
Computational Visual Media
DOI 10.1007/s41095-016-0032-x Vol. 2, No. 1, March 2016, 87–96

Research Article

An interactive approach for functional prototype recovery from
a single RGBD image

Yuliang Rong1, Youyi Zheng2, Tianjia Shao1(�), Yin Yang3, and Kun Zhou1

c© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Inferring the functionality of an object
from a single RGBD image is difficult for two reasons:
lack of semantic information about the object, and
missing data due to occlusion. In this paper, we
present an interactive framework to recover a 3D
functional prototype from a single RGBD image.
Instead of precisely reconstructing the object geometry
for the prototype, we mainly focus on recovering
the object’s functionality along with its geometry.
Our system allows users to scribble on the image to
create initial rough proxies for the parts. After user
annotation of high-level relations between parts, our
system automatically jointly optimizes detailed joint
parameters (axis and position) and part geometry
parameters (size, orientation, and position). Such
prototype recovery enables a better understanding of
the underlying image geometry and allows for further
physically plausible manipulation. We demonstrate our
framework on various indoor objects with simple or
hybrid functions.

Keywords functionality; cuboid proxy; prototype;
part relations; shape analysis

1 Introduction

That form ever follows function. This is the
law.

Louis Sullivan

1 State Key Lab of CAD&CG, Zhejiang University,
Hangzhou 310058, China. E-mail: Y. Rong, rongyl@
zju.edu.cn; T. Shao, tianjiashao@cad.zju.edu.cn (�); K.
Zhou, kunzhou@cad.zju.edu.cn.

2 ShanghaiTech University, Shanghai 200031, China. E-
mail: zhengyy@shanghaitech.edu.cn.

3 The University of New Mexico, Albuquerque, NM 87131,
USA. E-mail: yangy@unm.edu.

Manuscript received: 2015-12-01; accepted: 2015-12-09

With the popularization of commercial RGBD
cameras such as Microsoft’s Kinect, people can
easily acquire 3D geometry information with an
RGB image. However, due to occlusion and noise,
recovering meaningful 3D contents from single
RGBD images remains one of the most challenging
problems in computer vision and computer graphics.
Over the past years, much research effort has been
devoted to recovering high-quality 3D information
from RGBD images [1, 2]. Most of these approaches,
starting either from a single image or multiple
images, are dedicated to faithfully recovering the
3D geometry of image objects, while their semantic
relations, underlying physical settings, or even
functionality are overlooked. More recently, research
has explored use of high-level structural information
to facilitate 3D reconstruction [3–5]. For example,
Shao et al. [3] leverage physical stability to suggest
possible interactions between image objects and
obtain a physically plausible reconstruction of
objects in RGBD images. Such high-level semantic
information plays an important role in constraining
the underlying geometric structure.

Functionality is the center of object design and
understanding. Objects in man-made environments
are often designed for single or multiple intended
functionalities (see Fig. 1). That form ever follows

Fig. 1 Objects in man-made environments are often designed for
single or multiple intended functionalities.

87



88 Y. Rong, Y. Zheng, T. Shao, et al.

function is the law of physical manufacturing [6].
In this paper, we develop an interactive system
to recover functional prototypes from a single
RGBD image. Our goal is to allow a novice user
to be able to quickly lift image objects into 3D
using 3D prototypes, using just a few high-level
annotations of joint types and geometric/functional
relations; the user can meanwhile explicitly explore
and manipulate an object’s function. We focus
on prototypes with simple proxies (e.g., cuboids)
representing their parts as a means to alleviate the
difficulties of precise 3D reconstruction which is a
harder problem. By taking physical functionality
into consideration, we may gain a much more
faithful interpretation of the underlying objects.
The functional properties can then be used for
applications like in-context design and manipulation.

It is a challenging problem to infer object
function just from user annotated joint types and
geometric/functional relations. Our system should
automatically optimize the detailed joint parameters
(axis and position) in order to make the parts
move correctly, whereas this task is typically done
in CAD software by the user repeatedly adjusting
parameters. Furthermore, initial proxies from user-
segmented depths are often rough with incorrect
orientation and position, and may be incomplete
because of occlusion. Hence initial proxies often fail
to satisfy the functional relations such as A covers B.
Therefore our system should also optimize the proxy
parameters (size, orientation, and position), in order
to make parts satisfy functional relations.

Our method starts with a single RGBD image.
The user segments the image object into parts by
scribbling on the image using simple strokes or
polygons. Then each segmented part is assembled
using a 3D proxy. We use simple cuboids in this
paper [7]. Given the initial proxies, our system
then allows the user to annotate the joint types and
functional/geometric relations between parts. In a
key stage, our algorithm simultaneously optimizes
the detailed joint parameters (axis and position)
and the proxy parameters (size, orientation, and
position). Finally, a functional prototype is produced
with moving parts satisfying the user annotated
relations.

We have tested our system on a variety of man-
made hybrid functional objects taken from various

sources. Our results show that even using only
a few user annotations, the proposed algorithm
is capable of faithfully inferring geometry along
with appropriate functional relations for the object
parts. In summary, this paper makes the following
contributions:
• Identifying and characterizing the problem

of integrating functionality into image-based
reconstruction;
• Simultaneous optimization of detailed joint

and geometry parameters from user’s
high-level annotations of joint types and
functional/geometric relations;
• An interactive tool for functional annotation

which has been tested on a variety of indoor
scene images and physical designs.

2 Related work

Proxy-based analysis. A significant amount of
work has leveraged proxies to understand objects or
scenes. Li et al. [8] and Lafarge et al. [9] consider
global relationships as constraints to optimize
initial RANSAC-based proxies to produce structured
outputs; similarly, Arikan et al. [10] use prior
relations plus user annotations to create abstracted
geometry. For scene analysis, many approaches
encode input scenes as collections of planes, boxes,
cylinders, etc., and study their spatial layout [11–
16]. Recently, proxies have frequently been used
in functionality analysis of a design. Umetani et
al. [17] use physical stability and torque limits
for guided furniture design in a modeling and
synthesis setting. Shao et al. [18] create 3D proxy
models from a set of concept sketches that depict
a product from different viewpoints, with different
configurations of moving parts. Our work is inspired
by Koo et al. [7], who annotate cuboids with high-
level functional relationships to fabricate physical
work-alike prototypes. Unlike their algorithm, our
framework does not require explicitly creating joint
positions, as we consider a larger search space to
automatically infer the joint and part parameters.
To our knowledge, we are the first to focus on
proxy-based functionality recovery from a single
RGBD image, in particular recovering how the object
works by jointly optimizing both part geometry and
functional relationships based on user annotations.



An interactive approach for functional prototype recovery from a single RGBD image 89

Constraint-based modeling. Our work is
related to constraint-based modeling research in
the graphics and CAD communities. Similar work
to ours involves the automatic determination of
relevant geometric relationships between parts for
high-level editing and synthesis of 3D models [5, 19–
21]. Previous mechanical engineering research has
used declarative methods for specifying relevant
geometric constraints for a mechanical design [22,
23]. Some professional CAD software like AutoCAD
and SolidWorks contains constraint-based modeling
modules, but users are required to manually
adjust the low-level part/joint parameters to
specify relationships. In contrast, our system can
automatically interpret user annotated high-level
functionality to give specific geometric constraints.

3D modeling from a single RGBD image.
Much effort has been devoted to obtaining high-
quality geometry information from a single RGBD
image [1, 24]. To recover structural information,
Shen et al. [4] extract suitable model parts from
a database, and compose them to form high-
quality models from a single RGBD image. Shao
et al. [3] use physical stability to recover unseen
structures from a single RGBD image using cuboids.
However, their techniques focus on creating static
3D geometry and structure, whereas our goal is to
produce models with correctly moving parts.

3 Overview

As illustrated in Fig. 2, given a single RGBD image,
we first let the user scribble strokes over an image
object to separate out its functional parts. These
parts, being either a semantic component or an
added object, are used during function recovery.

To segment the parts, we use a depth-augmented
version of the GrabCut segmentation method [25],
as Ref. [3] does. Optionally, if the color and depth
are too similar, making it difficult to separate the
parts with GrabCut, the user may use a polygon
tool as in PhotoShop to perform segmentation
(see the accompanying video in the Electronic
Supplementary Material (ESM)). We assemble a set
of cuboid proxies, one fitted to each individual part.
The user then annotates high-level relations between
these cuboids. The relations are of three kinds:
joint type relations (e.g., hinge, sliding), functional
relations (e.g., covers, fits inside, supports, flush,
connects with) [7], and geometric relations (e.g.,
equal size, symmetry).

Given the user annotated relations, in a key
step, our method recovers each cuboid’s orientation,
position, and size along with the joint parameters
using a combined optimization approach. We use a
combined optimization strategy because the cuboid
parameters are always coupled with the joint
parameters: given a set of joints, the cuboid
geometry must be adjusted to satisfy the functional
constraints.

Optimization is done using a two-stage sampling
strategy. In the first stage, our algorithm samples
possible cuboid edges as joint candidates [18] for
the specified joint type. Given one set of possible
joint candidates, the cuboid orientation is aligned
and the cuboid position is refined, by adjusting the
corresponding joint edges. We assume that the joint
must be snapped to the nearest cuboid face and be
parallel to the nearest cuboid edge (as in Ref. [7]).

Having found one set of adjusted joints with
cuboid orientations and positions, our method
further samples a set of possible candidate rest

Hinge junction

Equal size

Sliding junctionSliding junction 

Hinge junction

Cover

Equal size

Just fit inside

Fig. 2 Algorithmic pipeline. Given the input RGBD image (left), our system generates initial proxy cuboids (mid-left) from parts segmented
by the user with strokes or polygon tools. The user then annotates a set of high-level relations between the proxies including joint types
and geometric/functional relations (mid-right). Finally our system simultaneously optimizes joint parameters (axis and position) and part
parameters (orientation, position, and size) to obtain a functional prototype with parts moving as the user expects (right).



90 Y. Rong, Y. Zheng, T. Shao, et al.

configurations for the cuboids. A rest configuration
is a state where the object is in a closed
state [7]. Because the cuboid size has not yet
been definitively determined, the system does not
know which state is the closed state. Thus we sample
possible candidates for the rest configurations, as
shown in Fig. 6. For each possible rest configuration,
we optimize the cuboid size parameters according to
the user annotated functional/geometric relations
as in Ref. [7]. Finally, the optimized cuboids which
best match the initial point cloud are selected,
and the best prototype with best joint and cuboid
parameters is produced. We next describe the
algorithm in detail.

4 Algorithm

Our method takes as input an RGBD image of a
functional object. By functional we mean objects
having particular moving parts, such as a door which
opens by rotating, a sliding drawer, etc. Such objects
are very commonly seen in our daily life, for instance,
rolling chairs, folding tables, printers, seesaws, etc.

Initial cuboid generation. Given the input
RGBD image, our first task is to anchor the
object’s functional parts. Automatically identifying
image objects and object parts in RGBD images
has been explored in recent works, but without
prior knowledge, such methods do not yet work
well enough for our purposes. We resort to an
interactive solution. As in Ref. [3], we let the
user scribble on the image object to specify object
parts. In particular, we allow the user to draw
free strokes over parts to indicate a segment (part).
We apply a depth-augmented GrabCut algorithm [3]
to the underlying point cloud along with its pixel
and adjacency information. Optionally, if the color
and depth are too similar, making it difficult to
separate the parts with GrabCut, the user may
use a polygon tool as in PhotoShop to perform
segmentation. We then run the efficient RANSAC
algorithm [26] on the seegmented points to generate
candidate planes. The largest plane is selected as the
primary plane, and the second largest plane is made
orthogonal to the primary one. We extract initial
cuboids determined by these orthogonal directions
(the third direction is the cross product of the
two plane normals). Figure 3 illustrates the process

Fig. 3 Initial proxy generation. The user is allowed to scribble
strokes on the image (left); based on the scribbles, depth-augmented
GrabCut is applied to segment the input object into different parts
(middle). Initial cuboids are then fitted to the corresponding points
(right).

of generating the initial cuboids. Note that the
generated cuboid may have erroneous orientation,
position, and size. In subsequent steps, our goal is to
simultaneously optimize these parameters along with
the joint parameters so that the extracted cuboids
form a prototype whose functionality closely follows
the image object.

Relation annotation. Let the set of initial
cuboids be (B1, . . . , BN ). An important first step
is for the user to annotate the high-level relations
between the cuboids. To this end, we define three
categories of relations. Category I comprises joint
relations (e.g., A has a hinge relation w.r.t. B).
Category II comprises functional relations (e.g., A
covers B), while Category III comprises geometric
relations (e.g., symmetry, equal size). In each case,
the user selects a pair of cuboids and then indicates
the relationship.

To further classify the relations, we define two
main types of joint relations: hinges and sliding
joints. For functional relations, following Ref. [7],
we define the following function types: A covers B,
A fits inside B, A supports B, A is flush with B, and
A is connected to B. The main geometric relations
are symmetry and equal size. These relations
impose different geometric constraints during the
following optimization stage. Some relations might
be dependent on each other; for example, if both A
and C cover B, A is geometrically constrained w.r.t.
B and C. Figure 4 shows the joint types and some

Fig. 4 User annotated joint types and some typical functional
relations. From left to right: hinge joint, sliding joint, exactly covers,
just fits, and supports.



An interactive approach for functional prototype recovery from a single RGBD image 91

typical types of functional relations. Note that unlike
Ref. [7], we do not need to explicitly specify joint
positions and axes as well as cuboid orientations and
positions. Instead, we optimize these parameters in
a combined manner.

Combined optimization of cuboids and
joints. We now detail our cuboid optimization
algorithm. Our goal is to simultaneously optimize
the cuboids’ orientations and shape parameters (i.e.,
positions and sizes), as well as the detailed joint
parameters, in accordance with the user annotated
relations. The optimized cuboid configuration should
deviate little from the input point cloud and move as
the user expects. Given the input point cloud I and
initial cuboids B = (B1, . . . , BN ), along with the user
annotated joint types J = (J1, . . . , JM ), functional
relations F = (F1, . . . , FP ), and geometric relations
G = (G1, . . . , GQ), we want to obtain the best joint
parameters ΘΘΘ∗ = (Θ∗1 , . . . , Θ∗M ) for the joint types
J along with the best cuboids B∗ = (B∗1 , . . . , B∗N ),
satisfying the functional relations F and geometric
relations G. We do so using the formulation:
argmin
B,ΘΘΘ

E(B,ΘΘΘ, I) s.t. B,ΘΘΘ satisfy J ,F ,G (1)

Here E(B,ΘΘΘ, I) measures the deviation of the
optimized cuboid configuration from the input point
cloud, defined as

E(B,ΘΘΘ, I) =
∑
j

∑
k

dist(Bj − pkj ) (2)

where
∑
k dist(Bj − pkj ) measures the deviation of

cuboid Bj from its associated points pkj .
The challenge is how to enforce the annotated

relations as geometric constraints while ensuring the
cuboids respect the input point cloud. Since the
annotated relations are high-level specifications, this
leads to a large optimization search space due to
the potential ambiguities arising from the rather
general annotations. Another challenge is that the
cuboid parameters are highly coupled with the joint
parameters. That is, given a set of joints, the cuboid
geometry should change accordingly to satisfy the
functional constraints. Thus we cannot optimize
the parameters locally and separately, but must
instead do so in a global manner. To solve the
above challenges, we use a multi-stage optimization
paradigm which first populates the solution space
with a two-step sampling algorithm, and then
jointly optimize the cuboid parameters and joint
parameters.

In the first stage, we sample possible joint
parameters, i.e., axial position and orientation. Let
us denote the set of joint types as (J1, . . . , JM ), and
the parameters we wish to estimate as (Θ1, . . . , ΘM ).
We start by building a joint configuration graph. For
each cuboid we create a graph node and for each
joint type Ji, we create multiple graph connections,
with each connection associated with a candidate
parameter Θli for Ji. If A forms a hinge relation with
B, each cuboid edge of A can be a candidate hinge
axis. We choose only those cuboid edges which are
close to B. More specially, we only choose the edges
parallel to the face if there is also a cover relation,
and only choose the edges perpendicular to the face
if there is a fit inside or support relation. This leads
to a configuration graph where any traversal path
of the graph represents a possible configuration of
joints. Figure 5 shows such a graph. Algorithm 1
gives the pseudo-code for building the graph.

Given the joint configuration graph, for each
joint configuration we optimize each cuboid’s
orientation, position, and size based on annotated
functional/geometric relations. The cuboid’s
orientation and position are firstly adjusted based
on the current candidate joint configuration, by
adjusting the corresponding joint edges. We assume
that the joint must be snapped to the nearest
cuboid face and be parallel to the nearest cuboid
edge (following Ref. [7]). Then we optimize the
cuboid’s size to satisfy the functional/geometric
relations given by the current joint configuration.
Note that the functional relations typically indicate
the geometry of the cuboids in a closed configuration
(i.e., a rest configuration [7]. For instance, if A
covers B, this typically means that one face of
A is rotated about the hinge joint to be in close

Hinge

Slide

n

q
p

m

Fig. 5 Junction configuration graph. Each cuboid shown
corresponds to a node with the same color. Each annotated joint type
corresponds to multiple connections between nodes. One connection
is associated with one candidate joint parameter.



92 Y. Rong, Y. Zheng, T. Shao, et al.

Algorithm 1: Build the junction configuration graph
Input: N initial cuboids (B1, . . . , BN ); M junctions (J1, . . . , JM )

with unknown parameters (Θ1, . . . , ΘM ).
Output: Multi-connection junction graph G := (V,E) in which

each edge ej
i corresponds to a parameter Θj

i for Ji.
G← ∅
for i = 1 to N do
Vi ← Bi

end for
/* Build multi-connections between nodes */
for i = 1 to M do
Bc ← child cuboid of Ji

Bp ← parent cuboid of Ji

l← 1
/* Test each edge of the child cuboid */
for j = 1 to 12 do
Ej ← j-th edge of Bc
Dj ← direction of Ej

Cj ← center of Ej

for k = 1 to 6 do
Fk ← k-th face of Bp
Nk ← normal of Fk

if dist(Ej , Fk) < εd and (abs(Dj ·Nk) < εa or
abs((Dj ·Nk)− 1) < εa) then
Θl

i ← (Cj , Dj) // set candidate parameter for Ji

el
i ← Θl

i // add a connection el
i

l← l + 1
end if

end for
end for

end for

Fig. 6 Possible rest poses for the hinge joints. As we do not
know which face of the cabinet door covers the cabinet, we rotate the
hinge joints to sample a set of rest configurations to suggest possible
covering faces.

agreement with a face of B (Fig. 6). Since we do not
know which face covers B, we enumerate the possible
cuboid faces to sample a set of rest configurations
(see Fig. 6) and for each rest configuration we
optimize the cuboid parameters. Specifically, given
a rest configuration of cuboids, we employ the
optimization strategy in Ref. [7] to optimize the
cuboid parameters (B∗1 , . . . , B∗N ). We then compute
the optimization cost from Eq. (2). Finally, the
configuration which best matches the point cloud
is selected as the chosen configuration and the
optimized cuboids are then computed. The overall
algorithm is detailed in Algorithm 2.

5 Results

We show use of our system to recover functionality

Algorithm 2: Optimize cuboids and junctions
Input: Input point cloud I; N initial cuboids B = (B1, . . . , BN );

junction configuration graph G; functional relations F ;
geometric relations G.

Output: N optimized cuboids B∗ = (B∗1 , . . . , B∗N ); M optimized
junction parameters ΘΘΘ∗ = (Θ∗1 , . . . , Θ∗M ).

/* Sample candidate junction parameters from G and accordingly
optimize cuboid orientation, position and size */
err ← INF // deviation of cuboids from input point cloud
while true do

Gather a connection combination (ek
1 , . . . , e

l
M ) from G

if no more connection combinations then
break

end if
Create junctions with parameters ΘΘΘ′ = (Θk

1 , . . . , Θ
l
M ) from

(ek
i , . . . , e

l
M )

adjust the cuboids positions and orientations by snapping the
junction edges
/* Calculate possible angles for rest configurations */
for i = 1 to M do

calculate candidate angles (α1
i , . . . , α

w
i ) to parallelize parent

and child
end for
/* Sample possible rest configurations */
while true do

Gather an angle combination (αu
1 , . . . , α

v
M )

if no more angle combinations then
break

end if
Transform to rest configuration with (αu

1 , . . . , α
v
M )

Optimize the cuboids sizes to satisfy F and G, giving a
solution B′ = (B′1, . . . , B′N )
if E(B′,ΘΘΘ′, I) < err then

err ← E(B′,ΘΘΘ′, I)
(B∗1 , . . . , B∗N )← (B′1, . . . , B′N )
(Θ∗1 , . . . , Θ∗M )← (Θk

1 , . . . , Θ
l
M )

end if
end while

end while

prototypes for 6 different objects (see Fig. 7). The
first 4 examples (cabinet, drawer, firebox, and chair)
are real RGBD images captured with Microsoft
Kinect, while the last 2 examples (toolbox and
dining table) are synthetic depth data generated
from existing 3D designs. See the accompanying
video in the ESM for how the various parts move and
fit together. Creating a single functional prototype
takes 30 to 300 s for these examples. The time
for user interaction (segmenting points with strokes
and specifying part relationships, plus the waiting
time for plane detection for initial cuboid generation)
ranges from 27 to 108 s, while the optimization time
varies greatly, from 1 to 241 s, depending on the
size of the sampling space for joint parameters and
rest poses. Experimental statistics (including the
numbers of annotated hinge joints, sliding joints,
functional relations, and geometric relations) are
listed in Table 1.



An interactive approach for functional prototype recovery from a single RGBD image 93

(1
) C

ab
in

et
(2

) D
ra

w
er

(3
) F

ir
eb

ox
(4

) C
ha

ir
(5

) T
oo

lb
ox

(6
) D

in
in

g 
ta

bl
e

Fig. 7 Experimental results. From left to right: the input RGBD image, initial cuboids, optimized cuboids and joints, and how parts move
and fit after the optimization (3 configurations).

Table 1 Statistics for examples: numbers of hinge and sliding joints,
numbers of functional and geometric constraints, and time taken for
interaction and optimization

Model Hinge Slide Funct. Geom. Interact Optimize
Cabinet 2 2 4 2 62 s 18 s
Drawer 0 2 2 1 29 s 1 s
Firebox 2 0 2 0 27 s 16 s
Chair 2 0 3 0 90 s 2 s

Toolbox 1 3 6 0 108 s 3 s
Dining table 4 0 6 2 55 s 241 s

As shown in Fig. 2, although the geometry of
our prototypes may appear simple, the relationships
between the moving parts are often complex.
Manually adjusting the geometry and relation

parameters would be very time and labor consuming.
Our system automatically infers the joint parameters
(position and axis) and the geometry parameters
(size, position, and orientation) by optimizing them
simultaneously under the user annotated high-level
constraints. Satisfactory part parameters and joint
parameters were obtained in all our experiments. For
example, in Fig. 7(1), our algorithm automatically
places the hinge joints on the correct edges
of the cabinet doors, adjusts their orientations
appropriately by aligning the hinge joints to the
nearest cabinet face, and makes them parallel to
the nearest cabinet edges. The sizes of the doors
are also optimized to be of equal size and cover the



94 Y. Rong, Y. Zheng, T. Shao, et al.

cabinet. The drawers in Figs. 7(1) and 7(2) have the
desired orientations with their sliding joints aligned
with the cabinet, and have sizes which properly fit
inside the cabinet and are equal. In Fig. 7(3), the
lid and the front door are both optimized to just
cover the firebox. In the chair example (Fig. 7(4)),
due to occlusion, the initial cuboids for the leg and
the armrest have smaller sizes than they should, but
our algorithm successfully extends the leg to support
the seat, and extends the armrests to connect with
the back. Similarly, the occluded leg in Fig. 7(5) is
extended to support the box and has the same size
as the other legs. In Fig. 7(6), the orientation and
size of the two doors are optimized to support the
table top, and the orientation of the top is optimized
to be horizontal.

User study. To further evaluate whether our
approach can recover correct functional prototypes,
we showed our system to 20 students. 5 were
computer science undergraduates; 4 students were
master candidates in industrial design. The others
were 8 master candidates and 3 Ph.D. candidates
in computer science. We showed them the captured
RGBD images and asked them to imagine how the
objects work. These students then used our system
to add annotations to the pre-generated initial
cuboids based on their imagination. All students
reported that our system successfully recovered
functional prototypes in which the parts moved as
they expected. Furthermore, the optimized part

geometry also met their expectations. One exception
was that 6 students said they imagined the hinge
joint on the cabinet door in Fig. 7(1) to be exactly
at the edge of the cabinet, while our optimization
did not consider it to be the best location.

Comparison with real objects and 3D design
models. We also checked the recovered prototypes
against the captured real objects and 3D design
models. As illustrated in the top 2 rows in Fig. 8,
the generated prototypes have similar functionality
to the real objects, and have parts which after
movement give almost the same configurations as
the real ones. Furthermore, the optimized simple
cuboids approximate the real geometry well, with
almost the same size, orientation, and position. We
also compared our recovered prototypes with 3D
design models whose joints were added and adjusted
manually in Autodesk 3DS Max (bottom row in
Fig. 8). We can see the prototypes recovered from
the user’s high-level annotations have very similar
functionality to the manually designed models.

6 Conclusions

In this work, we have presented a novel approach to
recovering a functional prototype from a user’s high-
level annotations of relationships. After indicating
joint types and other functional/geometric relations,
the joint parameters and part geometry parameters
are simultaneously optimized. This interface allows

Fig. 8 Top two rows: comparison with input data; bottom row: comparison with the 3D design model. Our system faithfully recovers the
functionality the user expects.



An interactive approach for functional prototype recovery from a single RGBD image 95

users to focus on the functionality of the target
object rather than working with low-level geometry
and joint parameters. The results demonstrate that
our system can generate functional models from
a small number of user annotations. In the user
study, the recovered prototypes worked correctly, as
users expected. The comparison between the real
objects and 3D design models further demonstrates
the feasibility of our system.

Limitations and future work. The main
limitation of our approach is that we use
cuboids as proxies to approximate part geometry.
While compositions of cuboids are sufficient for
representing the functionality of many products,
users often prefer higher fidelity geometry to better
understand the geometry and relationships. Rough
proxies may also cause inaccurate reconstruction.
Similarly, the restricted set of joint types is another
limitation. In the future, we will add other primitives
for part proxies, such as cylinders and spheres. We
also plan to integrate more joint types between
parts, such as ball joints and simple mechanical
links. The current optimization framework may
need to be modified to handle more geometry and
joint types. Another future direction is to consider
other high-level functional constraints between
parts. Exploring further high-level relationships
could allow more sophisticated functional models.

Electronic Supplementary Material Supplementary
material is available in the online version of this article at
http://dx.doi.org/10.1007/s41095-016-0032-x.

References

[1] Han, Y.; Lee, J.-Y.; Kweon, I. S. High quality shape
from a single RGB-D image under uncalibrated natural
illumination. In: Proceedings of IEEE International
Conference on Computer Vision, 1617–1624, 2013.

[2] Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.;
Newcombe, R.; Kohli, P.; Shotton, J.; Hodges,
S.; Freeman, D.; Davison, A.; Fitzgibbon, A.
KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera. In:
Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, 559–568,
2011.

[3] Shao, T.; Monszpart, A.; Zheng, Y.; Koo, B.; Xu, W.;
Zhou, K.; Mitra, N. J. Imagining the unseen: Stability-
based cuboid arrangements for scene understanding.
ACM Transactions on Graphics Vol. 33, No. 6, Article

No. 209, 2014.
[4] Shen, C.-H.; Fu, H.; Chen, K.; Hu, S.-M. Structure

recovery by part assembly. ACM Transactions on
Graphics Vol. 31, No. 6, Article No. 180, 2012.

[5] Zheng, Y.; Chen, X.; Cheng, M.-M.; Zhou, K.; Hu,
S.-M.; Mitra, N. J. Interactive images: Cuboid proxies
for smart image manipulation. ACM Transactions on
Graphics Vol. 31, No. 4, Article No. 99, 2012.

[6] Sullivan, L. H. The tall office building artistically
considered. Lippincott’s Magazine 57, 1896.

[7] Koo, B.; Li, W.; Yao, J.; Agrawala, M.; Mitra, N. J.
Creating works-like prototypes of mechanical objects.
ACM Transactions on Graphics Vol. 33, No. 6, Article
No. 217, 2014.

[8] Li, Y.; Wu, X.; Chrysanthou, Y.; Sharf, A.;
Cohen-Or, D.; Mitra, N. J. GlobFit: Consistently
fitting primitives by discovering global relations. ACM
Transactions on Graphics Vol. 30, No. 4, Article No.
52, 2011.

[9] Lafarge, F.; Alliez, P. Surface reconstruction through
point set structuring. Computer Graphics Forum Vol.
32, No. 2pt2, 225–234, 2013.

[10] Arikan, M.; Schwärzler, M.; Flöry, S.; Wimmer, M.;
Maierhofer, S. O-snap: Optimization-based snapping
for modeling architecture. ACM Transactions on
Graphics Vol. 32, No. 1, Article No. 6, 2013.

[11] Gupta, A.; Efros, A. A.; Hebert, M. Blocks world
revisited: Image understanding using qualitative
geometry and mechanics. In: Lecture Notes in
Computer Science, Vol. 6314. Daniilidis, K.; Maragos,
P.; Paragios, N. Eds. Springer Berlin Heidelberg, 482–
496, 2010.

[12] Gupta, A.; Hebert, M.; Kanade, T.; Blei, D. M.
Estimating spatial layout of rooms using volumetric
reasoning about objects and surfaces. In: Advances in
Neural Information Processing Systems 23. Lafferty,
J.; Williams, C.; Shawe-Taylor, J.; Zemel, R.; Culotta,
A. Eds. Curran Associates, Inc., 1288–1296, 2010.

[13] Del Pero, L.; Bowdish, J.; Fried, D.; Kermgard,
B.; Hartley, E.; Barnard, K. Bayesian geometric
modeling of indoor scenes. In: Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, 2719–2726, 2012.

[14] Jia, Z.; Gallagher, A.; Saxena, A.; Chen, T. 3D-
based reasoning with blocks, support, and stability. In:
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 1–8, 2013.

[15] Jiang, H.; Xiao, J. A linear approach to matching
cuboids in RGBD images. In: Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, 2171–2178, 2013.

[16] Zheng, B.; Zhao, Y.; Yu, J. C.; Ikeuchi, K.; Zhu,
S.-C. Beyond point clouds: Scene understanding by
reasoning geometry and physics. In: Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition, 3127–3134, 2013.

[17] Umetani, N.; Igarashi, T.; Mitra, N. J. Guided
exploration of physically valid shapes for furniture



96 Y. Rong, Y. Zheng, T. Shao, et al.

design. ACM Transactions on Graphics Vol. 31, No. 4,
Article No. 86, 2012.

[18] Shao, T.; Li, W.; Zhou, K.; Xu, W.; Guo, B.; Mitra,
N. J. Interpreting concept sketches. ACM Transactions
on Graphics Vol. 32, No. 4, Article No. 56, 2013.

[19] Bokeloh, M.; Wand, M.; Seidel, H.-P.; Koltun, V. An
algebraic model for parameterized shape editing. ACM
Transactions on Graphics Vol. 31, No. 4, Article No.
78, 2012.

[20] Gal, R.; Sorkine, O.; Mitra, N. J.; Cohen-Or,
D. iWIRES: An analyze-and-edit approach to shape
manipulation. ACM Transactions on Graphics Vol. 28,
No. 3, Article No. 33, 2009.

[21] Xu, W.; Wang, J.; Yin, K.; Zhou, K.; van de Panne,
M.; Chen, F.; Guo, B. Joint-aware manipulation of
deformable models. ACM Transactions on Graphic
Vol. 28, No. 3, Article No. 35, 2009.

[22] Daniel, M.; Lucas, M. Towards declarative geometric
modelling in mechanics. In: Integrated Design and
Manufacturing in Mechanical Engineering. Chedmail,
P.; Bocquet, J.-C.; Dornfeld, D. Eds. Springer
Netherlands, 427–436, 1997.

[23] Yvars, P.-A. Using constraint satisfaction for
designing mechanical systems. International Journal
on Interactive Design and Manufacturing Vol. 2, No.
3, 161–167, 2008.

[24] Zhang, Q.; Ye, M.; Yang, R.; Matsushita, Y.; Wilburn,
B.; Yu, H. Edge-preserving photometric stereo via
depth fusion. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2472–2479,
2012.

[25] Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”:
Interactive foreground extraction using iterated graph
cuts. ACM Transactions on Graphics Vol. 23, No. 3,
309–314, 2004.

[26] Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC
for point-cloud shape detection. Computer Graphics
Forum Vol. 26, No. 2, 214–226, 2007.

Yuliang Rong is currently a senior
undergraduate student majoring
in computer science at Zhejiang
University. He will work towards a
master degree at the State Key Lab
of CAD&CG in Zhejiang University
after graduation. His research interests
include image analysis and geometric

modeling.

Youyi Zheng is currently an assistant
professor at the School of Information
Science and Technology, ShanghaiTech
University. He obtained his Ph.D.
degree from the Department of
Computer Science and Engineering
at Hong Kong University of Science
& Technology, and his M.S. and B.S.

degrees from the Department of Mathematics, Zhejiang
University. His research interests include geometric
modeling, imaging, and human–computer interaction.

Tianjia Shao is currently an assistant
researcher at the State Key Lab of
CAD&CG, Zhejiang University. He
received his Ph.D. degree in computer
science from the Institute for Advanced
Study, and his B.S. degree from
the Department of Automation, both
at Tsinghua University. His research

interests include RGBD image processing, indoor scene
modeling, structure analysis, and 3D model retrieval.

Yin Yang received his Ph.D.
degree in computer science from
the University of Texas at Dallas in
2013. He is an assistant professor
in the Electrical Communication
Engineering Department, University of
New Mexico, Albuquerque, USA. His
research interests include physics-based

animation and simulation, visualization, and medical
imaging analysis.

Kun Zhou is a Cheung Kong professor
in the Computer Science Department of
Zhejiang University, and the director of
the State Key Lab of CAD&CG. Prior
to joining Zhejiang University in 2008,
he was a lead researcher in the Internet
Graphics Group at Microsoft Research
Asia. He received his B.S. and Ph.D.

degrees in computer science from Zhejiang University in
1997 and 2002, respectively. His research interests are
visual computing, parallel computing, human–computer
interaction, and virtual reality. He currently serves on the
editorial/advisory boards of ACM Transactions on Graphics
and IEEE Spectrum. He is a Fellow of the IEEE.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


