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We analyze the cascade capture of charge carriers due to the interaction with acoustic phonons
in highly doped semiconductors using a model that describes the recombination of photo-ionized
carriers as a continuous relaxation of carriers in the energy space both at positive and negative
energies in the field of a set of impurity ions. Such description enables simultaneous calculation of
non-equilibrium carrier distribution formed by interaction with acoustic phonons in the presence of
impurity traps, and the time of recombination in a wide range of concentrations of capture centers
and phonon temperatures. Additionally, we calculated the time of cascade recombination in the
presence of fast scattering processes forming a Maxwellian distribution of free carriers. We show,
that experimentally observed concentration and temperature dependence of carrier life times in
highly doped semiconductors can be described within the model of the cascade capture to uniformly
spaced capture centers, and the main factor that determines the regime of cascade capture is the
ratio of the thermal energy and the energy of the overlap of impurity potentials.

PACS numbers: 72.20.J,78.47.D-,71.55.-i

I. INTRODUCTION

The states of shallow impurity atoms in semiconduc-
tors are analogous to those of free atoms. As such, they
provide the possibility to bring the rich variety of quan-
tum effects observed in atoms and in molecular gases
to the solid state, where the benefits of semiconductor
device fabrication technologies and combined electrical
and optical control can be used. A number of quan-
tum electronic applications based on impurity atoms in
semiconductors have been developed during the past two
decades [1, 2], such as lasers on shallow impurity transi-
tions [3, 4], and qubits based on impurity atoms [5–11].
Optical and electrical manipulation of qubits based on
impurity atoms, and optical pumping of impurity lasers
lead to ionization of a considerable fraction of impurity
centers. Heating of the carrier distribution leads to re-
duction of the population of localized impurity states, to
enhancement of impact interactions, and to reduction of
coherence times of impurity states. The adverse effect
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of high free carrier concentrations on the performance
of impurity based lasers and qubits can be reduced in
highly doped samples with high compensation levels due
to faster recombination. Fast recombination is also im-
portant for improvement of the speed of semiconductor
detectors based on impurity transitions. However, a thor-
ough theoretical treatment of recombination processes in
highly doped semiconductors has not been developed so
far. Such analysis is especially timely now due to a re-
cent advance in time resolved spectroscopy investigations
of relaxation to impurity centers [8, 12–15], providing the
necessary experimental basis for verification of the pro-
posed approach.

Recombination to shallow impurity centers in semicon-
ductors was investigated extensively due to their role as a
source of free carriers in semiconductor electronic devices.
It was found that the main recombination process in a
wide range of temperatures and concentrations of impu-
rity centers is cascade capture due to the interaction with
acoustic phonons [16, 17]. The characteristic energy of
the emitted phonon is much smaller than the ionization
energy, thus excited carriers relax gradually through the
ladder of excited impurity states. The model of cascade
capture was originally developed for isolated Coulomb
centers [16, 18]. This model implies that the capture rate
is proportional to the concentration of impurity ions. The
measurements of impurity photoconductivity [19] have
shown that the concentration dependence of the carrier
life time becomes weaker in highly doped samples. A
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similar weak concentration dependence of recombination
time has been observed recently in pump probe investiga-
tions of impurity absorption relaxation [15] A qualitative
model of cascade capture in highly doped semiconduc-
tors have been proposed earlier in [17], explaining the
weak concentration dependence of the carrier life times
by the influence of the non-uniformity of the spatial dis-
tribution of impurity ions. This model implies that the
non-uniformity of impurity ion distribution leads to fluc-
tuations of potential at the bottom of the band [20], and
the carriers with the energy below the amplitude of po-
tential fluctuations can be regarded as captured, as they
do not take part in conductivity. Capture time is then
determined as the energy relaxation time of the carriers
with the energy equal to that of the amplitude of poten-
tial fluctuations. However, this model is not appropriate
for the analysis of recombination times obtained from the
measurements of impurity absorption relaxation [15], as
the carriers relaxing below the level of potential fluctu-
ations still influence the absorption modulation. More-
over, the non-uniform potential of impurity centers is not
the only factor that determines cascade capture at high
doping concentrations. The overlap of the orbits essential
for cascade capture occurs also in the case of a uniform
distribution of impurity ions. Additionally, fast cascade
capture at high doping concentrations can lead to for-
mation of non-equilibrium carrier distributions, with re-
duced population of the states near the band edge that
are responsible for cascade recombination [21]. However,
quantitative analysis of these factors has not been per-
formed yet.

Here we investigate the dependence of cascade recom-
bination on the doping level using the quasi-classical ap-
proach for the calculation of the carrier relaxation in the
field of a set of impurity ions [22]. This approach en-
ables the account of the overlap of the potentials of the
neighboring impurity centers and the analysis of non-
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FIG. 1: Potential of a set of uniformly spaced charged attrac-
tive centers. EN = e2/εRN is the energy of the overlap of
impurity potentials, 2RN – the distance between the neigh-
boring centers, Ep – energy of photo-ionized carriers.

equilibrium distribution of photo-ionized carriers formed
by acoustic phonon assisted relaxation and recombina-
tion. Using this model, we derive integral expressions de-
scribing the cascade capture time in a wide range of dop-
ing concentrations and temperatures. Additionally, we
calculated the time of cascade recombination in the pres-
ence of fast scattering processes forming a Maxwellian
distribution of free carriers. We show that concentration
and temperature dependence of recombination time ob-
served in highly doped semiconductors [15, 19] can be
described within the model of uniformly spaced impurity
ions (Fig. 1.). We explain the different regimes of cascade
capture by the balance of the fluxes of charge carriers in
the energy space: the relaxation flux due to spontaneous
emission of acoustic phonons and the opposing thermal
diffusion flux due to induced phonon assisted transitions.
We show that this balance is determined by the ratio of
the thermal energy and the energy of overlap of impurity
potentials, that determines the energy scale of the change
of the density of states in the field of impurity centers.

II. ACOUSTIC PHONON ASSISTED

RELAXATION IN THE FIELD OF A SET OF

ATTRACTIVE COULOMB CENTERS

We calculate the time of cascade capture in the field
of a set of attractive Coulomb centers due to interaction
with acoustic phonons using the quasi-classical approach,
based on the assumption that the scattering probabili-
ties of a charge carrier in the field of impurity centers
are the same as that of a free carrier with the energy
equal to the kinetic energy of a charge carrier in the
given point of space. Quasi-classical description of cas-
cade capture can be used when the energy gap between
impurity states does not exceed the characteristic energy
of emitted phonons. This approach has been proposed
in [16], and further refined in [18], where the rate of the
cascade capture to isolated attractive Coulomb centers
was calculated assuming equilibrium distribution of free
carriers.

Carrier distribution f(r,p) in the field of attractive
centers is described by the Boltzmann kinetic equation.
Momentum relaxation due to interaction with acoustic
phonons is much faster than energy relaxation, thus we
assume that the distribution function f depends only on
the total energy in the field of impurity ions:

E = E + V (r), (1)

where E is kinetic energy of charge carriers and V (r) is
the potential of a set of attractive impurity centers. In
order to account for the overlap of the orbits of the neigh-
boring attractive Coulomb centers and for the formation
of non-equilibrium distribution of photo-ionized carriers,
we modify the procedure proposed in [18], describing the
process of recombination as a continuous relaxation of
charge carriers in the space of both positive and negative
total energies in the field of a set of attractive centers
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(Fig. 1.). We describe the source of photo-ionized car-
riers by a delta-function at the energy Ep assuming the
width of the radiation spectrum much smaller than the
energy of overlap of impurity potentials and the thermal
energy. Since the energies of emitted acoustic phonons
are usually much smaller than the electron kinetic en-
ergy, collision integral describing interaction with acous-
tic phonons can be presented in the differential form:

ρ̃
∂f

∂t
=
∂J

∂E
+ Iδ(E − Ep). (2)

Here I is the number of photo-ionized charge carriers
in the unit time in the unit volume, J is the relaxation
flux of carriers in energy space due to interaction with
equilibrium acoustic phonons with thermal energy T [18]:

J = B̃(E)

(

f + T
∂f

∂E

)

. (3)

Here we assume that the carrier flux J in the direction
of smaller energies is positive. The first term in equation
(3) describes the flux of carriers in the energy space due
to spontaneous emission of acoustic phonons (Js), it is
analogous to drift motion under a constant force. The
second term, proportional to the derivative of the distri-
bution function, is the carrier flux due to induced phonon
assisted transitions (Jd). This flux describes thermal dif-
fusion of carriers in the energy space. The drift coefficient
in the energy space B̃(E) and the density of states ρ̃(E)
are obtained by averaging of the corresponding functions
of kinetic energy E of charge carriers over the surface of a
constant total energy E in the field of a set of attractive
impurity centers:

ρ̃(E) =
1

V

∫

V

∫

ρ(E)δ(E − E − V (r))dEdr, (4)

B̃(E) =
1

V

∫

V

∫

B(E)δ(E − E − V (r)) dE dr. (5)

Here ρ(E) and B(E) = ρ(E)Eτ−1

E (E) are the density of
states and the energy drift coefficient of free carriers with
the energy E , and τE(E) is the time of the energy relax-
ation due to spontaneous emission of acoustic phonons.
The meaning of the energy drift coefficient B is that be-
ing multiplied by f it gives the carrier flux in the energy
space with the velocity of energy relaxation due to spon-
taneous emission of acoustic phonons: vE = Eτ−1

E (E).
The stationary solution of equation (2) corresponds to

the constant relaxation flux J everywhere except for the
vicinity of the energy of the source of photo-ionized car-
riers Ep. The relaxation flux independent on the en-
ergy is a manifestation of the conservation of the num-
ber of carriers under conditions of continuous relaxation
in the energy space. Imposing zero boundary condition
at large positive energies, reflecting the presence of only
one source of carriers at Ep, and at a negative energy E1,

|E1| >> T , where carriers can be considered as captured,
we get:

f(E) =



































J
T

E
∫

E1

exp ((x− E)/T )

B̃(x)
dx E ≤ Ep

J
T

Ep
∫

E1

exp ((x− E)/T )

B̃(x)
dx E ≥ Ep

(6)

with the stationary flux of recombining carriers equal to
the flux of photo-ionized carriers: J = I.

The recombination time is expressed in terms of the
distribution function using J = nτ−1

rec, where n =
f(−EN )Nz is the concentration of free carriers, the ef-
fective number of free carrier states is:

Nz =

∫ ∞

−EN

ρ̃(E)
f(E)

f(−EN )
dE, (7)

and EN is the energy of overlap of impurity potentials:

τrec =
f(−EN )

J
Nz (8)

Fast impact processes at high free car-
rier concentrations may lead to formation of
quasi-equilibrium distribution of free carriers:
fT (E) = exp ((−E − EN )/Te)n/Nz,T (Te) with the
effective number of free states for thermalized carrier
distribution:

Nz,Te
=

∫ ∞

−EN

ρ̃(E) exp

(−E − EN

Te

)

dE. (9)

The effective temperature of electron distribution can dif-
fer from the lattice temperature Te ̸= T in the case of
electric field heating. Probabilities of impact processes
decrease fast with the increase of the energy of transi-
tion between the localized states. Carrier distribution
over the localized states at the energies below E = −EN ,
where acoustic phonon assisted transitions are dominant,
can be obtained as a stationary solution of the Fokker-
Planck equation:

ρ̃
∂f

∂t
=
∂J

∂E
, (10)

satisfying zero boundary condition at large negative en-
ergy E1 and continuity boundary condition at E = −EN .
This solution is given by (6) at E ≤ −EN with J =
nτ−1

rec,Te
determined from the boundary conditions at

E = −EN , leading to the expression for the recombi-
nation time of the thermalized carriers:

τrec,Te
=
f(−EN )

J
Nz,Te

. (11)

For comparison, the recombination time τrec,i for iso-
lated centers in the case of the equilibrium carrier dis-
tribution obtained in [18] coincides with that given by
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expression (11) with Te = T in the limit of EN << T .
As we will show further, acoustic phonon assisted relax-
ation and recombination of photo-excited carriers forms
a Maxwellian distribution with Te = T , and the recom-
bination time τrec is close to τrec,i when the energy of
overlap of impurity potentials is much smaller than the
lattice temperature EN << T .
Let us now make assumptions about the band struc-

ture. We will imply a spherical non-degenerate parabolic
band with effective mass m, and the density of states
(without account of spin) ρ(E) = 4

√
2πm3/2

√
E/(2π~)3.

The energy relaxation time in a parabolic band due to
spontaneous emission of acoustic phonons for energies
E >> ms2 producing the main impact to integral (5) is:

τE(E) = L0

√

m/(2E), (12)

with L0 being the scattering length [24].
We calculate the density of states ρ̃ and the drift co-

efficient in the energy space B̃ implying the uniform dis-
tribution of impurity ions in space. This approach, first
proposed in the model of silicon donor lasers [22], and
later used for investigation of dynamics of cascade cap-
ture [23], excludes the influence of potential fluctuations
claimed as the main factor that determines the capture
rate at large doping concentrations [17]. On the other
hand, our results are valid also for non-uniform spatial
distribution of impurity ions as long as it does not lead
to a significant change of the integral parameters ρ̃ and
B̃. Further, we approximate the integrals in (4) and (5)
replacing the volume belonging to each impurity center
by a sphere with the radius

RN = (4πN+/3)
−1/3, (13)

with the potential inside this volume V (r) = −e2/εr, and
the energy of the overlap of impurity potentials

EN = e2/εRN . (14)

This approximation involves modifications in the regions
with relatively small kinetic energy of charge carriers,
producing a relatively small impact on the integrals (4)
and (5).
These approximations allow us to express the density

of states ρ̃ and the energy drift coefficient B̃ in elementary
functions of E/EN (see Appendix) with the correct be-
havior at negative energies below the energy of the over-
lap of potentials of impurity centers E = −EN , and at
large positive energies E >> EN (Fig. 2.). At E < −EN

ρ̃(E) and B̃(E) are equal to the corresponding parame-

ters of the isolated hydrogen like centers ρi =
E

3/2
B

2|E|5/2

and Bi =
8
3π

EB
~

e2

L0ε|E| (EB = e4m/2ε2~2 is Bohr en-

ergy) multiplied by the concentration of impurity ions,

while at E >> EN , ρ̃(E) and B̃(E) approach the corre-
sponding parameters of the free carriers ρ(E) and B(E).

The fastest relative change of ρ̃(E) and B̃(E) occurs at

the energies near the overlap of impurity potential, with
ρ̃(−EN ) = (3π/16)ρ(EN ) and B̃(−EN ) = B(EN ), and
the characteristic energy range where these parameters
change considerably is about EN (see the inserts in Fig.
2). As we show below, it is the maximum of the relative

speed of change of the energy drift coefficient B̃(E) that
plays the role of the bottle-neck for relaxing carriers, con-
trolling the balance of the carrier fluxes and the carrier
distribution in the energy space. And the main factor
that causes the decrease of the drift coefficient with re-
duction of energy is the decrease of the density of states
in the field of impurity ions.

The distribution function of photo-ionized carriers
(A.3) obtained introducing (A.1) and (A.2) in (6), nor-
malized to the occupation number at the energy of the
overlap of impurity potentials f(−EN ) = J(T/EN +
1)/B(EN ), is presented on Fig. 3. The shape of the
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FIG. 2: The densities of states: ρ – for continuum with
parabolic dispersion law, ρi – quasi-continuum of localized
states of an isolated Coulomb center, ρ̃ – in the field of uni-
formly spaced Coulomb centers with the concentration N+

(A.1) (a). The drift coefficient in the energy space: B – con-

tinuum , Bi –in the field of an isolated Coulomb center, B̃ –
in the field of uniformly spaced Coulomb centers (A.2) with
the concentration N+ (b). Inserts: relative speed of change

of ρ̃ and B̃ in the energy space normalized to E−1

N .
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energy dependence of the distribution function at the
bottom of the band strongly depends on the ratio of
the temperature to the energy of the overlap of impu-
rity potentials T/EN . At T/EN << 1, the energy drift

coefficient B̃ does not change much within thermal en-
ergy T , and, at the energies below Ep, the first term of
(3), corresponding to the relaxation flux due to sponta-
neous emission of acoustic phonons Js, is much larger
than the second one, corresponding to thermal diffusion
flux Jd(E) (Fig. 4). The distribution function at E < Ep

is then close to

f ≃ J/B̃(E), (15)

with the characteristic energy range of the population
decrease EN >> T . This indicates the reduction of the
population of the low energy states due to a fast cas-

cade process. The ratio of the fluxes Jd/Js = T
∂f
∂E

/f

is than determined by the relative change of the energy

drift coefficient within the thermal energy T ∂B̃
∂E

/B̃, and

the maximum of the latter is about T/EN (Fig. 2.).
At T/EN >> 1, the fast change of the energy drift co-

efficient B̃ within the thermal energy leads to a dras-
tic increase of thermal diffusion flux towards higher en-
ergies (Fig. 4 (b)). The opposing carrier fluxes than
have close magnitudes at the energies above −EN , much
larger than the resulting recombination flux: |Jd(E >
−EN )|/J > T/EN >> 1. The carrier distribution for
−EN < E < Ep is then close to the solution of (3) with
J = 0, a Maxwellian function f ∼ exp (−E/T ). This
indicates the formation of a bottleneck for relaxing car-
riers and their accumulation and thermalization at the
energies above that of the maximum of relative speed of

0 2 4 6 8
0

1

 T/EN=1/3, Ep/EN=-2/3
 T/EN=1/3, Ep/EN=1/3
 T/EN=1/3, Ep/EN=2
 T/EN=3,    Ep/EN=2

f(E
)/f

(-E
N
)

FIG. 3: Normalized distribution function for several values of
T/EN and Ep/EN (a). Energies of the photo-ionized carriers
are indicated by arrows. Note, that Maxwellian distribution
with Te = T is formed when T >> EN , and at any T when
the pumping energy Ep is close to the energy of overlap of
impurity potentials.

change of the energy drift coefficient ∂B̃
∂E

/B̃. The car-

rier distribution above the pumping energy Ep is always
described by a Maxwellian function due to the zero sta-
tionary flux of carriers in this energy region (the sharp
change of the slope of the distribution function and of the
carrier flux curves at E = Ep for T << EN is due to the
delta-function approximation of the energy dependence
of the photo-ionization flux). Thus, the characteristic
energy range of decrease of free carrier distribution func-
tion is equal to the lattice temperature T at T >> EN ,
and at T << EN it extends to EN or Ep + EN + T ,
whichever is smaller.

The calculated capture times are presented on Fig. 5.
The capture time with account of non-equilibrium distri-
bution of relaxing carriers is obtained by substitution of
(A.1) and (A.3) in (8):

τrec = τE(EN )

(

T

EN
+ 1

)

FN

(

T

EN
,
Ep

EN

)

, (16)

and the capture time in the model of thermalized free
carrier distribution is obtained by substitution of (A.1)

-2 0 2 4 6 8
0.1

1

10

 T/EN=1/3
 T/EN=1
 T/EN=2
 T/EN=3

J s(
E)

/J
(a)

-2 0 2 4 6 8
0.1

1

10

 T/EN=1/3
 T/EN=1
 T/EN=2
 T/EN=3

-J
d(
E)

/J

(b)

FIG. 4: Normalized relaxation flux due to spontaneous emis-
sion of acoustic phonons (a), and normalized thermal diffu-
sion flux (b) for several values of T/EN , with Ep = 3EN . The
energy of the photo-ionized carriers are indicated by arrows.
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in (11):

τrec,Te
= τE(EN )

(

T

EN
+ 1

)

FN,Te

(

Te
EN

)

. (17)

Here τE is given by (12), and the dimensionless functions

FN (y, z) =

∞
∫

−1

Fρ(x)F (x, y, z)dx/(T/EN + 1), (18)

and

FN,Te
(y) =

∞
∫

−1

Fρ(x) exp

(−x− 1

y

)

dx (19)
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 rec,Te , T/EN=1/15
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rec,Te , T/EN=4
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N
)

e
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 rec,  Ep/EN >> 20

 rec,  Ep/EN= 2/3

 rec, Ep/EN= -2/3

(EN)
 rec,i

 rec,Te , Te/EN=10

 

 
re
c/

(E
N
)

FIG. 5: (Color online) The time of cascade capture calcu-
lated using different approaches, normalized to the free car-
rier energy relaxation time due to spontaneous emission of
acoustic phonons τE at the energy of overlap of impurity po-
tentials EN : τrec – with account of the overlap of impurity
potentials and non-equilibrium distribution of photo-ionized
carriers (16); τrec,Te – with account of the overlap of impurity
potentials assuming Maxwellian distribution of free carriers
(17) with the effective temperature Te ≥ T , (T – the lattice
temperature); τrec,i – recombination time within the model
of isolated centers [17].

represent the effective numbers of free carrier states nor-
malized to ρ(EN )EN . The growth of these functions with
the increase of the energy range of the free carrier distri-
bution reflects the influence of the growth of the fraction
of high energy carriers that do not participate in cascade
capture. The factor T/EN + 1 in (16) and (17) is the
ratio of the relaxation flux due to spontaneous emission
of acoustic phonons at the energy of overlap of impurity
potentials to the total relaxation flux.

An important feature of the cascade capture times
given by expressions (16) and (17) is that the tem-
perature and the concentration of impurity ions enter
τrec,Te

/τE and τrec/τE at Ep/EN >> 1 only in the com-
binations T/EN and Te/EN . This means that the tem-
perature dependence and the concentration dependence
of recombination time are linked, and the proportional
change of T , Te and EN = e2(4πN+/3)

1/3/ε leaves the
ratio of the recombination time to the relaxation time at
the energy EN unchanged.

The dependence of capture times on T/EN calculated
within both models becomes weaker at small T/EN .
However, the decrease at small T/EN of the capture time
calculated with account for non-equilibrium distribution
of relaxing carriers, τrec, is much slower. The behavior of
τrec at small T/EN is in agreement with the slowing of
the concentration and temperature dependence observed
at high concentrations of capture centers [15, 19], and
with the fact that slowing down of the temperature de-
pendence commences at higher temperatures in the sam-
ples with higher impurity ion concentrations [19]. The
detailed comparison of the calculated results with exper-
imental data [15, 19] will be given in the next section.

Let us now consider cascade capture in the limiting
cases of high and low T/EN and Te/EN .

For low concentrations of impurity ions T/EN >> 1,
when impurity potential creates a bottleneck for relaxing
carriers, and recombination flux is much smaller than
thermal diffusion flux forming a Maxwellian distribution
of free carriers with Te = T , the effective number of free
carrier states is Nz ≃ (

√
π/2)ρ(T )T , leading to a recom-

bination time:

τrec = τE(EN )

√
π

2

(

T

EN

)5/2

. (20)

This time is inverse proportional to the concentration
of impurity ions and coincides with the cascade capture
time in the limit of the isolated impurity centers [17].

At high concentrations of impurity ions with
T/EN << 1 and Ep/EN >> 1, the energy range of
decrease of the non-equilibrium distribution function is
about EN , and the effective number of states of free car-
riers Nz ≃ 1.6ρ(EN )EN . Recombination time is then
given by:

τrec ≃ 1.6 τE(EN ). (21)

This time does not depend on the temperature, and de-
creases very slowly with the increase of impurity ion con-

centration as τrec ∼ N
−1/6
+ . For comparison, the time



7

of cascade capture in the limit of high concentrations of
impurity centers defined in [17] as the relaxation time at
the percolation energy (the amplitude of potential fluctu-
ations due to non-uniformity of impurity ion distribution)

E0 = 0.3K−1/12e2N
1/3
+ /ε, where K is the compensation

level, differs from that given by expression (21) by a fac-
tor τE(E0)/1.6 τE(EN ) ≃ 1.5K1/24 that varies within the
range 1.1 ÷ 1.5 for K above 10−3. Thus, in the limit
of high concentration of capture centers, our model pro-
duces the result close to that of the qualitative model of
[17], although our explanation does not involve the non-
uniformity of spatial distribution of impurity ions and
capture of carriers in the wells formed by potential fluc-
tuations. Within our model the change of the concen-
tration dependence of recombination time is explained
by the change of the energy dependence of the density of
states, leading to the change of the balance of the fluxes of
carriers in the energy space. At T/EN << 1 the density
of states and the energy drift coefficient do not change
much within the thermal energy, impurity potential does
not form a bottleneck for carrier relaxation. Thermal
carrier flux is then negligible, and the life time of a free
carrier is determined by the slowest time of energy re-
laxation due to spontaneous phonon emission. This time
corresponds to the minimum average kinetic energy of
carrier states in the field of a set of impurity ions, and
the latter is equal to the energy of the overlap of impurity
potentials.
Recombination time at high concentrations of impu-

rity ions decreases when carriers are excited with the
energies slightly above the energy of the overlap of im-
purity potential −EN < Ep < −T . The effective num-
ber of free carrier states is then determined by Nz ≃
0.6ρ(EN )(Ep + EN + T ), and the recombination time:

τrec ≃ τE(EN ) 0.6

(

Ep

EN
+

T

EN
+ 1

)

. (22)

In the case of formation of a quasi-equilibrium popu-
lation of free states with effective temperature Te, at low
concentrations of impurity centers with Te/EN >> 1,
recombination time is given by:

τrec,Te
= τE(EN )

√
π

2

(

T

EN
+ 1

)(

Te
EN

)3/2

. (23)

For lattice temperatures T >> EN , this time coincides
with the time of cascade capture of hot carriers obtained
in the model of isolated impurity centers [25].
In the limit of high concentration of impurity ions with

Te/EN << 1 and T/EN << 1 the effective number of
free states for a Maxwellian carrier distribution is deter-
mined by Nz,Te

≃ 0.6 ρ(EN )Te, and the recombination
time is:

τrec,Te
≃ τE(EN ) 0.6

Te
EN

. (24)

In contrast to the high concentration limit of the cas-
cade capture time from [17], this time grows linearly with

temperature Te and exhibits a faster dependence on the

concentration of impurity ions: τrec,Te
∼ N

−1/2
+ .

Thus, we derived the expressions for cascade capture
time in the model of uniformly spaced impurity ions. A
similar description of carrier relaxation in the field of a
set of ions can be used for an arbitrary ion distribution.
Let us estimate the influence of non-uniformity of impu-
rity ion distribution on recombination time. We suppose,
that the spatial average of impurity ion concentration is
N+, and the distribution of ions is described by an even
probability density function: P (N+ − N+). The mean
recombination rate can then be determined by:

W =

∫

W (N+)P (N+ −N+)dN+, (25)

where W (N+) = τ−1
rec is calculated in the model of the

uniform ion distribution. Assuming the with of the max-
imum of P (N+ − N+) smaller than characteristic range
of change ofW (N+), we can present the latter as a power
series of (N+−N+). The impact of the term proportional
to the first derivative of W (N+) to the mean recombina-
tion rate is zero for an even distribution P (N+ − N+).
Thus, the correction to the recombination rate due to the
non-uniformity of impurity ion distribution is determined
by:

W −W (N+) ≃
1

2

∂2W

∂N2
+

∣

∣

∣

∣

N+

(N+ −N+)2. (26)

This magnitude is zero for small concentrations of impu-
rity ions EN/T << 1 due to a linear dependenceW (N+).
For highly doped semiconductors with EN/T >> 1
the relative correction of the capture rate is (W −
W (N+))/W (N+) ≃ −0.07((N+ −N+)2/N+

2
), that is

much smaller than unity even in the case of the root-
mean-square deviation of the ion concentration compa-
rable to the mean ion concentration value.

III. COMPARISON WITH EXPERIMENTAL

DATA

The amount of experimental data on cascade capture
times in semiconductors is vast, with majority of investi-
gations performed with relatively low doped semiconduc-
tors. These data has been reviewed in [17], and a good
agreement with the model of cascade capture to isolated
impurity ions [18] has been demonstrated. Recombina-
tion time calculated using our model coincides with that
of [18] when the energy of the overlap of ion potentials is
smaller than thermal energy. Only few experimental in-
vestigations [13–15, 19] were dealing with relatively high
concentrations of capture centers. Below we verify our
approach to calculation of the cascade capture in highly
doped semiconductors using the temperature dependence
of recombination time obtained from photo-conductivity



8

1 10
1

2

3

4

5
6
7

 1
 2
 3
 1
 2
 3

, 1
0-1

0  s
ec

T,K

FIG. 6: Temperature dependence of the life time of photo-
excited carriers in p-Si. The measured life times in Si:B [19]
(simbols) with donor concentrations Nd, cm

−3: 1 – 2.3×1015,
2 – 6.0× 1014, 3 – 2.3× 1014, and the cascade capture times
in p-Si calculated using (16), with Ep >> EN (lines), N+,
cm−3: 1 – 2.3× 1015, 2 – 6.0× 1014, 3 – 2.3× 1014.

investigations of p-Si [19] and the concentration depen-
dence of recombination time obtained from the measure-
ments of the power dependence of the relaxation of trans-
mission modulation in p-Ge [15].
Figure 6 presents the comparison of recombination

time calculated using (16) with the data of [19]. Param-
eters used in the calculations are: effective mass equal
to the mass of the density of states of Si valence band
m = 0.5m0 with m0 – the electron mass, the scattering
length L0 = 3 × 10−4 cm, and the dielectric constant
of Si ε = 11.9. The figure shows that both the char-
acter of the temperature dependence and the absolute
values of the life times calculated using our model are
in good agreement with recombination times observed in
p-Si with high levels of doping [19]. A small mismatch of
experimental data with the curve with N+ = 2.3 × 1014

cm−3 can be explained by a decrease of the number of
Coulomb capture centers due to a correlation of location
of charged acceptors and compensating donor centers,
that becomes important at small temperatures [20, 26].
The low compensation of Ge sample used in pump

probe experiment [15] enables a wide range of variation
of the concentration of charged acceptors N+ by chang-
ing the power of excitation pulse (Fig. 7.). The influence
of acceptor-donor dipoles in pump probe experiments,
where the concentration of charged acceptors is deter-
mined by optical ionization and exceeds considerably the
donor concentration, is small. A Ge sample used in pump
probe experiments [15] was doped with Ga acceptor with
concentration Na = 2× 1015 cm−3 and a residual donor
concentration Nd was below 2× 1013 cm−3. The investi-
gated sample was cooled to about 5 K. The capture time
was determined as the decay time of transmittance mod-
ulation measured after the excitation by a 10 ps pulse
of laser radiation providing photon energies slightly ex-
ceeding the ionization energy of Ga centers in Ge, with
Ep = 0.5 meV. We calculate the concentration of the

107 108 109 1010 1011 1012
10-3

10-2

10-1

100

Ge:Ga
Na= 2×1015 cm-3

tpulse= 10 ps

Nd / Na

 0.001
 0.005
 0.01
 0.03
 0.1
 0.3
 0.8

 

 pumping rate (s-1)

N
+(

10
15

 c
m

-3
)

FIG. 7: (Color online) Concentration of charged impurity
centers in Ge:Ga sample after the pump pulse for different
compensation levels.

charged acceptors N+ = Nd+n taking into consideration
that the duration of the excitation pulse (10 ps) is shorter
than the recombination time, and assuming that excited
impurity states are not populated within the pulse du-
ration. Under these conditions, the population of the
ground acceptor state ng.s. is described by the equation:

dng.s.
dt

= −Wpng.s., (27)

whereWp = Pσ is the pumping rate, P – the photon flux,
and σ – the cross section of optical ionization (ionization
cross section of the ground state of Ga acceptor in Ge
determined from absorption spectra [27] is σ ≃ 9×10−15

cm−2). Solving (27) with ng.s.(t = 0) = Na − Nd and
using the condition of charge-neutrality Na = Nd + n +
ng.s., we obtain:

N+ = (Na −Nd)(1− exp (−Wpt)) +Nd. (28)

The dependence of the concentration of the ionized cen-
ters on the pumping rate depends strongly on the com-
pensation level. Indeed, without pumping N+ is equal to
the concentration of compensating impurity Nd; it grows
linearly at small pumping intensities and saturates at the
level N+ = Na when the optical ionization time becomes
shorter than the pump pulse duration and the ground
impurity state is depleted. According to Fig. 7, the con-
centration of ionized centers in the sample investigated in
[15], with the compensation belowK = 0.01, was growing
almost linearly throughout the whole range of pumping
rates, varying between 2×1013 cm−3 and 2×1015 cm−3.

Figure 8 shows the concentration dependence of the
cascade capture times in p:Ge at T = 5 K obtained
using our approach, with account of formation of non-
equilibrium distribution of photo-ionized carriers, for
Maxwellian carrier distribution with Te = T , and with
the models proposed in [17]. Here we use the parame-
ters: effective mass equal to the mass of the density of
states of Ge valence band m = 0.38m0, the scattering
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FIG. 8: Dependence of the cascade capture time in p-Ge on
the concentration of impurity ions calculated using different
approaches: τrec,Te – with account of overlap of impurity po-
tentials assuming equilibrium distribution of free carriers (17),
τrec– with account of overlap of impurity potentials and non-
equilibrium distribution of photo-ionized carriers (16), τrec,i
– within the model of isolated centers [17]; τE(EN ) is the en-
ergy relaxation time due to spontaneous emission of acoustic
phonons at the energy of the overlap of impurity potentials.

length L0 = 4.3× 10−3cm, and the dielectric constant of
Ge ε = 16. According to our calculations, the influence
of the overlap of impurity potentials becomes significant
already at the concentrations of charged acceptor cen-
ters in Ge about 1012 cm−3. At concentrations about
1.2× 1016 cm−3 the energy of potential barriers between
impurity ions approaches the binding energy of the sec-
ond excited impurity state, and at higher concentrations
of impurity ions the model of cascade capture is not ad-
equate. The minimum cascade capture time (about 100
ps at T = 5 K) can be reached at the concentration of
charged acceptors in Ge about 1016 cm−3 in the case of
the thermalized carrier distribution with Te = T .
Let us now compare the measured recombination time

dependence on the pump power [15] with that calcu-
lated using different models proposed in this paper and
in [17]. First we compare the experimental results with
the model proposed in [17] for high concentrations of
capture centers, and with that of the model of cascade
capture of thermalized carriers with Te = T to a set of
Coulomb centers (17) (Fig. 9). We see that, although
the recombination times calculated using the model of
[17] have the right order of magnitude, their depen-
dence on the pump power differs strongly from the ob-
served one. Recombination times calculated using (17)
are faster than the measured recombination times, and
the difference increases with the increase of the concen-
tration of impurity ions, indicating the significant role of
heating of free carrier distribution caused by fast recom-
bination. Indeed, our model that accounts for the for-
mation of non-equilibrium distribution of photo-ionized
carriers (16) provides a much better fit with the exper-
imental data (Fig. 10). In agreement with out model,
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1

10

tim
e 

(1
0-9

 s)

pumping rate (s-1)

 

Nd / Na
 0.001
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 0.01

  

rec,Te (EN)

 

Nd / Na
 0.001
 0.005
 0.01

 

FIG. 9: (Color online) Comparison of the experimental pump
power dependence of recombination time in Ge:Ga (Ge:Ga,
Na = 2 × 1015 cm−3, Nd/Na < 0.01, T = 5 K, Ep = 0.5
meV)[15] with the cascade capture time calculated for sev-
eral compensation levels below 0.01, with charged acceptor
concentrations from Fig. 7, τrec,Te – with account of overlap
of impurity potentials assuming a Maxwellian distribution of
free carriers with Te = T (17); τE(E0) – using the model
proposed in [17] for high concentration of capture centers.
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FIG. 10: (Color online) Recombination time: experimental
results (Ge:Ga, Na = 2 × 1015 cm−3, Nd/Na < 0.01, T = 5
K, Ep = 0.5 meV) [15], and cascade capture time calculated
with account of the overlap of impurity potentials and non-
equilibrium distribution of photo-ionized carriers (16) with
the concentration of impurity ions from Fig. 7.

the measured recombination time decreases fast at small
pumping levels, where the concentration of capture cen-
ters is relatively small. The decrease of the capture time
slows down before the number of ionized centers satu-
rates. This indicates the influence of the overlap of the
potentials of impurity centers and non-equlibrium distri-
bution of photo-ionized carriers. Overall, we can con-
clude, that our model (17) describes well the capture of
photo-ionized carriers in p-Ge within the wide range of
charged acceptor concentrations from 2 × 1013 cm−3 to
2× 1015 cm−3 that have been realized in [15].
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However, the minimum life time obtained within our
model is much longer than the recombination times (30
− 170 ps) measured in pump-probe experiments when
the number of capture centers was above 1016 cm−3 [14].
Such increase of recombination rate may be due to opti-
cal phonon assisted recombination. This recombination
channel is known to be dominant in p-Ge doped by deep
impurities [28], and for shallow acceptors in the condi-
tions of heating of charge carriers by strong electric field
[29]. It has been mentioned that optical phonon assisted
recombination may play a bigger role at high doping lev-
els [30]. Indeed, optical phonon assisted transitions bring
carriers directly to ground and first excited states with
localization radii much smaller than that of the states es-
sential for cascade capture to isolated impurity centers.
This may lead to a slower dependence of the cross section
of the optical phonon assisted recombination on the con-
centration of impurity ions than that of cascade capture.

IV. SUMMARY AND CONCLUSIONS

We analyzed the dependence of cascade recombination
due to interaction with acoustic phonons on the doping
level using the quasi-classical approach for the calcula-
tion of the relaxation of photo-excited carriers in the
field of a set of impurity ions [22]. This model is an
extension of the quasi-classical model of cascade cap-
ture to isolated Coulomb impurity centers proposed in
[18]. Our model enables simultaneous calculation of non-
equilibrium carrier distribution function formed by inter-
action with acoustic phonons in the presence of impurity
traps, and the time of recombination in a wide range of
capture center concentrations and temperatures. Addi-
tionally, we calculated the time of cascade recombina-
tion in the presence of fast scattering processes forming
a Maxwellian distribution of free carriers. We show that
the time of cascade capture in highly doped materials
decreases when the energy of the source of photo-ionized
carriers is close to the energy of potential barriers be-
tween the impurity centers, and in the presence of fast
scattering processes that cause thermalization of the free
carrier distribution.
We show that the concentration and temperature de-

pendence of recombination time observed in highly doped
semiconductors [15, 19] can be described within the
model of uniformly spaced impurity ions. We explain
the different regimes of cascade capture by the balance
of the fluxes of charge carriers in the energy space: the
relaxation flux due to spontaneous emission of acoustic
phonons and the opposing thermal diffusion flux due to
induced phonon assisted transitions. We show that this
balance is determined by the ratio of the thermal energy
T and the energy of the overlap of impurity potentials
EN , that determines the energy scale of the change of
the density of states and the energy drift coefficient in
the field of impurity centers. At low concentration of
impurity ions when the EN/T << 1, the fast change

of the density of states within the thermal energy forms
a bottle-neck for relaxing carriers, the opposing carrier
fluxes have close values much larger than the resulting
recombination flux. In this case a Maxwellian distribu-
tion of free carriers is formed, and the recombination time
coincides with that of the model of isolated impurity cen-
ters [18]. At high doping concentrations EN/T >> 1, the
density of states in the field of impurity centers does not
change much within the thermal energy, the thermal dif-
fusion flux of carriers is much smaller than the relaxation
flux due to spontaneous emission of acoustic phonons,
and the fast relaxation forms a highly non-equilibrium
carrier distribution. In this case the recombination time
is determined by the energy relaxation time due to spon-
taneous phonon emission at the energy of the overlap of
impurity potentials. Our result in the limit of high con-
centrations of impurity ions is close to that obtained in
[17] within a qualitative model, based on the assumption
of non-uniform distribution of capture centers. Contrary
to that model, we show that the assumption of the non-
uniform distribution of capture centers is not needed for
explanation of the characteristic features of cascade cap-
ture in highly doped semiconductor. Moreover, we ana-
lyze the influence of non-uniformity of spatial distribu-
tion of impurity ions, and show that its effect on capture
time in highly doped semiconductors is small.
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APPENDIX

Density of states in the field of a set of uniformly
spaced Coulomb centers calculated using spherical ap-
proximation for integration in (4):

ρ̃(E) = ρ(EN )Fρ(E/EN )

Fρ(x) =



















(3π/16)|x|−5/2 x < −1

Φ1(x) −1 < x < 0

Φ2(x) x > 0

, (A.1)

with Φ1(x) =
3

8x5/2

(

φ(x)− sin(4φ(x))
4 − sin3(2φ(x))

3

)

,

Φ2(x) = 3
8x5/2

(

ψ(x)− sinh(4ψ(x))
4 − sinh3(2ψ(x))

3

)

,

φ(x) = arcsin(
√
x) and ψ(x) = arcsinh(

√
x).

The energy drift coefficient in the field of a set of
uniformly spaced Coulomb centers calculated using the
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spherical approximation of the integral in (5):

B̃(E) = B(EN )FB(E/EN )

FB(x) =







1/|x| x < −1

x2 + 3x+ 3 x > −1

. (A.2)

Distribution of photo-ionized carriers in the field of a
set of uniformly spaced Coulomb attractive centers at
energies E + E1 >> T calculated using (6), (A.1) and
(A.2):

f(E) = J
B(EN )

F

(

E
EN

, TEN
,
Ep

EN

)

F (x, y, z) =



































y + |x| x < −1

exp
(−x
y

)

Φ3(x, y) −1 < x < z

exp
(−x
y

)

Φ3(z, y) x > z

,

(A.3)

with Φ3(x, y) = Ψ1(y) + Ψ2(x, y), Ψ1(y) =
exp (−1/y)(1 + y) and Ψ2(x, y) =

∫ x

−1
exp (−u/y)/(u2 +

3u+ 3)du/y.
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