cells undergoing cell-division, with an additional single dot at its centre in cells 
with a seemingly completed septum. his localisation can be most clearly observed in exponentially growing 
cells and diminishes as cells enter stationary phase (Fig. S1b,c) which was conirmed using the super-resolution 
approach NanoJ-SRRF17 (Fig. S1d,e). Importantly, PlsY localises in a dose-dependent manner (Fig. 1a) where 
over-expression leads to a more uniform distribution of luorescence signal (Fig. 1b,c). To analyse, oten subtle, 
localisation changes and to discriminate whether the fusions are localised homogeneously or heterogeneously 
required a quantitative image analysis method. his was achieved by the conversion of an image of a cell to a 
polar coordinate system with the origin at the centre of the cell, followed by calculating the coeicient of variation 
(CV; CV = mean value/standard deviation). he CV describes the distribution of luorescence signal around the 
cell periphery, where low values indicate a more homogeneous distribution and higher values a heterogeneous 

Figure 1. he localisation of PlsY-GFP is dose-dependent. (a) Growth curves (let Y-axis) of S. aureus SH1000 
FW6 (IPTG-inducible plsY-gfp expression) and luorescence (right Y-axis) of whole culture samples. 50 or 
500 µM IPTG were added to cultures at an OD600 ~ 1 and samples were analysed at 30 min intervals. A.U. 
luorescence for 50 ( ) and 500 ( ) µM IPTG induction. OD600 for 50 ( ) and 500 ( ) µM IPTG induction. 
(b) Fluorescence images (convolved and deconvolved) of S. aureus SH1000 FW6 with diferent expression levels 
of plsY-gfp as seen in (a). Scale bars represent 1 µm. (c) CV-factor calculation of deconvolved luorescence 
images of PlsY-GFP (FW6). Signiicance values were calculated using a two-tailed unpaired student t-test. 
****P < 0.0001; ***P < 0.001.



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:3657  ȁ DOIǣͷͶǤͷͶ͹;ȀsͺͷͻͿ;ǦͶͷ;Ǧ͸ͷͽͻͶǦx

distribution (see Fig. S2a,b for examples and controls). his analysis conirms that over-expression of PlsY-GFP 
leads to the collapse of the punctate patterned localisation.

he striking punctate pattern of PlsY begs the question of whether other enzymes involved in phospholipid 
synthesis (apart from CdsA) are localised in a similar fashion? An overview of phospholipid synthesis in S. aureus 
can be found in Fig. S3.

Fusions of eYFP with PlsY, the phosphatidylglycerol-phosphate synthase PgsA and the major cardiolipin syn-
thase Cls2 were constructed in S. aureus SH1000 and analysed by luorescence microscopy. Western blotting 
conirmed the expression of all single-copy native promoter fusions used in this study (Fig. S4a).

All fusions were found to be localised at the septum in cells undergoing cell division along with a 
non-homogeneous distribution at the cell periphery (Fig. 2a–d). Interestingly, Cls2-eYFP exhibits a clear punc-
tate distribution and appears to show some septal localisation (Fig. 2d). However, the same cells also show a 
non-septal punctate Cls2 localisation.

Previous studies have reported that the eYFP tag can cause artifactual localisations of the extended protein of 
interest possibly due to the multimerisation of eYFP18,19. A fusion of PlsY with the monomeric meYFP (A206K)20 
was also found to exhibit a heterogeneous distribution (Fig. S1f). his conirms that the localisation of PlsY-eYFP 
is not caused by the potential multimerisation of the luorescent tag.

A broader perspective on the localisation of membrane proteins. Phospholipid synthesis enzymes 
exhibit a heterogeneous distribution along with a septal localisation during cell division. To determine if this is a 
more generalised phenomenon, the localisation of other membrane proteins from metabolic processes unrelated 
to phospholipid synthesis was tested. he recently identiied lipid rat marker FloT21 and the secretion associated 
protein SecY were chosen. First, protein fusions with eYFP or GFP expressed from their native loci (Fig. S4a) were 
analysed and revealed a punctate patterned distribution of FloT whereas the secretion protein SecY appears to be 
localised homogeneously (Fig. 3a). CV calculations conirm this inding and further indicate that FloT has a more 
distinct distribution of luorescence signal according to the CV-factor. Such a deined localisation of FloT-eYFP is 
supported by previous studies21. SecY exhibits a signiicantly lower CV-factor than PlsY supporting a more homo-
geneous distribution (Fig. 3b). It must be considered that the observed punctate distribution of these membrane 
proteins could be in fact part of a, possible cell-spanning, three-dimensional structure, as a Z-stack image series 
of PlsY-GFP shows that the puncta are found all around the cell periphery (Fig. S5).

To begin to determine if particular proteins form parts of complexes, colocalisation studies with PlsY-GFP 
were carried out. Fusions of various membrane proteins with mCherry were expressed episomally from 
an IPTG-inducible promoter (Fig. 3c) and their expression was conirmed by Western blotting (Fig. 4b). As 
expected, the membrane proteins are localised in a heterogeneous distribution. SecY-mCherry was localised 
in a punctate pattern, which could indicate that the expression level is lower than native levels having a similar 
dose-dependent efect as PlsY (Fig. 1). In this analysis, we included the membrane protein MscL (mechano sen-
sitive channel protein) and the respiratory protein CydB, which also exhibit a non-uniform distribution (Fig. 3c). 
Image analyses suggested colocalisation (see white arrows for colocalising dots and red arrows for difering local-
isation) and demonstrated that PlsY is colocalised with MreD, CdsA, PgsA and potentially CydB, with no or less 
colocalisation with SecY and MscL. A quantitative pixel-by-pixel analysis using the Manders overlap coeicient22 
between ‘green’ and ‘red’ luorescence signals conirmed these observations demonstrating a signiicantly higher 
colocalisation of ‘green’ pixels (from PlsY-GFP) with signal derived from mCherry fusions with MreD, CdsA, 
PgsA and CydB (Manders values of ~0.7–0.8) than with SecY and MscL (Fig. S2c) (Manders values of ~0.6). hus, 
membrane protein distribution in S. aureus is oten heterogeneous but with a diversity of arrangements.

Evidence for a phospholipid synthesis enzyme complex. Recently, we showed the interaction of PlsY 
with CdsA and MreD using a protein-protein interaction system based on Förster Resonance Energy Transfer 
(FRET) facilitating lower donor photobleaching rates of GFP in the presence of mCherry14. his FRET method is 

Figure 2. Phospholipid synthesis enzymes are distributed heterogeneously in the membrane of S. aureus. 
(a–c) Phase contrast and luorescence images (deconvolved) of S. aureus expressing plsY-eyfp (FW1), pgsA-
eyfp (FW2) and cls2-eyfp (FW5) under their native promoter. Cells were counterstained with the luorescent 
D-amino acid HADA for 5 min, which is incorporated into the cell wall indicating the cell-cycle stage. (d) 
Fluorescence images (deconvolved) of Cls2-eYFP in S. aureus SH1000 FW5 at the upper and lower end 
of the cell focus showing the localisation of Cls2-eYFP on diferent three-dimensional levels. he cartoon 
schematically illustrates the distribution of Cls2-eYFP at the base of the septum. All scale bars represent 1 µm.
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simple in terms of image acquisition using a standard wideield microscope. he analysis was extended to inves-
tigate whether other membrane proteins that exhibit a punctate patterned distribution such as PgsA and CydB 
interact with PlsY. In addition, the interaction of PlsY with the non-co-localising MscL and SecY was studied. 
PlsY-GFP was used as the donor in all experiments as this is the most characterised of the fusions and gave con-
sistency with all the other protein fusions.

his analysis corroborates the previous indings that PlsY is colocalised with PgsA and CydB, as a positive 
interaction was found with both proteins (FRET eiciency (FE): 22.7% for PgsA and FE: 13.0% for CydB) but not 
with SecY (FE: −0.3%) and MscL (FE: 4.1%) of which were shown to be localised in a diferent pattern than that 
of PlsY (Fig. 4a).

Figure 3. Membrane proteins in S. aureus show diferent localisation proiles. (a) Phase contrast and 
luorescence images (deconvolved) of S. aureus SH1000 expressing loT-eyfp (FW8) or secY-gfp (JGL231) 
under their native promoter. Cells were counterstained with HADA for 5 min. (b) CV-factor calculation of 
deconvolved images of PlsY-GFP (JGL232), FloT-eYFP (FW8) and SecY-GFP (JGL231). Signiicance values 
were calculated against PlsY-GFP using a two-tailed unpaired student t-test. ***P < 0.001. (c) Colocalisation 
studies of PlsY-GFP with a range of membrane proteins translationally fused to mCherry in S. aureus RN4220 
(strains FW14-FW20). Fusions were expressed from an IPTG-inducible plasmid and luorescence images were 
deconvolved. White arrows indicate matching foci of luorescence signals while red arrows show non-matching 
signal foci. All scale bars represent 1 µm.

Figure 4. Phospholipid synthesis enzymes, MreD and CydB interact with PlsY. (a) FRET eiciencies calculated 
using a donor photo bleaching FRET system. All investigated strains expressed plsY-gfp together with a protein 
of interest translationally fused to mCherry (strains FW14-FW20). Signiicance values were calculated using 
a two-tailed unpaired student t-test. **P < 0.01. he interaction analyses of PlsY with MreD, CdsA, SecY and 
MscL were shown previously14. (b) FRET eiciencies of protein interactions on a subcellular level of PlsY 
with MreD, CydB or SecY. Non-dividing and dividing cells were analysed. In addition, dividing cells were 
further dissected into the septum and periphery. In the case of interactions with SecY some negative FRET 
eiciency values were calculated. We do not, of course, claim a true negative FRET eiciency, simply that the 
donor luorophore bleached more rapidly in these experiments. It was necessary to include these results for 
completeness.
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The FRET-based protein-protein interaction system also allowed subcellular determination of protein 
co-localisations. his was achieved by the analysis of GFP luorescence intensity over time of selected subcellu-
lar compartments such as cells that are or are not undergoing cell division and the cell periphery or septum of 
dividing cells. Interactions were found in cells undergoing cell division as well as in cells without obvious septa. 
CydB interacts with PlsY mainly in dividing cells at the cell-periphery while the interaction of MreD with PlsY 
occurs at all analysed subcellular levels (Fig. 4b). Consistent with the whole cell FRET analysis, PlsY does not 
interact with SecY in any subcellular compartment. Overall, these interaction analyses suggest the formation of a 
phospholipid synthesis enzyme complex consisting of at least of PlsY, CdsA and PgsA which would allow possible 
metabolic channelling of intermediates. MreD might act as a spatial organiser to stabilise the complex formation 
as we showed previously14. he involvement of CydB in this complex suggests a higher level of complex formation 
linking several cellular aspects.

MreD of S. aureus exhibits a non-uniform distribution when expressed heterogeneously in E. 
coli. If heterogeneous pattern formation is an intrinsic property of the proteins, then this might also be prop-
agated when expressed in a heterologous host. Expression of PlsY-GFP in E. coli was found to be lethal leading 
to cell lysis (data not shown). Expression of S. aureus MreD fused to eYFP in E. coli revealed a striking punctate 
patterned distribution, where MreD appears to be localised in foci along the membrane of the cell cylinder and 
it does not preferentially accumulate at the poles (Fig. 5a). he role of the cell wall in the localisation of MreD 
was determined by spheroplast generation of the fusion containing E. coli strain by treatment with lysozyme and 
addition of EDTA to the medium. Interestingly, MreD-eYFP localisation was altered upon spheroplast formation 
and the fusion was more homogeneously dispersed in the membrane as shown by microscopy (Fig. 5b) and 
CV-calculations (Fig. 5c, see Fig. S2d for MreD-eYFP in rod-shaped E. coli). hus, potentially cell geometry is 
needed for MreD pattern formation in E. coli, or alternatively a functional cell wall might be required. Of course, 
expression in a heterologous host is an artiicial situation and needs to be interpreted with caution. he role of a 
functional cell wall was tested for PlsY-GFP in S. aureus by protoplast formation ater lysostaphin digestion. Both, 
lysostaphin treated and untreated (control) cells were suspended in a sucrose bufer that prevents protoplasts 
lysis. Image analysis revealed that PlsY-GFP in protoplasts is more heterogeneously distributed than in untreated 
cells (Fig. 5e). Protoplasts do not display septa and so this localisation of PlsY is lost (Fig. 5d). he redistribution 
of PlsY from the septum to the cell periphery during protoplast formation might create a more distinct hetero-
geneous localisation pattern and also indicates that the underlying mechanism that distributes PlsY is not found 
at the cell wall.

Understanding the basis of membrane protein distribution. To begin to understand those mech-
anisms that could underpin the observed protein patterns, with the discovery of domains and lipid rafts it 
has become evident that the bacterial membrane is highly organised with speciic lipids and associated pro-
teins forming specialised subcellular compartments. Squalene-dependent lipid rats21,23,24, cardiolipin25–29 or 
phosphatidyl-ethanolamine membrane domains30,31 were reported to preferentially localise to certain sub-cellular 
cues or distribute heterogeneously in discrete foci.

he staphylococcal membrane is mainly composed of three phospholipids: phosphatidyl-glycerolphosphate 
(PG), lysinylated phosphatidylglycerolphosphate (LPG) and cardiolipin (CL)32,33. LPG is synthesised by MprF, 
PG by PgsA and cardiolipin requires the enzymes Cls1 and Cls2. he pgsA gene is apparently essential34, but 
mprF, cls1 and cls2 have been previously characterised genetically35–37. Using S. aureus SH1000 strains carrying 
the respective mutations both LPG and CL were found to have no apparent role in the localisation of PlsY-GFP 
by CV analysis (Fig. 6a,b).

Lipid rats in S. aureus have been described to require the cholesterol precursor squalene21. he synthesis of 
squalene can be inhibited by zaragozic acid, which in turn causes the degradation of lipid rat cargo such as FloT. 
Although we could observe the degradation of FloT-eYFP by a loss of luorescence when cells are treated with 
zaragozic acid, no efect on the localisation of PlsY-GFP could be seen (Fig. 6a,b and Fig. S6) suggesting that 
squalene is not required for the positioning of PlsY.

To test the role of cell metabolic status in PlsY localisation, cells were treated with the fatty acid synthesis 
inhibitor cerulenin38 and the uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP)39. CCCP 
has been demonstrated previously to cause the delocalisation of MreB in B. subtilis40. In both cases, even though 
growth of S. aureus was inhibited, the PlsY-localisation was unafected (Fig. S7a,b).

SDS is an ionic detergent that denatures proteins and treatment of cells led to a loss of the PlsY distribution 
increasing its CV value from 15.9 in untreated cells to 24.7 in cells treated with 2 mM SDS (Fig. S8c). he punctate 
distribution of PlsY disappeared and it was found in one or two patches in the membrane (Fig. S8a,b). As SDS 
intercalates into the membrane, it may perturb and alter the overall integrity and local geometry required for the 
localisation of PlsY.

Wall teichoic acids (WTAs) are polymers covalently attached to the cell wall peptidoglycan and have been 
shown to be important for the localisation of the cell wall associated amidase Atl41 and of the cell wall biosynthetic 
proteins PBP4 and Fmt42,43. he tarO gene is required at an early stage in WTA biosynthesis and its deletion led 
to a substantially greater CV value for PlsY-GFP (Fig. 6a,b). he tarO cells also have a size increase (Fig. S9) com-
pared to their parent, which may result in more clearly observable PlsY-foci.

The CV value for the tarO mutant was increased concomitant with a greater cell volume (Fig. 6a,b and 
Fig. S9). To determine if the cell size is a contributor to PlsY localisation, cells were treated with the FtsZ inhib-
itor PC19072344,45. he inhibitor stabilizes FtsZ protoilaments into foci, preventing cell division44,45. It causes 
staphylococcal cells to ‘swell’44, as luorescent amino acid incorporation studies show peptidoglycan is laid down 
around the cell instead of mostly at the septum46. Surprisingly, cells treated with PC190723 exhibited a more 
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homogeneous distribution of PlsY (Fig. 6a,b and Fig. S10a,b,c). he CV-factor dropped from 19 (untreated) to 
13 (60 min treatment) and remained at that level while cells continuously increase in size (Fig. S10b,c). hus, no 
correlation between CV-factor and cell size is observed.

Discussion
An analysis of membrane protein distribution revealed a heterogeneity in the membrane of S. aureus. his is 
manifested as a punctate pattern that coalesces at the septum during division, with proteins also present around 
the rest of the cellular periphery. A key question is to explain how such heterogeneous distributions arise, are 
maintained and change during the cell cycle?

heoretically, membrane protein patterns such as the ones observed here can be generated by the intrinsic 
properties of the molecules themselves14. If integral membrane protein complexes impose a suiciently large 
local curvature on the membrane, protein complexes can themselves spontaneously form the observed patterns. 
A homogeneous or random distribution would be accompanied with high energy costs to counteract the intrinsic 
locally induced membrane curvature imposed by the protein complexes. his model provides a basic frame-
work from which to test the diversity of localisation behaviours and those many parameters that determine the 
observed output.

Inhibition of FtsZ by PC190723 caused the disruption of PlsY-localisation. his is not simply due to loss of 
septation as S. aureus protoplasts still exhibit the PlsY localisation pattern. FtsZ is well known to mediate cell divi-
sion but also has a function in cell elongation in rod-shaped cells47,48. his suggests that FtsZ has a hitherto unde-
scribed role in membrane protein organisation, independent of septation in S. aureus. his may occur directly or 
via another factor that acts to control protein distribution. he action of PC190723 is also important as it reairms 
the heterogeneity in PlsY localisation in the untreated cells.

A redistribution of S. aureus MreD (MreD-eYFP) in E. coli also occurred in spheroplasts resulting in loss of 
its heterogeneous distribution. During heterologous expression, SaMreD might be localised within the MreBCD 
complex49,50 and be afected by the changed shape leading to its delocalisation.

A previous study described a link between the acyl–acyl carrier protein phosphate acyltransferase PlsX in 
Bacillus subtilis with the cell divisome51. PlsX was found to localise in a punctate pattern and its deactivation 
caused aberrant Z-ring formations reminiscent of the role of PlsY in S. aureus14. In addition, Takada et al., pro-
posed that PlsX localises prior to the Z-ring at the future division site, a claim supported by localisation studies 
and an interaction found between PlsX and the FtsZ-anchoring protein FtsA51. It seems likely that PlsY, poten-
tially together with PlsX, has a similar role in S. aureus and may contribute to the future cell division site place-
ment with an interplay directly or indirectly with FtsZ. A very recent study demonstrated that PlsX in B. subtilis 
is localised in luid membrane micro domains that are targeted by daptomycin52. his inding its into our obser-
vations in S. aureus for the localisation of other phospholipid synthesis enzymes suggesting that luid membrane 
micro domains may also be found in S. aureus. A logical next step would be to investigate whether the staphylo-
coccal membrane is composed of diferentially luid membrane compartments and their relation to heterogene-
ously localised membrane proteins.

Figure 5. Role of the cell wall in membrane protein localization. (a) Phase contrast and luorescence images 
(deconvolved) of E. coli C43(DE3) with episomal IPTG-induced expression of mreD-eyfp (E. coli C43(DE3) 
mreD-eyfp). (b) Phase contrast and luorescence images (deconvolved) of spheroplasts of E. coli C43(DE3) 
mreD-eyfp. (c) CV-factor calculation of deconvolved images of MreD-eYFP in E. coli C43(DE3) mreD-eyfp rods 
and spheroplasts. (d) Fluorescence images (deconvolved) of protoplasted and native cells of S. aureus SH1000 
JGL232 (plsY-gfp). White arrows indicate septal PlsY-GFP localisation, which is not seen in protoplasts. (e) 
CV-factor calculation of deconvolved images of PlsY-GFP in native cells and protoplasts of S. aureus SH1000 
JGL232 (plsY-gfp) (based on 10 cells for each group). All signiicance values were calculated using a two-tailed 
unpaired student t-test. ***P < 0.001. All scale bars represent 1 µm.
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he cytochrome BD subunit II CydB localises in patches mainly at the cell-periphery. his is consistent with 
indings in E. coli describing CydB to be concentrated in mobile domains53. Other studies on respiratory proteins 
such as the succinate dehydrogenase (SDH) and ATP synthase in B. subtilis54 or the SDH and the NADPH dehy-
drogenase in Synechococcus elongatus revealed a localisation pattern in discrete spots in the membrane55. More 
evidence for a laterally heterogeneous membrane organisation was shown in Synechocystis sp. PCC 6083 where all 
four FtsH proteases, which play an important role in the repair of photo-damaged photosystem II, show distinc-
tively patchy distributions in the membranes56.

Here we found an apparent homogeneous non-septal localisation for SecY, as has been described for E. coli57 
and B. subtilis58. However, another study using luorescently labelled secretion substrate coupled with SecY and 
SecA GFP-fusions demonstrated that secretion takes place at discrete foci along the tubular axis of B. subtilis59. 
Perhaps this highlights a diversity of localisation mechanisms across the species.

Under the control of its native promoter, PlsY, and other phospholipid biosynthetic proteins exhibit a heter-
ogeneous distribution in the membrane. PlsY-GFP puncta were only observed when weakly expressed from an 
IPTG-inducible system and higher expression led to uniformly distributed PlsY. A similar observation was made 
by Nenninger et al., analysing a model membrane protein in E. coli, which distributes in domains of about 100 nm 
at low concentrations while the localisation pattern was lost at higher expression levels60. It was suggested that 
increased levels of protein will result in too high number of these domains to be able to distinctively visualise 
them. hus, the level of membrane protein afects the distribution.

Collectively, our observations are in agreement with the ‘compartmentalised luid’ or ‘partitioned’ model 
of biological membranes61–63. Accordingly, a random membrane protein distribution must be regarded as the 
exception rather than the rule. he evolution of patterning as part of intrinsic protein properties pertains to 
optimisation of function. hus, metabolic channelling through the formation of protein complexes anchored to 
the membrane through the bending imposed by the complexes themselves could be a common mechanism. he 
supramolecular organisation of membrane proteins described here and in other recent studies14,53,55,56,60 could be 
a common feature and apply across all biology.

Methods
Bacterial strains and growth conditions. All strains used in this study are listed in Supplementary 
Table 1. E. coli was grown in lysogeny broth (LB) and S. aureus in brain heart infusion (BHI) medium at 37 °C. 
Medium was supplemented with the following antibiotics when applicable: Ampicillin (Amp) 100 µg/ml; 
Kanamycin (Kan) 100 µg/ml; Erythromycin (Ery) 5 µg/ml; Lincomycin 25 µg/ml; Tetracycline (Tet) 5 µg/ml; 
Chloramphenicol (Cm) 10 µg/ml.

Labelling of peptidoglycan synthesis was achieved by incubation of cell cultures in 7-hydroxycoumarin- 
3-carboxylic acid-amino-D-alanine (HADA46; 50 µM) at 37 °C for 5 min or 30 min (for PC190723 treated cells).

SDS treatment of cell was performed on 1 ml bacterial culture samples of exponentially growing cells that were 
harvested by centrifugation and resuspended in PBS supplemented with various concentrations of SDS (0, 0.125, 
0.25, 0.5, and 2 mM). hese were incubated covered in foil for 10 min at RT on a rotary wheel before analysis by 
luorescence microscopy.

Figure 6. Inhibition of FtsZ disrupts the localisation pattern of PlsY. (a) Fluorescence images (deconvolved) of: 
FW21, S. aureus SH1000 plsY-eyfp in CL-deicient background (∆cls1/2); FW22, S. aureus SH1000 plsY-eyfp in 
LPG-deicient background (∆mprF): FW23, S. aureus SH1000 plsY-eyfp in WTA-deicient background (∆tarO); 
JGL232 (S. aureus SH1000 plsY-eyfp) treated with the FtsZ inhibitor PC190723 and the squalene-synthase 
inhibitor zaragozic acid. Scale bars represent 1 µm. (b) CV-factor calculation of deconvolved images of all 
investigated groups. Signiicance values against the untreated group were calculated using a two-tailed unpaired 
student t-test. ****P < 0.0001; *P < 0.05.
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he efect of cerulenin (100 µM), carbonyl cyanide m-chlorophenyl hydrazone (CCCP; 0.5 and 2.5 µm) and 
zaragozic acid (1 and 10 µM) on the localisation of PlsY-GFP was tested by growth in the presence of the inhibitor. 
All chemicals were added to the growth medium ater dilution of an overnight culture while the FtsZ inhibitor 
PC190723 (10 µg/ml) was added ater the cell culture reached on OD600 ~ 0.5. Cells were analysed prior to and 
ater 60, 90 and 120 min of addition of PC190723. Additionally, to indicate the cell cycle stage, cells were labelled 
with HADA (50 µM) during the inal 30 min of PC190723 treatment.

Protoplast generation of S. aureus. S. aureus SH1000 plsY-gfp was subcultured from an over-night culture 
to an OD600 = 0.05 and grown in BHI medium for 3 h to an OD600≈1.5. Cells were recovered by centrifugation 
and resuspended in SMM-BHI medium (50% BHI (v/v), 50% SMM (v/v) (SMM: 1 M sucrose, 0.04 M maleic acid, 
0.04 M MgCl2 × 6H2O, pH 6.5)). he culture was then split into two 500 µl fractions. One fraction was treated with 
5 µl lysostaphin (5 mg/ml stock solution) for 10 min at RT on a rotary wheel whereas the other fraction was treated 
the same way without lysostaphin. Protoplast generation was monitored by loss of turbidity and CFU when treated 
with 1% (w/v) SDS. Protoplasts were placed on a non-coated glass slide and analysed by luorescence microscopy

Spheroplast generation of E. coli. Overnight-cultures of E. coli C43(DE3) mreD-eyfp (E. coli C43(DE3) 
containing the plasmid pWALDO-mreD-eyfp) were diluted in BHI to an OD600 = 0.05 and grown at 37 °C for 1 h in 
the presence of kanamycin (50 µg/ml), 250 rpm. Subsequently, 0.6 mM IPTG was added and cultures were grown 
for another 2 h at 37 °C. Cells were harvested and washed with ice-cold Tris-HCl (10 mM, pH 7.5) and the pellet 
was resuspended to an OD600 = 0.6 in sucrose bufer (33 mM Tris-HCl (pH 8.0), 20% sucrose (w/v)). 80 µl of EDTA 
(0.1 M) and 400 µl lysozyme (1 mg/ml) were added to 1 ml of resuspended cells and the tube was covered in foil and 
incubated at 4 °C on a rotary wheel for 30 min. Cells were then washed with and resuspended in ice-cold sucrose 
bufer. Prepared spheroplasts were placed on non-coated glass slides and analysed by luorescence microscopy.

Strain and plasmid construction. Oligonucleotides were manufactured by Euroins Genomics (Ebersberg, 
Germany) and DNA sequences were veriied by Sanger DNA sequencing services provided by GATC Biotech AG 
(Konstanz, Germany). All oligonucleotides used in this study are listed in Supplementary Table 2. A detailed 
description of the strain construction procedure can be found in the Supplementary Information.

Western blotting. Western Blotting Substrate was purchased from BioRad. A detailed description of the 
western blotting procedure can be found in the Supplementary Information.

Fluorescence microscopy. Unless otherwise noted, imaging was undertaken with a Deltavision RT 
Deconvolution microscope (Applied Precision) with an Olympus IX70 microscopy system (Olympus U-RFL-T 
and IX-HLSH100 lamps, and Olympus UPlanApo 100x/1.35 Oil Iris Lens), with Sotworx 3.5.1 sotware. Cells 
were ixed for 30 min in 4% (v/v) para-formaldehyde before analysis by luorescence microscopy. Fluorescence 
images are shown using a linear lookup table.

Deconvolution (iterative constrained deconvolution) was carried out using Sotworx (3.5.1).

Super resolution radial fluctuation (SRRF) imaging. SRRF imaging was carried out on a Nikon 
N-STORM microscope with a 100x objective (Plan-APOCHROMAT 100x/1.49 Oil, Nikon) and additional 1.5x 
magniication to collect luorescence onto an EMCCD camera (iXon Ultra 897, Andor). Samples were prepared 
as follows. 10 µl of exponentially grown, ixed S. aureus SH1000 JGL232 (plsY-gfp) were resuspended in PBS and 
placed onto #1.5 thickness clean coverslips coated in poly-L-lysine and let for 20 min to settle. he coverslip was 
then washed once in milli-Q water and mounted in 100 mM mercaptoethylamine before imaging. For each SRRF 
image, 500 frames were acquired with a 488 nm laser operating at 100% power and 10 ms exposure time. he 
resultant time series were processed with the NanoJ-SRRF sotware package in Fiji.

Whole culture measurements of GFP expression. IPTG controlled plsY-gfp expression from a plasmid 
pWhiteWalker10 was carried out by diluting overnight cultures to an OD600 = 0.05 followed by incubation at 
37 °C, 250 rpm, until an OD600 ~ 1. 50 or 500 µM IPTG were added to induce the expression of plsY-gfp. Samples 
were taken prior to and 1, 2 and 3 h post induction. Fluorescence of samples was measured using a Tecan plate 
reader with 100 µl cells adjusted to an OD600 = 5 that were washed and resuspended in PBS, followed by exposure 
for 1 sec at 485 nm and emission at 535 nm.

Protein-protein interaction studies. Fresh transformants of RN4220 carrying pWhiteWalker plas-
mids were used for FRET experiments. Overnight cultures were diluted to OD600 = 0.025 in 50 ml BHI supple-
mented with erythromycin (5 µg ml−1) and lincomycin (25 µg ml−1) and grown at 37 °C, 250 rpm, for 2.5 h to 
an OD600 ≈ 0.4. Cultures were diluted again to OD600 = 0.025 in 50 ml BHI supplemented with erythromycin 
(5 µg ml−1), erythromycin (25 µg ml−1) and 0.5 mM IPTG followed by incubation at 37 °C, 250 rpm, for 2 h to an 
OD600 ≈ 0.4. 1 ml samples were harvested by centrifugation at 13,000 rpm for 3 min and samples were washed with 
1 ml PBS, ixed and prepared on poly-lysine slides.

Image acquisition was carried out using a Nikon Ti Eclipse inverted microscope and NIS elements sotware 
under a 100x oil lens in the FITC channel. he following settings were used for imaging:

×– –

– –

– –

Format Binning 2 2 Exposure 500 ms

Readout mode Global Shutter Readout rate 560 MHz
Dynamic Range 12 bit & Gain 1 Sensor mode Normal
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Images were taken continuously over 6 min at 488 nm and luorescence intensity over time was used to deter-
mine the photobleaching decay rate in arbitrary units/frame. hese values were used to calculate the FRET ei-
ciency using the following formula:

= − τ τE 1 / ’ (1)PB PB

where τPB is the time constant of PlsY-GFP in the absence of an acceptor and τ’PB is the time constant of PlsY-GFP 
in presence of the investigated fusion. In other words, expression of plsY-gfp from pWhiteWalker10 was used for 
the determination of τPB.

Quantitative Image Analysis. Mander’s Coeicient. Both Mander’s coeicient and Pearson’s coeicient 
analyses were tested, leading to the same conclusions. However, Mander’s coeicient has several theoretical 
advantages for our data64.

Samples were prepared and imaged the same way as described before and three image ields with comparable 
amounts of cells per strain were taken. Images were deconvolved and both convolved and deconvolved images 
were analysed. Channels were separated and the background of luorescence images was subtracted (Rolling Ball 
radius: 50 pixels). he threshold of the FITC channel image was auto adjusted and a selection of pixels within the 
threshold was created. Manders (M1) coeicient was determined using the Coloc2 Plugin in Fiji ImageJ using the 
threshold selection for both images. his procedure was repeated for all three replicates.

Coeicient of variation. Fluorescence images were converted to polar coordinates using the polar transformer 
plug-in for Fiji-ImageJ (https://imagej.nih.gov/ij/plugins/polar-transformer.html) where the y-value represents 
the angle and the x-value stands for the distance from the centre of the image. An intensity proile of this image 
was then created and plotted. he intensity values were used to calculate the standard deviation as an indicator for 
heterogeneity. he standard deviation is both inluenced by the variation of luorescence as well as the intensity. 
To remove the latter efect, the coeicient of variation (CV) was calculated as follows:

σ

µ
=CV

100 (2)

where σ and µ are the standard deviation and mean of the distribution of luorescence by angle (Fig. S2) and 100 
is an arbitrary scaling factor.

A high CV indicates a more heterogeneous distribution of luorescence signal, while low values indicate a 
more homogeneous distribution. Since cytoplasmic signals afect the CV the measurements were further opti-
mised by removing the cytoplasm. his was performed by deleting approximately 20% of the cell volume from 
the cell centre. However, this procedure was not carried out for deconvolved images since these had very low 
cytoplasmic signals. CV measurements were made using n = 20 cells per group unless otherwise stated.

Statistics. Standard deviations and student t-tests were calculated on at least three experimental replicates 
using GraphPad Prism 6.05 (GraphPad Sotware Inc., La Jolla, California).
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