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ABSTRACT 
 
Objective: Baricitinib is an oral selective inhibitor of Janus kinase (JAK) 1 and JAK2 

that is efficacious in patients with rheumatoid arthritis (RA). This study analyzed 

changes in lymphocyte cell subsets during baricitinib treatment and correlated such 

changes with clinical outcomes of baricitinib treatment. 

Methods: An integrated analysis was conducted by pooling data from three completed 

Phase 3 trials comparing placebo and baricitinib treatment (RA-BEAM, RA-BUILD, and 

RA-BEACON) and one ongoing long-term extension study (RA-BEYOND) in patients 

(N=2,186) with active RA. 

Results: Baricitinib treatment was associated with an early transient increase in total 

lymphocyte count at week 4, which returned to baseline by week 12. Up to week 104, 

transient changes within normal reference ranges in T cells and subsets were observed 

with baricitinib treatment. B cells and relevant subpopulations increased after 4 weeks 

of baricitinib treatment with no further increases noted through 104 weeks of treatment. 

Natural killer (NK) cells transiently increased after 4 weeks of baricitinib treatment, 

before decreasing below baseline levels and then stabilizing over time. Few correlations 

were observed between changes in lymphocyte subsets and clinical endpoints with 

baricitinib treatment, and most were also observed within the placebo arm. A modest 

potential association was observed for baricitinib 4-mg between low NK cells and 

treatment emergent infections but not serious infections or herpes zoster.  

Conclusion: Overall, changes in lymphocyte subsets were largely within normal 

reference ranges across the baricitinib Phase 3 RA clinical program, and were not 

associated with increased risk of serious infections. 
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INTRODUCTION 

 Targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs) are orally 

available low-molecular weight molecules being developed, or already available for the 

treatment of rheumatoid arthritis (RA). The most recent additions include Janus kinase 

(JAK) inhibitors which target cytokine signaling pathways implicated in RA pathogenesis 

(1-5). 

 Baricitinib is an oral selective inhibitor of JAK1 and JAK2 (6) approved for the 

treatment of moderately to severely active RA in adults in over 40 countries including 

European countries, Japan, and the United States. Phase 3 trials showed significant 

clinical efficacy for baricitinib in patients with active RA who were naïve to conventional 

synthetic DMARDs (csDMARDs) or had an inadequate response (IR) to csDMARDs or 

biologic DMARDs. Baricitinib was associated with significant clinical improvements 

compared not only to placebo, typically including stable background csDMARDs, but 

also to the TNF-inhibitor, adalimumab, in the RA-BEAM trial (7-10). 

 Baricitinib, along with other JAK inhibitors, has been reported to change 

circulating lymphocyte subset populations, largely within normal ranges (11-13). 

However, detailed analysis of effects on subsets are lacking, and their relevance to 

efficacy and safety is unclear (14). This study reports changes in lymphocyte numbers, 

including subpopulations, during treatment in patients (N=2,186) with active RA 

comprising an integrated analysis of three completed Phase 3 RA trials comparing 

placebo and baricitinib treatment (RA-BEAM, RA-BUILD, and RA-BEACON) and one 

ongoing Phase 3 long-term extension (LTE) study (RA-BEYOND). This study also 

tested whether changes in lymphocyte subsets were associated with efficacy or adverse 

events. 
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PATIENTS AND METHODS 

Patients and study designs 

This study includes data from three previously reported randomized, double-

blind, multicenter Phase 3 studies and one ongoing Phase 3 LTE study with data up to 

January 1, 2016. Patients were ≥18 years of age with moderate to severe active RA. 

Descriptions of the patient cohorts for each of the trials are given in Table S1 and 

detailed methods were reported previously (7, 8, 10). The criteria for exclusion and 

permanent discontinuation included an abnormal lymphocyte count of <750 cells/µL and 

<200 cells/µL, respectively.  

After completion of the randomized studies (RA-BEAM, NCT01710358; RA-

BUILD, NCT01721057; and RA-BEACON, NCT01721044), patients could enter the LTE 

study, RA-BEYOND (NCT01885078), and receive baricitinib 2- or 4-mg once daily for 

up to 60 months. Patients entering RA-BEYOND after 52 weeks in RA-BEAM continued 

baricitinib 4-mg or switched to baricitinib 4-mg from adalimumab. Patients entering RA-

BEYOND after 24 weeks of treatment in RA-BUILD and RA-BEACON continued 

baricitinib 2- or 4-mg, or switched to baricitinib 4-mg from placebo. In RA-BEYOND, 

patients who received baricitinib 4-mg for ≥15 months (including in the preceding 

originator study) without rescue and who achieved sustained low disease activity or 

remission were blindly re-randomized to continue baricitinib 4-mg or to step-down to 

baricitinib 2-mg. Studies were conducted in accordance with the ethical principles of the 

Declaration of Helsinki and Good Clinical Practice guidelines and approved by the 
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ethics committee or institutional review board of each center. All patients provided 

written informed consent. 

 

Analytical methodology 

Whole blood samples were collected at weeks 0 (Placebo N=856-892; Baricitinib 

2-mg N=392-403; 4-mg N=869-891), 4 (Placebo N=747-825; 2-mg N=358-384; 4-mg 

N=765-846), 12 (Placebo N=706-790; 2-mg N=348-361; 4-mg N=755-835), 24-32 

(Placebo N=481-530; 2-mg N=272-295; 4-mg N=637-706), 48-52 (2-mg N=182-196; 4-

mg N=364-582), and 96-104 (2-mg N=79-91; 4-mg N=120-135). Total lymphocyte count 

was analyzed using a Beckman Coulter cell counter. Lymphocyte subsets were 

analyzed using a BD FACS Canto ll flow cytometer and a previously optimized panel 

(Table S2) (15). Data for Th1 and Th17 cells at the 96-104 week timepoint were not 

acquired, and data for these subsets for the baricitinib 2-mg group were not available for 

the 48-52 week timepoint due to an insufficient sample size. T cells, including CD4 and 

CD8 subpopulations, B cells, and NK cells were identified using the BD Multitest 6-color 

TBNK reagent (BD Biosciences). The Human FoxP3 Buffer Set (BD Biosciences) was 

used to identify regulatory T cells. Additional flow cytometry methods, and 

representative gating for cell subsets in the primary flow cytometry data (Figures S1-

S4), are included in the Supplementary File.   

 

Statistical analysis 

An integrated data set was generated by pooling patient data from RA-BEAM, 

RA-BUILD, RA-BEACON, and RA-BEYOND. The placebo group came from RA-BEAM, 
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RA-BUILD and RA-BEACON; data were censored at rescue or the end of the 24-week 

placebo treatment period. The baricitinib 2-mg group came from RA-BUILD and RA-

BEACON with associated data from RA-BEYOND; data were censored at rescue. The 

baricitinib 4-mg group came from RA-BEAM, RA-BUILD and RA-BEACON with 

associated data from RA-BEYOND; data were censored at rescue or dose step-down. 

For changes in lymphocyte subsets, a restricted maximum likelihood-based 

mixed model for repeated measures (MMRM) was used which included treatment, visit, 

and treatment-by-visit-interaction as fixed categorical effects, and baseline as fixed 

continuous effects to estimate change from baseline after modeling 4 covariance 

structures (autoregressive [AR(1)], heterogeneous autoregressive [ARH(1)], compound 

symmetry [CS] and Toeplitz [TOEP]), selecting the variance-covariance structure with 

the smallest Akaike information criterion (AIC). The Fisher exact test was used for 

comparisons of incidence of treatment emergent (TE) infections between treatment 

groups by NK cell count category. 

For rheumatoid factor (RF) and anti-citrullinated peptide antibody (ACPA), 

treatment comparisons in mean change from baseline were made using analysis of 

covariance (ANCOVA), with treatment and baseline values as covariates. Type III sums 

of squares were used for comparisons of each baricitinib dose versus placebo, and 

least square (LS) means, standard errors, and p-values were reported. 

The weighted Pearson correlation coefficient and its associated p-value were 

used to test whether correlations between change from baseline in lymphocyte subset 

and Disease Activity Score for 28 joint-counts based on the high-sensitivity C-reactive 

protein level (DAS28-hsCRP) were significant by treatment group. 
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RESULTS 

Changes in lymphocyte subsets 

Total lymphocyte count increased transiently at week 4 for baricitinib 2- and 4-mg 

compared to placebo, returning to baseline by week 12 and remaining stable thereafter 

(Figure 1). At baseline, low lymphocyte counts were observed in 8.7%, 6.2%, and 6.6% 

of patients for placebo, baricitinib 2- and 4-mg, respectively, and high lymphocyte 

counts were observed in 4.3%, 4.7% and 4.0% of patients. Based on 24 weeks of data 

up to rescue, the proportions of patients with ≥1 TE low lymphocyte count were 10.7%, 

8.2%, and 8.9% and the proportions of patients with ≥1 TE high lymphocyte count were 

4.4%, 11.2%, and 11.9% for placebo, baricitinib 2- and 4-mg, respectively, (Figure 1). 

CD3+, CD4+, and CD8+ T cell counts increased at week 4 for baricitinib 2- and 

4-mg compared to placebo and returned to baseline by week 12. Inconsistent changes 

in these T cell subsets were observed at weeks 24-32 (Figures 2A-C), but were trending 

downwards compared to baseline. At baseline, low CD3+ T cell counts were observed 

in 11.3%, 9.3%, and 9.1% of patients for placebo, baricitinib 2- and 4-mg, respectively; 

low CD4+ T cell counts were observed in 14.2%, 13.4%, and 13.5% of patients; low 

CD8+ T cells counts were observed in 7.9%, 7.6%, and 6.4% of patients. Based on 24 

weeks of data up to rescue, the proportions of patients with ≥1 TE low CD3+, CD4+, or 

CD8+ T cell count did not differ between baricitinib and placebo (Figures 2A-C). Th1 

(CD4+CXCR3+CCR6-) counts increased at week 4 with baricitinib treatment and 

decreased below baseline through weeks 24-32 (Figure 2D). Th17 (CD4+CXCR3-

CCR6+) counts increased at week 4 with baricitinib treatment and returned to baseline 
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by week 12 for baricitinib 4-mg and decreased at weeks 24-32 for baricitinib 2-mg 

(Figure 2E).  Compared to placebo, which demonstrated a modest increase at week 12, 

regulatory T cells decreased at week 12 for both baricitinib groups and returned to near 

baseline by weeks 24-32, remaining stable thereafter (Figure 2F). For CD3+, CD4+, and 

CD8+ T cells, within-group analysis demonstrated a significant decrease from baseline 

by weeks 96-104 for baricitinib 2- and 4-mg. For Th1 cells, a significant decrease from 

baseline by weeks 48-52 was observed for baricitinib 4-mg (Figures 2A-D; markers of 

statistical significance not shown for within-group testing).  

CD19+ B cells and B cell subpopulations, including switched memory, non-

switched memory, mature naïve, and immature transitional B cells, significantly 

increased at weeks 4 through 24-32 for both baricitinib groups compared to placebo, 

and remained slightly above baseline or gradually returned to baseline over time 

(Figures 3A-E). At baseline, high CD19+ B cell counts were observed in 3.5%, 3.3%, 

and 3.6% of patients for placebo, baricitinib 2- and 4-mg, respectively. Based on 24 

weeks of data up to rescue, the proportions of patients with ≥1 TE high CD19+ B cell 

count were 1.2%, 3.7% and 5.2% for placebo, baricitinib 2- and 4-mg, respectively 

(Figure 3A).  

Finally, NK cell counts were increased significantly by week 4 for baricitinib 

compared to placebo; changes were transient with NK cell counts decreased by week 

12 through weeks 24-32 for both baricitinib groups (Figure 4). In a change from baseline 

analysis, baricitinib 2- and 4-mg were below baseline at weeks 12 through 48-52 (p-

values ≤0.05), and while baricitinib 4-mg was below baseline by weeks 96-104, the 

change from baseline was no longer significant for baricitinib 2-mg (p-value >0.05) 
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(Figure 4 and data not shown). At baseline, low NK cell counts were observed in 15.1%, 

11.1%, and 14.9% of patients for placebo, baricitinib 2- and 4-mg, respectively. The 

proportions of patients with ≥1 TE low NK cell count were 9.9%, 14.8% and 20.4% for 

placebo, baricitinib 2- and 4-mg, respectively (Figure 4). Among patients with a TE low 

NK cell count at their last visit on baricitinib who had a follow-up value (N=16), 11/16 

normalized during the post-treatment follow-up period. 

 

Changes in lymphocytes and clinical effects of baricitinib treatment   

Negative correlations between changes from baseline in DAS28-hsCRP and 

counts of CD19+ B cell and several B cell subpopulations were observed for placebo 

and baricitinib treatment, indicating larger improvements in DAS28-hsCRP with larger 

increases in B cell counts (Table S3). A negative correlation was also observed 

between changes in DAS28-hsCRP and Th17 and regulatory T cell counts for baricitinib 

4-mg (Table S3). The increase in CD19+ B cells observed with baricitinib (Figure 3A) 

occurred while RF titers significantly decreased from baseline at week 24 for baricitinib 

2- and 4-mg compared to placebo, and ACPA titers significantly decreased from 

baseline at week 24 for baricitinib 4-mg only (Table S4).  

Additionally, we tested whether changes in NK cells were associated with 

increased infection rates in baricitinib-treated RA patients, based on 24 weeks of data 

up to rescue. Compared to placebo in patients who never experienced a low NK cell 

count throughout treatment, increases in overall infections and herpes zoster were seen 

for both baricitinib groups and baricitinib 4-mg, respectively. However, the rate of 

serious infection was similar between groups (Table 1). Patients who experienced ≥1 
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low NK cell value throughout the treatment period also had a dose-related increase in 

overall infections with baricitinib versus placebo; herpes zoster and serious infection 

rates were similar between groups (Table 1). Similar associations were observed 

between changes in CD4+ T cell counts and infection rates (Table S5). Among patients 

who experienced a low NK cell count prior to their first TE infection, the majority 

experienced a low NK cell count less than 3 months before the infection across 

treatment groups (Table S6). 

 
 

DISCUSSION 

This analysis characterized changes in lymphocyte subsets in patients with RA 

(N=2,186) from Phase 3 and LTE trials in the baricitinib clinical program, and assessed 

whether observed lymphocyte changes correlated with clinical effects of baricitinib 

treatment. 

Changes in lymphocyte subsets were generally within the normal range and were 

largely consistent across the baricitinib Phase 3 RA clinical trials, which included 

patients with different responsiveness to prior DMARD therapies (11-13). In this 

integrated analysis, a transient increase in total lymphocyte count was observed after 4 

weeks of treatment with baricitinib, returning to baseline by week 12. Overall changes in 

lymphocyte subsets from a Phase 3 RA study (RA-BEGIN) of baricitinib in the treatment 

of DMARD-naïve patients generally reflected similar patterns of change as those in the 

integrated analysis (13). Similarly, an early transient increase in lymphocyte count was 

also observed in patients with psoriasis treated with baricitinib (16). These findings may 

in part relate to the timing of baricitinib administration. In previous Phase 1 studies, 
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transient increases in total lymphocyte counts were observed within hours of baricitinib 

dosing, returning to baseline prior to the next daily dose (6). Transient changes in T 

cells and subsets were observed with baricitinib treatment, with cell counts remaining 

largely within normal reference ranges. While CD3+, CD4+ and CD8+ T cells decreased 

below baseline by weeks 96-104, longer term data will be required to inform whether the 

change continues or the patients establish a new baseline. B cells and subpopulations 

increased after 4 weeks of baricitinib treatment, and remained above baseline or 

stabilized over time. JAK inhibition modulates cytokine signaling, therefore, possible 

downstream alterations in adhesion molecule expression and chemokine production 

may affect B cell trafficking with baricitinib treatment, resulting in elevated peripheral B 

cells. Furthermore, differentiation of the B cell lineage may be induced in compensation 

for JAK1/2-mediated inhibition of production of cytokines such as type l and type ll IFNs. 

Importantly, baricitinib treatment did not result in increased autoantibody titers, 

suggesting that the increase in B cells may not be pathological. It is possible that some 

of the class-switched memory B cells, increased by baricitinib in a dose-dependent 

manner, may be regulatory B cells which cease disease activity. Further studies would 

be needed to clarify these possibilities. 

NK cells transiently increased after 4 weeks of baricitinib treatment, before 

decreasing below baseline levels and then gradually stabilizing over time. Of note, 

baseline low NK cell counts were observed in up to 15.1% of patients in this analysis. 

The overall effect of JAK1 and JAK2 inhibition on peripheral blood mononuclear cell 

subsets may potentially reflect the summation of a number of different biological 

processes. These include demargination consequent upon endothelial deactivation and 
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altered marrow production of cellular subtypes. Which of these processes predominates 

in determining the observed change in peripheral blood may depend on the half-life of 

the circulating cell. 

Changes in lymphocyte subsets have also been characterized for tofacitinib, a 

JAK inhibitor that preferentially inhibits JAK1 and JAK3 (17). Phase 2 and Phase 3 

clinical trials involving patients with RA treated with tofacitinib showed a transient 

increase in total lymphocytes early in treatment, with a gradual decrease over time (18-

20). In Phase 2 RA clinical trials, variable changes in T cells were observed with short-

term tofacitinib treatment, while B cells and NK cells increased and decreased from 

baseline, respectively (18, 19). To our knowledge, robust data systemically following 

tofacitinib-treated RA patients from baseline through long-term treatment are 

unavailable. 

Changes in lymphocyte subsets have been characterized in clinical trials with 

other JAK inhibitors. Phase 2 clinical trials involving patients with RA treated with the 

JAK1-selective inhibitor filgotinib showed no clear dose-dependent changes in the rates 

of TE low lymphocytes or NK cells during short-term treatment while similar studies with 

upadacitinib showed decreased lymphocyte and NK counts following administration of 

that agent (21-24). These data suggest the possibility that different JAK inhibitors may 

be associated with slightly different lymphocyte changes over time, and in vitro JAK 

selectivity is not an easy predictor of these changes. It is important to point out that in 

the current study, lymphocyte subpopulations were followed across 2,186 active 

patients with RA in the baricitinib Phase 3 program, including long-term treatment, 
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making it the most extensive analysis of lymphocyte subset changes with a JAK 

inhibitor described to date. 

Changes in lymphocyte levels have also been reported in patients with RA 

treated with compounds that target TNF- or IL-6-signaling. Our Phase 3 RA-BEAM trial, 

as well as other studies, showed that the TNF inhibitor, adalimumab, produced a 

sustained increase in total lymphocyte counts over time in patients with RA (12, 20, 25). 

Consistent with an increase in total lymphocyte levels over time, we showed that 

adalimumab treatment also resulted in increased T cells, B cells, and NK cells in the 

RA-BEAM trial (12). Several studies with small patient populations have analyzed 

changes in lymphocyte subsets in patients with RA treated with tocilizumab, a 

monoclonal antibody that inhibits the IL-6 receptor. Two studies showed that tocilizumab 

treatment resulted in increased regulatory T cells, one of which also showed decreased 

Th17 cells with treatment (26, 27). Tocilizumab treatment in patients with RA has shown 

conflicting changes in B cells; one study reported increased total B cells, with no 

significant changes in B cell subsets, whereas another reported decreased levels of 

memory B cell subsets (27, 28). Overall, these findings demonstrate that therapeutics in 

RA that target different biologic pathways are associated with distinct changes in 

lymphocyte subsets.   

In view of these changes in lymphocyte subsets, this study attempted to 

determine whether there were clinical correlations between changes in lymphocyte 

subsets with DAS28-hsCRP in the integrated analysis. Negative correlations were 

observed between changes in DAS28-hsCRP and B cell subpopulations for placebo 

and baricitinib treatment, in addition to Th17 and regulatory T cells for baricitinib 4-mg. 
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Though statistically significant, the strengths of these associations were however 

modest. The increase in B cells with baricitinib treatment was not associated with an 

increase in autoantibody titers. Finally, patients who never experienced low NK cell 

counts as well as patients who experienced ≥1 low NK cell value on treatment with 

baricitinib 4-mg had a small increase in the rate of overall infection though not serious 

infection. Low NK cell counts did not relate to the rate of herpes zoster infection, a 

known adverse reaction for baricitinib, suggesting that NK modulation is not a dominant 

mechanism underlying this association. 

The present study does not directly explain mechanistically the changes in 

lymphocyte subsets observed. Several mechanisms could contribute to the changes 

observed, operating either in isolation or in combination. Thus, cell number may have 

reflected transiently increased synthesis, perhaps reflecting an immediate effect of drug 

on marrow homeostasis, effects on cellular mobilization from lymphoid or inflamed 

tissues, effects on cellular egress from the circulation or perhaps effects on cellular 

survival. Moreover, the impact of JAK inhibition is distinct in different subsets, leading 

most notably in the B cell compartment to a new homeostatic circulatory level. Whether 

these effects are mediated directly on lymphocyte subsets via JAK sensitive receptors 

or via altered chemokine or chemokine receptor expression that is dependent on JAK 

driven pathways is unclear, and warrants further investigation.  

A significant limitation of this study is that the follow-up period, although 

considerable, is not yet over many years, yet RA is typically lifelong and may potentially 

require lifelong treatment. Longer term lymphocyte subset data continue to be collected 

during the ongoing LTE study RA-BEYOND, which currently provides up to 5 years of 
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treatment with baricitinib after patients complete an originating study; evaluation of 

these longer term data, when available, will assist in addressing this limitation. 

In conclusion, this integrated analysis of lymphocyte subsets during the course of 

treatment with baricitinib in a large Phase 3 RA dataset has shown distinct changes in 

different lymphocyte populations, including B cell increases, variable changes in T cell 

counts, and transient reduction in NK cells, without strong association with efficacy or 

safety endpoints. The later kinetics of these analytes during longer term baricitinib 

treatment, and any clinical correlates, continues to be evaluated.  
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FIGURE LEGENDS 

Figure 1. Total lymphocyte counts throughout treatment 

The median, 25th and 75th percentiles, in total lymphocyte counts through week 24 

(placebo) and weeks 96-104 (baricitinib 2- or 4-mg) are shown, including the number 

(%) of patients with the specified treatment emergent abnormality at any time post-

baseline up to the time of rescue (0-24 weeks), based on the following LLN and ULN 

reference ranges (cells/µL): LLN=800, ULN=4280. Percentages are based on the 

number of patients at risk for the specified abnormality in each treatment group (NAR). 
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LLN, lower limit of normal; N, the number of patients in the analysis population; ULN, 

upper limit of normal. *p ≤0.05, **p ≤0.01, ***p ≤0.001 compared to placebo based on 

the least square mean difference change from baseline. 

 

Figure 2. T cell counts throughout treatment 

The median, 25th and 75th percentiles, cell counts through week 24 (placebo) and weeks 

96-104 (baricitinib 2- or 4-mg) are shown for CD3+ (A), CD4+ (B), CD8+ (C), Th1 (D), 

Th17 (E), and regulatory T cells (F). A-C include the number (%) of patients with the 

specified treatment emergent abnormality at any time post-baseline up to the time of 

rescue (0-24 weeks), based on the following LLN and ULN reference ranges (cells/µL): 

CD3+, LLN=603, ULN=2990; CD4+, LLN=441, ULN=2156; CD8+, LLN=125, 

ULN=1312. Percentages are based on the number of patients at risk for the specified 

abnormality in each treatment group (NAR). LLN, lower limit of normal; N, the number of 

patients in the analysis population; ULN, upper limit of normal. *p ≤0.05, **p ≤0.01, ***p 

≤0.001 compared to placebo based on the least square mean difference change from 

baseline. 

 

Figure 3. B cell counts throughout treatment 

The median, 25th and 75th percentiles, cell counts through week 24 (placebo) and weeks 

96-104 (baricitinib 2- or 4-mg) are shown for CD19+ (A), switched memory (B), non-

switched memory (C), mature naive (D), and immature transitional B cells (E). A 

includes the number (%) of patients with the specified treatment emergent abnormality 

at any time post-baseline up to the time of rescue (0-24 weeks), based on the following 
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LLN and ULN reference ranges (cells/µL): LLN=107, ULN=698. Percentages are based 

on the number of patients at risk for the specified abnormality in each treatment group 

(NAR). LLN, lower limit of normal; N, the number of patients in the analysis population; 

ULN, upper limit of normal. *p ≤0.05, **p ≤0.01, ***p ≤0.001 compared to placebo based 

on the least square mean difference change from baseline. 

 

Figure 4. NK cell count throughout treatment 

The median, 25th and 75th percentiles, NK cell counts through week 24 (placebo) and 

weeks 96-104 (baricitinib 2- or 4-mg) are shown, including the number (%) of patients 

with the specified treatment emergent abnormality at any time post-baseline up to the 

time of rescue (0-24 weeks), based on the following LLN and ULN reference ranges 

(cells/µL): LLN=95, ULN=640. Percentages are based on the number of patients at risk 

for the specified abnormality in each treatment group (NAR). LLN, lower limit of normal; 

N, the number of patients in the analysis population; ULN, upper limit of normal. *p 

≤0.05, **p ≤0.01, ***p ≤0.001 compared to placebo based on the least square mean 

difference change from baseline. 

 

TABLES 

Table 1. Incidence of TE infection by NK cell count, weeks 0-24 with data up to 

rescue 

 Placebo 

(N=860) 

Baricitinib 2-mg 

(N=393) 

Baricitinib 4-mg 

(N=868) 
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Never low NK cell count, Ns (%)a 718 (83.5) 316 (80.4) 618 (71.2)*** 

 

Patients with ≥1 TE infection, n 

(%)b 

213 (29.7) 114 (36.1)* 217 (35.1)* 

Patients with ≥1 TE herpes zoster, 

n (%)b 

3 (0.4) 3 (0.9) 13 (2.1)** 

Patients with ≥1 serious infection, 

n (%)b 

13 (1.8) 4 (1.3) 10 (1.6) 

Low NK cell count, Ns (%)c 142 (16.5) 77 (19.6) 250 (28.8)*** 

 

Patients with ≥1 TE infection, n 

(%)d 

47 (33.1) 29 (37.7) 112 (44.8)* 

Patients with ≥1 TE herpes zoster, 

n (%)d 

0 1 (1.3) 2 (0.8) 

Patients with ≥1 serious infection, 

n (%)d 

1 (0.7) 1 (1.3) 3 (1.2) 

aPatients who never experienced low NK cell values at all times post-baseline up to the 

time of rescue, based on the LLN reference range (≥95 cells/µL). Percentages are 

based on N. 

bPatients who never experienced low NK cell values and the specified abnormality. 

Percentages are based on Ns. 

cPatients who experienced ≥1 low NK cell value at any time post-baseline up to the time 

of rescue, based on the LLN reference range (<95 cells/µL). Percentages are based on 

N. 



24 

Lymphocyte subset changes in baricitinib-treated RA patients 

dPatients who experienced ≥1 low NK cell value and the specified abnormality. 

Percentages are based on Ns. 

*p ≤0.05, **p ≤0.01, ***p ≤0.001 for baricitinib 2- or 4-mg compared to placebo using 

Fisher exact test 

p ≤0.001 for baricitinib 4-mg compared to baricitinib 2-mg using Fisher exact test 

LLN, lower limit of normal; N, number of patients in the analysis set with ≥1 post-

baseline NK cell measure in the corresponding analysis period; Ns, number of patients 

by subset in each treatment group; n, number of patients with the specified abnormality; 

TE, treatment emergent 
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Figure 1. Total lymphocyte counts throughout treatment
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Figure 2. T cell counts throughout treatment
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Figure 3. B cell counts throughout treatment
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Figure 4. NK cell count throughout treatment 

 


