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This paper explores the possibility of using a quantum graph representation to investigate information

flow across a complex network in the form of wave propagation. The term quantum graph refers to

a representation of a network with differential operators acting on functions defined over real valued

intervals associated with the edges. These provide a convenient representation which allows differential

operators from calculus to be generalized to graph or network structures, the simplest of which is the

metric Laplacian. We present complete solutions of a wave equation on a quantum graph, obtained

using the quantum graph Laplacian. The solutions obtained using the Laplacian are more complex than

those obtained from the traditional vertex-based graph Laplacian counterpart due to the more complex

structure of the eigenfunctions. Specifically, we provide explicit solutions for the wave equation where

the initial condition is a Gaussian wave packet confined to a single edge of the graph. We use the new

solutions to develop methods for characterising complex networks, and demonstrate their advantages

over those obtained using the discrete graph Laplacian. The proposed method is highly robust in

distinguishing networks that are co-spectral with respect to different graph representations. Moreover,

the partial differential equations defined using the quantum graph Laplacian may be of great interest in

the study of complex networks where distance, speed of propagation, and connectivity structure of the

networks are important.

Keywords: Quantum graphs, Edge-based Laplacian, Graph characterization.

1. Introduction

In the last decade, the field of Complex Networks has emerged as an inter-disciplinary branch of research

that combines concepts and ideas from various diverse fields including Mathematics, Physics, Social

Science, and Computer Science [16, 40]. The focus of complex network theory is to represent and

analyse complex systems that are often very large and dynamic. Such systems can be conveniently

represented by means of a complex network where the components are represented by nodes while the

interactions between them are represented by edges. This simple yet powerful representation can model

a number of real world systems ranging from the very simple to the very complex. For example, a

c© The author 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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chemical compound can be represented with the help of a small network where vertices represent atoms

and edges represent bonds between the atoms [59]. On the other hand, a text document can be repre-

sented as a large network, where paragraphs are represented as vertices and two vertices are connected

whenever they share a minimum semantic content [27]. In each of these scenarios, the complex network

representation helps us to uncover the properties of the underlying complex system. It also allows us to

understand numerous phenomena associated with the system. Examples include the spread of disease

in epidemiology and the nature of protein protein interactions in bioiformatics. The analysis of network

structure has therefore become an important way not only of representing the structure of a system but

also of understanding its function or changes in function too.

One of key elements in the study of complex network structure and function, is that of concise

network characterization. The aim in here is to establish a method that can be used to compare and

distinguish the structural detail of different networks. This can be achieved either by extracting salient

features from the networks and then measuring the similarity of the features [3] or by directly computing

a measure of similarity such as edit distance [12]. Once measures of similarity are to hand, then different

classes of graph structure can be identified via graph clustering [62] [32]. One way to compute the

similarity of a pair of networks is to apply subgraph isomorphism [49]. However subgraph isomorphism

is an NP-complete problem, and hence the exact solution is computationally intractable. To cope with

this situation, several approximate graph characterization algorithms have been developed [56]. Most of

these procedures are based on the occurrence frequencies of substructures within the graph, and some

well known techniques are random walks [33], backtrackless walks and prime cycles [3] and shortest

paths [10].

The way information propagates in a network can reveal interesting properties about its structure.

As a result random walks or equivalently diffusions have proved to provide convenient and powerful

ways of understanding the properties of the graph [69]. Most of these properties can be understood

through the analysis of the heat equation on the graph. So, for instance, Xiao et al. [68] have used the

solution of heat equation to embed the nodes of the graphs into an Euclidean space and have used the

resulting embedding coordinates as a geometric graph characterization. Escolano et al. [21] have used

a heat diffusion process to gauge the complexity of a graph. Wang et al. [64] have explored the use

of different thermodynamic characterizations to distinguish different network structures. Recently Sun

et al. [60] have used the solution of a heat equation to define signature to analyse a three-dimensional

shape and this is referred to as Heat Kernel Signature (HKS). Another physically motivated signature is

the Wave Kernel Signature (WKS), which was proposed by Aubry et al. [1], and which uses wave like

solutions. The WKS was proposed as a solution to the excessive sensitivity of the HKS to low frequency

information. The WKS is the solution of Schrödinger equation [48, 55] and it represents the average

probability of measuring a quantum mechanical particle at a specific location at different time intervals.

A critical issue concerning modelling of information propagation is the nature of the signal being

studied [38]. Most of the work on the use of the heat equation, relies on studying the dissipation

of a static initial distribution. In many problems though, a better model is of an information packet

that propagates on a network. For instance, in the case of the wave equation, it would be interesting

to study the propagation of wave-packet, rather than a single wave, since this may better model the

transient nature of initial signal. Moreover, the study of wave packets also opens the interesting topic

of what information the existence of solitons (i.e., the non dissipative solutions of the wave equation)

of a network, might convey [41]. Finally, the ability study of both diffusion and wave propagation with

inhomogeneous speed would also be interesting to models networks, where there is a differential rate of

information propagation.

Unfortunately, the reason why these topics have not been studied in detail is that the requisite math-
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ematical apparatus had not been available. To study the flow of information in a network, we need to

implement partial differential equations that accurately model the propagation processes. Traditionally,

for instance, diffusion processes have been implemented using the discrete Laplacian. The discrete

Laplacian is an approximation to the continuous Laplacian that is appropriate when the data is to be

sampled at finitely many points. In graph theory, the discrete Laplacian is an approximation of the

continuous Laplacian over the vertices of the graph, and can be used to simulate a diffusion process on

these vertices. It is defined as the diagonal degree matrix minus the adjacency matrix of the graph. As

noted above, perhaps the most widely used example is the heat equation, which is ultimately related

to the continuous time random walk on a graph [15]. However, this simple model does not capture

features such as differential speed or packet propagation, since it is confined to the nodes and does not

capture the details of propagation along the edges of a graph. Similar criticisms can be directed at the

documented attempts to model wave propagation on a graph [1].

One way to overcome these problems is to use the apparatus furnished by quantum graphs [34, 37,

45, 46]. The term quantum graph refers to a metric graph, with a real-valued interval associated with

each edge and a differential operator defined over these intervals. Functions may, therefore, exist on

both the edges and the vertices. Quantum graph theory is a relatively new and exciting area of network

science and has recently attracted significant attention [9, 24]. One of the interesting problems studied

in this regard was the problem of community detection in quantum complex network by Faccin et al.

[26] . They have demonstrated that certain quantum mechanical effects cannot be captured using current

classical complex network tools and provide new methods that overcome these problems. They have

tested their method on simple quantum networks and biological networks. In a related work [25] they

have studied and analyzed quantum walks on complex networks which model network-based processes

on complex networks. Cuquet et al. [17] have studied the effect of entanglement percolation as a means

to establish long-distance interaction between arbitrary nodes of quantum complex networks.

The simplest differential operator on the edges of a quantum graph is the Laplace operator, which

is simply the second derivative of the function with respect to the edge variables. This allows us to

define a number of functions on graphs [53, 54]. This has numerous applications. As an example,

it is possible to define a wave equation [30] which has a finite speed of propagation [44], in contrast

to the node-based wave equation on a graph in which propagation along edges is instantaneous. The

origin of quantum graphs can be traced back to the 1930’s, and the analysis of free electrons in large

organic molecules. They have been used in the analysis of a number of physical problems including

quantum chaos and photonics waveguides, and most recently, in nanophysics. Whereas quantum graphs

have been extensively studied in the analysis of physical systems, much attention has been focussed

on spectral analysis [13, 23] and special cases. The detailed solution of differential equations and the

analysis of their eigenfunctions has received less attention. In [29, 30], Friedman and Tillich provide

partial solutions for the eigensystem of a quantum graph, but their analysis of the eigenfunctions is

incomplete. However, in a recent paper [66] we have completed this analysis, and this opens up the

possibility of solving a much richer family of differential equations on graphs.

In order to provide an initial proof of concept for the advantages of the edge-based Laplacian, in

[2, 4] we proposed a graph signature based on the solution of a wave equation defined using the edge-

based Laplacian. We have experimentally shown that the resulting signature is effective in characterizing

both weighted and unweighted networks [2]. In this paper, on the other hand, we are proposing a

similar measure that uses the solution of edge-based wave equation to characterize graphs. We explore

the properties of the proposed measure and compare its performance with alternate techniques in the

literature [1, 43, 56, 60, 63, 67]. We also show that the proposed method can be effectively used to

distinguish between structurally modified graphs as well as non-isomorphic co-spectral graphs. This
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suggests that the work presented here has the potential to accurately characterize the shape of a graph

[37]. Our novel contributions in the paper are as follows.

• We present complete solutions to the wave equation defined using the edge-based Laplacian

for different types of graphs including trees, cycles and bipartite graphs. We assume that the

initial condition is a single Gaussian wave packet residing on the edge with highest betweenness

centrality [28] and define a novel signature based on the amplitudes of the waves over time.

• We also highlight the problems associated with infinite propagation speed for wave equation

defined using the discrete Laplacian. We show why wave equation defined using the edge-based

Laplacian on a quantum graph provides a more powerful tool for characterising graphs.

• In order to investigate the properties of the proposed shape signature, we apply it to different types

of randomly generated complex networks. This allows us to study how the shape of the proposed

signature varies for different types of complex networks. We also demonstrate that the WPS is

robust to structural modifications to the graph.

• Finally, we compare the proposed method with some state-of-the-art methods including the heat

kernel signature and the wave kernel signature on different datasets. We report the resulting

classification accuracies.

One of the advantages of our method is that it can resolve differences between co-spectral graphs

which are structurally different, yet have the same Laplacian spectrum. This is is a long-standing prob-

lem not only in the graph and network theory, but has links with Kac’s classical work “Can one hear the

Shape of A Drum”. This latter problem remained open until 1993, when Gordon, Webb and Wolpert

[36] used spectral geometry [61] to show that different shapes can have identical eigenvalues. More

recently, interest has focussed on quantum graphs and under what conditions different graphs give rise

to Schrödinger operators which share the same spectrum [5, 6, 37]. To that end, Gutkin [37] et al.

have shown that the spectrum of a Schrödinger operator on a quantum graph determines uniquely the

connectivity matrix and the bond lengths. Similarly, Kurasov [48] has studied the relation between the

spectrum of a Schrödinger operator of a Quantum graph and geometric properties of the graph. Our

empirical work here suggests that the wave packet signatures explored in this paper can distinguish

structures that are co-spectral under the Laplacian. This may suggest a new line of theoretical work

aimed at understanding more deeply how wave-packets propagate on quantum graphs and their links to

isospectality.

From the perspective of complex networks our work has a number of potential uses. Our new

framework allows the propagation of wave-packets on a graph to be modelled and characterised. From

the complex network perspective, this can lead to new methods for the characterisation of network

centrality and communicability on networks [8, 69]. For instance, recently there has been interest in

how to characterise network centrality using quantum walks[58] rather than classical ones [22]. This

is based on the complex wave equation (Schrödinger’s equation). Our analysis allows these ideas to be

extended to where there is weight or distance function on the edges, extending the method to geometric

graphs. From the perspective of communicability our method offers a number of potential extensions of

the existing theory. First, it allows the propagation and time evolution of information packets of finite

width to be analysed, and their transmission on different types of structure understood. It also allows

the propagation of information on geometric graphs to be modelled. This latter point may allow more

detailed models to be constructed in the epidemiology and communication network domains.
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The remainder of the paper is organized as follows. In Section 2, we introduce both graphs and

quantum graphs together with some basic definitions that will be used throughout the paper. For the

sake of completeness, in Section 3, we define the eigensystem of the edge-based Laplacian and present

method for its computation. Section 4 provides a general solution of a wave equation for different types

of graphs, initialized with a Gaussian wave packet confined to a single edge of the graph. Section 5

compares the discrete and the continuous solutions on a simple graph, and demonstrates the limitations

of the discrete solutions. In Section 6, we define signatures to characterize graphs and explore some

of their properties on different type of complex networks. In section 7, we have applied the proposed

method to real-world graph datasets and we report the resulting accuracies. Finally in Section 8, we

give some conclusions of our work and suggest future directions for research.

2. Graphs

A graph G = (V,E) consists of a finite nonempty set V of vertices and a finite set E of unordered pairs

of vertices, called edges. A directed graph or a digraph D = (VD,ED) consists of a finite nonempty set

VD of vertices and a finite set ED of ordered pairs of vertices, called arcs. So a digraph is a graph with an

orientation on each edge. A digraph D is called symmetric if whenever (u,v) is an arc of D, then (v,u) is

also an arc of D. There is a one-to-one correspondence between the set of symmetric digraphs and the

set of graphs, given by identifying an edge of the graph with an arc and its inverse arc on the digraph on

the same set of vertices. We denote by D(G) the symmetric digraph associated with the graph G.

The oriented line graph OL(G) = (VO;EO), where VO and EO are respectively the set of vertices

and edges of the oriented line graph, is constructed by replacing each arc of D(G) by a vertex. These

vertices are connected if the head of one arc meets the tail of another except that reverse pairs of arcs

are not connected, i.e. ((u,v),(v,u)) is not an edge. The vertex and edge sets of OL(G) are therefore

VO = {(u,v) ∈ D(G)},
EO = {((u,v),(v,w)) : (u,v),(v,w) ∈ D(G),u 6= w}

Figure 1(a) shows a simple graph, 1(b) its digraph, and 1(c) the corresponding oriented line graph.

1 2

34

(a) Graph

e21

e12

e23
e32e42

e24

e41 e14

e43

e34

(b) Digraph

e21

e12

e23e32

e42

e24

e41
e14

e43

e34

(c) Oriented line graph

FIG. 1. Graph, its digraph, and its oriented line graph.

A walk w in a graph is a sequence of vertices v1,v2, ...vk where vi ∈ V such that vi and vi+1 are

adjacent. A walk has backtracking if vi−1 = vi+1, for some i, 2 6 i 6 k−1, where k is the length of the

walk. A walk is backtrackless if it has no backtracking. A random walk on the vertices of the oriented

line graph represents a backtrackless walk.
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2.1 Graph representations

A graph G = (V,E) is usually represented by a |V |× |V | adjacency matrix, whose elements are given as

A(i, j) =

{

1, if (i, j) ∈ E;

0, otherwise.
(2.1)

Laplacian matrix is another useful representation of a graph. It is defined as L = D−A, where D

is the diagonal matrix whose ith diagonal entry represents the degrees of the ith vetex. The Laplacian

matrix can be used to find many useful properties of a graph. It is sometimes also referred to as discrete

Laplacian, since it is an approximation of the continuous Laplacian to the vertices of a graph. Other

useful graph representations include the normalized Laplacian which is defined as L̂ = D−1/2LD−1/2.

2.2 Metric graph

A graph G = (V,E), with a (possibly empty) boundary set ∂G ⊂ G, is said to be a metric graph, if it has

a geometric realization G [47]. A geometric realization is the metric space consisting of vertices V with

a closed interval of length le associated with each edge e∈ E. We associate an edge variable xe with each

edge e = (u,v) that represents the standard coordinate on that edge with xe(u) = 0 and xe(v) = 1. The

start and end vertices are determined by assigning an arbitrary orientation to each edge. Note that in this

paper we will focus on metric graphs in which the edge lengths are all equal. The results can naturally

be extended to graphs with any rational edge lengths by simple subdivision of the edges thereby adding

nodes.

Definition 1 (Kuchment [45]) A quantum graph is a metric graph equipped with the operator H

(Hamiltonian) that acts as the negative second order derivative along edges and satisfies some suitable

boundary conditions at the vertices.

Let f be a square integrable function defined on the graph (on both edges and vertices). We take

f (u) to mean the value of f at vertex u and f (e,xe) to mean the value of f at position xe along edge e.

Here we choose the Hamiltonian to be the usual continuous Laplacian −∆ f along the edges.

Definition 2 Neumann-Kirchhoff boundary conditions: A function satisfies the Neumann-Kirchhoff

boundary conditions if

∑
e∋v

(−1)1−xe,v ∇ f (e,xe,v) = 0,∀v, (2.2)

which means that the sum of the outward-pointing gradients must be zero. Here xe,v represents the end

point of the edge e incident on vertex v.

We call such a setup edge-based since there is no contribution to the Laplacian from the vertices. In

particular, the Laplacian defined on a metric graph satisfied Neumann-Kirchhoff boundary conditions is

referred to as the edge-based Laplacian.

3. Edge-based Eigensystem

In this section we review what is known about the eigensystem of the edge-based Laplacian[30][66].

To commence, let G = (V,E) be a graph with a boundary ∂G and let G be the geometric realization of

G. The eigenpairs of the edge-based Laplacian are of two types, i.e., vertex supported eigenpairs and

edge-interior eigenpairs.
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3.1 Vertex-supported Eigenfunctions

The vertex-supported eigenpairs of the edge-based Laplacian can be expressed in terms of the eigenpairs

of the normalized adjacency matrix of the graph. Let A be the adjacency matrix of the graph G, and Ã

be the row-normalized adjacency matrix, i.e., the (i, j)th entry of Ã is given as

Ã(i, j) =
A(i, j)

∑(k, j)∈E A(k, j)
.

Let (g(v),λ ) be an eigenvector-eigenvalue pair for this matrix. Note that g is defined on vertices and

may be extended along each edge to an edge-based eigenfunction. Let ω2 and φ(e,xe) denote the edge-

based eigenvalue and eigenfunction respectively. Then the vertex-supported eigenpairs of the edge-

based Laplacian are given as follows:

1. For each (g(v),λ ) with λ 6= ±1, we have an eigenvalue ω2 with ω = cos−1 λ . Since there are

multiple solutions to the equation ω = cos−1 λ , we obtain an infinite sequence of eigenfunctions.

If ω0 ∈ [0,π] is the principal solution, the eigenvalues are ω = ω0+2πn,n ∈Z, where Z is the set

of integers. The corresponding eigenfunctions are φ(e,xe) =±C(e,ω)cos(B(e,ω)+ωxe) where

C(e,ω)2 =
g(v)2 +g(u)2 −2g(v)g(u)cos(ω)

sin2(ω)
,

and

tan(B(e,ω)) =
g(v)cos(ω)−g(u)

g(v)sin(ω)
.

There are two solutions here, {C,B0} or {−C,B0 +π} but both give the same eigenfunction. The

sign of C(e,ω) must be chosen correctly to match the phase.

2. λ = 1 is always an eigenvalue of Ã. For this eigenvalue, we obtain a principal frequency ω = 0,

and since φ(e,xe) = C cos(2nπxe), therefore φ(e,v) = φ(e,u) = C, which means that the eigen-

function is constant on the vertices.

3. λ =−1 is an eigenvalue of Ã, if and only if the graph is bipartite. For this eigenvalue, we obtain a

principal frequency ω = π , and since φ(e,xe) =CB cos(πxe +2nπxe), therefore φ(e,v) =CB and

φ(e,u) =−CB, which means that the eigenfunction is constant on the vertices, with an alternating

sign on both sides of a bipartition.

3.2 Edge-interior eigenfunctions

The edge-interior eigenfunctions are those eigenfunctions which are zero on vertices and must therefore

have a principal frequency of ω ∈ {π,2π}. These eigenfunctions can be determined from the eigenvec-

tors of the adjacency matrix of the oriented line graph [66]. In particular

1. The eigenvector corresponding to the eigenvalue λ = 1 of the oriented line graph provides a

solution in the case ω = 2π , and we obtain |E| − |V |+ 1 linearly independent solutions. Since

there are potentially multiple solutions, we denote the constants associated with each solution as

CE2π
(e, i).
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2. Similarly, the eigenvector corresponding to the eigenvalue λ = −1 of the oriented line graph

provides a solution in the case ω = π . If the graph is bipartite, then we obtain |E| − |V |+ 1

linearly independent solutions. If the graph is non-bipartite, then we obtain |E| − |V | linearly

independent solutions with constants CEπ (e, i).

Hence the structure of the edge-based eigenfunctions is captured both by the random walks and back-

trackless random walks on a graph. This comprises all of the principal eigenpairs which are only sup-

ported on the edges.

3.3 Normalization of the eigenfunctions

Note that although these eigenfunctions are orthogonal, they are not normalized. To normalize the

eigenfunctions we need to determine the normalization factor corresponding to each eigenvalue. Let

ρ(ω) denote the normalization factor corresponding to the eigenvalue ω . Then

ρ2(ω) = ∑
e∈E

∫ 1

0
φ 2 (e,xe)dxe.

Evaluating the integral, we get

ρ(ω) =

√

∑
e∈E

C(e,ω)2

[

1

2
+

sin(2ω +2B(e,ω))

4ω
− sin(2B(e,ω))

4ω

]

.

Once we have the normalization factor in hand, we can compute a complete set of orthonormal basis

by dividing each eigenfunction by the corresponding normalization factor.

Note that the constant eigenfunctions φ(e,xe) = C cos(2nπxe) corresponding to the principal fre-

quency ω = 0 are different for the cases when n = 0 and when n > 0. When n = 0, these eigenfunctions

are constant on the vertices as well as on the edges. Therefore, in this case

C =

√

1

|E| , since∑
E

∫ 1

0

(

1√
E

)2

dxe = 1.

On the other hand, when n > 0, the eigenfunctions corresponding to the principal frequency ω = 0 are

constant on the vertices, but not on edges. They take the form φ(e,xe) = C cos(2nπxe) on the edges.

These eigenfunctions must be normalized, so

C =

√

2

E
, since∑

E

∫ 1

0

(

√

2

E
cos(2πnxe)

)2

dxe = 1.

Once normalized, these eigenfunctions form a complete set of orthonormal basis for L2(G,E) [30],

where L2(G,E) is the set of all square integrable functions over the metric graph G.

4. Wave equation on a graph

In this section we provide a general solution of a wave equation on a graph, where the initial condition

is a single wave packet normally distributed over an arbitrary edge of the graph. The edge-based wave

equation on the graph is defined as

∂ 2

∂ t2
u(X , t) = ∆Eu(X , t), (4.1)
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u1(X , t) ∑ω∈Ωa

C(e,ω)C( f ,ω)
2

(

exp
[

−aW (x+ t +µ)2
]

cos
[

B(e,ω)+B( f ,ω)+ω
⌊

x+ t +µ + 1
2

⌋]

+ exp
[

−aW (x− t −µ)2
]

cos
[

B(e,ω)−B( f ,ω)+ω
⌊

x− t −µ + 1
2

⌋])

u2(X , t) 1
2|E|
(

exp
[

−aW (x+ t +µ)2
]

+ exp
[

−aW (x− t −µ)2
])

u3(X , t)
C2

B
4

(

(−1)⌊x−t−µ+ 1
2⌋ exp

[

−aW (x− t −µ)2
]

+(−1)⌊x+t+µ+ 1
2⌋ exp

[

−aW (x+ t +µ)2
]

)

u4(X , t) ∑i
CEπ (e,i)CEπ ( f ,i)

4

(

exp
[

−aW (x− t −µ)2
]

− exp
[

−aW (x+ t +µ)2
])

u5(X , t) ∑i

CE2π
(e,i)CE2π

( f ,i)

4

(

(−1)⌊x−t−µ+ 1
2⌋ exp

[

−aW (x− t −µ)2
]

− (−1)⌊x+t+µ+ 1
2⌋ exp

[

−aW (x+ t +µ)2
]

)

Table 1. LIST OF SOLUTIONS

where ∆E is the edge-based Laplacian. To obtain a general solution of the above equation, we need to

solve it for all possible cases, i.e., for all values of ω and n. A complete solution for all these cases

is given in the Table 1. Here Ωa represents the set of vertex-supported eigenvalues. The second term,

u2(X , t), comes from the constant eigenvalue ω = 0, while the third term, u3(X , t), corresponds to

the constant eigenvalue ω = π . The last two terms, i.e., u4(X , t) and u5(X , t), correspond to the

edge-interior eigenpairs. See Appendix for a complete analytical solution of the wave equation.

The exact solution of the wave equation depends both upon whether the graph being considered is

bipartite or not, and upon the number of edges and vertices in the graph. Here we give solutions for

some of the special cases of graph structures.

1. For a bipartite graph with |E|> |V |, the solution is

u(X , t) = u1(X , t)+u2(X , t)+u3(X , t)

+u4(X , t)+u5(X , t).

Here u3 is due to the constant eigenfunction corresponding to the principal frequency ω = π .

2. For a non-bipartite graph with |E|> |V |, the solution is

u(X , t) = u1(X , t)+u2(X , t)+u4(X , t)+u5(X , t),

and so the term u3 is omitted, because a non-bipartite graph has no principal frequency ω = π and

B 6= 0.

3. Note that the presence of the terms u4 and u5 depends on the number of edges and vertices in the

graph, and also upon whether the graph is bipartite or not. So, for a graph which is a cycle of odd

length, the solution is

u(X , t) = u1(X , t)+u2(X , t)+u5(X , t),

while for a cycle of even length, the solution is

u(X , t) = u1(X , t)+u2(X , t)+u3(X , t)

+u4(X , t)+u5(X , t).
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4. For a tree (which is always bipartite), we have

u(X , t) = u1(X , t)+u2(X , t)+u3(X , t), (4.2)

i.e., both u4 and u5 are omitted. This is because for a tree |E|= |V |−1, and so the multiplicity of

the edge-interior eigenfunctions is zero.

5. Discrete vs. continuous solutions

In this section we demonstrate the limitations of the wave equation that is defined using the discrete

Laplacian. We will show why the partial differential equations defined using the edge-based Laplacian

are more powerful for simulating a diffusion process on a graph than those resulting from the discrete

Laplacian. For this purpose, we study the discrete version of the wave equation. The vertex-based wave

equation is defined as

∂ 2

∂ t2
u(x, t) =−∆V u(x, t), (5.1)

For any edgewise linear function f , the solution of the discrete wave equation is

u(., t) = cos
(

t
√

∆V

)

f = f − t2∆V f/2!+ t4∆ 2
V f/4!− ...,

which satisfies the wave equation with u(x,0) = f (x).
As mentioned earlier, one of the problems with partial differential equations defined using the dis-

crete Laplacian is the speed of propagation. For example, the wave equation defined using the discrete

Laplacian does not have finite speed of propagation [30]. This reduces the power of the partial differ-

ential equation to distinguish between graphs with different structures. To demonstrate this, we choose

two different graphs G1 and G2, with 4 vertices each. The number of edges in G1 and G2 are 5 and 4

respectively. Figure 2 shows these graphs.

(a) G1 (b) G2

FIG. 2. Two simple graphs with same number of vertices but different number of edges.

We simulate the evolution of a discrete wave equation. Here we assume the initial condition is a

unit wave on a single vertex of the graph (in this case v1 for G1 and u1 for G2). Figure 3 shows the

evolution of wave amplitudes with time for both G1 and G2. The figure shows that the wave equation

fails to distinguish the two graphs.
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(a) t=0.0 (b) t=0.2

(c) t=0.4 (d) t=1.2

FIG. 3. Discrete wave equation for two different graphs.

Table 2. Amplitude of waves on different vertices of the graphs.

t v1 v2 v3 v4

0.0 1.0000 0.0000 0.0000 0.0000

0.2 0.9408 0.0197 0.0197 0.0197

0.4 0.7725 0.0758 0.0758 0.0758

0.6 0.5218 0.1594 0.1594 0.1594

0.8 0.2281 0.2573 0.2573 0.2573

1.0 -0.0621 0.3540 0.3540 0.3540

1.2 -0.3030 0.4343 0.4343 0.4343

1.4 -0.4567 0.4856 0.4856 0.4856

1.6 -0.4987 0.4996 0.4996 0.4996

1.8 -0.4226 0.4742 0.4742 0.4742

2.0 -0.2402 0.4134 0.4134 0.4134

We observed that the values of the amplitudes of waves on all the four vertices of both graphs. These

values are shown in Table 2.

Although the two graphs are structurally different (they have a different number of edges) the wave

equation evolves similarly on both graphs. In fact, it can be shown that the discrete heat equation with

the same initial condition also evolves similarly on these two graphs. This reduces the power of the

diffusion process to distinguish between non-isomorphic graphs.

To compare these results, we have performed a similar experiment with the edge-based wave equa-

tion on the two graphs of Figure 2. Here the initial condition is a Gaussian wave packet on a single edge

of the graph (in this case (v1,v2) for G1, and (u1,u2) for G2). The wave is initially travelling towards

the vertex v2 in G1 and u2 in G2. Figure 4 illustrates the propagation of the wave packet for the two

graphs at different times. Here the packet is sampled at the nodes, for comparison with Figure 3. We

have commenced the simulation with the packet on part of the structure which occurs in both graphs,

but as time evolves the packet propagates to regions where the structure is different. So although the

amplitudes are similar at the beginning of the sequence, as time evolves the pattern of amplitudes is

very different. Specifically, the differences are small in subfigures a) and b), in subfigures c) and d) they

are significantly different. This means that the edge-based wave equation is potentially a more powerful

tool to distinguish graphs when compared to the discrete wave equation.
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(a) t=0.5 (b) t=1.5

(c) t=2.5 (d) t=3.5

FIG. 4. Continuous wave equation for two different graphs.

The above results suggest that a partial differential equation defined using the edge-based Laplacian

provide a more powerful tool to simulate a wave propagation process on a graph when compared to one

defined using the discrete Laplacian. It both admits a finite speed of propagation and is more sensitive

to the differences in the non-isomorphic graph structure.

6. Gaussian wave packet signature

In this section we develop a signature based on the solution of an edge-based wave equation to char-

acterize the structure of a graph. For this purpose, we assume that the initial condition is a Gaussian

wave packet on a single edge of the graph. We select the initial edge as the one that maximizes the edge

betweenness centrality. The notion of edge betweenness centrality was originally proposed by Girvan

and Newman [35] to find the bottlenecks of a network. For an edge e, It is defined as the number of

shortest paths between all pair of nodes of the graph that run along the edge e. This will ensure a quick

spread of the wave packet over the entire network.

To define a signature to characterize graph structure, we allow the wave packet to spread over the

network and use the amplitude of the waves on the edges of graph over time. For each time sample,

we define a local weighted sub-graph, Gti , that consists of those edges of the graph having non-zero

amplitude at that specific time. In other words, for each time sample, a local subgraph is defined as

Gti = {e : u(X , ti) 6= 0,w(e) = (X , ti)},

where ti represents the ith time sample and w(e) represents the weight of the edge e, i.e., the amplitude

of the wave residing at e at time ti. Given a graph G, we then define its wave packet signature (WPS)

as

WPS(G) = hist
(

Gt1 ,Gt2 ,Gt3 , ...,Gtn

)

, (6.1)

where t1, t2, ..., tn are time samples and hist(·) is the histogram operator which bins the list of arguments.

We choose integer values for the time interval, since for integer values the parts of wave packet are

fully contained on the edges and the nodes have zero amplitude. We select the time interval as twice the
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number of edges in the graph. i.e., n = 2|E|. With this choice, the WPS becomes

WPS(G) = hist
(

G1,G2,G3, ...,G2|E|
)

. (6.2)

This means that the wave packet signature is constructed by binning the edge weights for the subgraphs

(and hence the amplitudes of the relevant part of the wave packet over time). Since the edge weights rep-

resent the amplitudes of the wave packet, the WPS therefore encodes information about the amplitudes

of parts of the wave packet over time.

The selection of the edge with highest betweenness centrality allows the wave packet to quickly

propagate over the entire network. In the case where we have more than one edges with the highest

edge betweenness centrality value, we randomly select among these edges. We have observed that the

method is insensitive to the selection of initial edge, as long as we choose from among those with highest

betweenness centrality. Also, a random selection of the initial edge may slightly reduce the performance

of the signature. Note that, in the experimental evaluation, we have chosen the number of bins as 100.

We also observed that the performance of the WPS does not change significantly as long as the bin size

is not too large or too small.

We now explore some of the properties of WPS for different types of graphs. For this purpose, we

have generated random graphs and have analyzed the shape of the WPS for each of these graphs. Specif-

ically, we have generated random graphs according to the following three different types of models.

Erdős-Rényi model (ER) [20]: An ER graph G(n, p) is constructed by connecting n vertices randomly

with probability p. i.e., each edge is included in the graph with probability p independent from every

other edge. These models are also called random networks.

Watts and Strogatz model (WS) [65]: A WS graph G(n,k, p) is constructed in the following way.

First we construct a regular ring lattice, i.e., a graph with n vertices and each vertex is connected to the

k nearest vertices, k/2 of them on either side. Then for every vertex, we take each connecting edge and

rewire it with probability p. These models are also called small-world networks.

Barabási-Albert model (BA) [7]: A BA graph G(n,n0,m) is constructed from an initial fully con-

nected graph with n0 vertices. New vertices are added to the graph one at a time. Each new vertex is

connected to m existing vertices with a probability that is proportional to the number of links that the

existing nodes already have. These models are also called scale-free networks.

For each of these three models, we randomly generate a graph with 150 vertices and compute the

WPS for each of these graphs. The resulting signatures are plotted in Figure 5.
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FIG. 5. Gaussian fit to random graphs
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The figure shows that the distribution in the histogram of WPS closely follows an unnormalized

Gaussian distribution. This means that the WPS can be characterized by the mean, width and the

amplitude of the resulting distribution, computed from the histogram bin contents. To explore these

properties of the WPS, we randomly generate ten networks for each of the three graph models presented

above. The number of nodes for each model varies from 151 to 160. For each model, we have chosen

the parameters in such a way that all three types of network with the same number of vertices have

approximately the same number of edges. For the ER model we choose p = 10/n, for the WS model we

choose p = 0.25 and k = 8, and for the BA model we choose n0 = 5 and k = 4. We have computed the

WPS for each of these graphs, and plotted the resulting histograms in Figure 6.
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FIG. 6. Histogram of graphs generated according to different graph models

Note that due to their similar structures, the WPS of the networks generated using the WS and BA

models show very small variations in mean, amplitude and width for different graphs. On the other

hand, due to their random structure, the networks generated using the ER model show large variance

for the mean, amplitude and the width. To further investigate the shape of the WPS under structural

modification, we generate a random graph according to the WS model. We choose the parameters as

n = 30, k = 12 and p = 0. This will produce a regular ring lattice with 30 vertices, where each vertex

is connected to the 12 nearest vertices. Next, we generated three different graphs by rewiring the edges

with probabilities p = 0.3, p = 0.6 and p = 1.0 respectively. We have computed the WPS for each

graph. Figure 7(a) shows the resulting histograms for all of these graphs.

Figure 7(a) shows that, as the graph becomes more irregular, the amplitude of the histogram decreases.

The histogram of the regular ring lattice has a sharp peak and small width. On the other hand, the his-

togram of the random graph has a lower amplitude and higher width.

In order to demonstrate the stability of WPS under controlled structure modifications, we study the

relationship between the graph edit distance and the Euclidean distance between the WPS of a graph

and its modified graph.We choose a seed graph according to the WS model with parameters as n = 30,

k = 12 and p = 0.1. Next we generate 10 different graphs by randomly deleting 5, 10, ..., 50 edges from

the seed graph respectively. The edit distance between the seed graph and the newly generated graph is

then equal to the number of edges deleted. For each of these graphs, we compute its WPS and find its

Euclidean distance from the WPS of the seed graph. We repeat this experiment 20 times. Figure 7(b)

shows the average Euclidean distance along with standard errors. The standard error is calculated as

σ/
√

n, where σ represents the standard deviation and n the number of samples.



A WAVE PACKET SIGNATURE FOR COMPLEX NETWORKS 15 of 29

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

p=0.0

p=0.3

p=0.6

p=1.0

(a) WS

Number of edit operations

0 10 20 30 40 50 60

E
u
c
le

d
e
a
n
 d

is
ta

n
c
e
 f
ro

m
 s

e
e
d
 g

ra
p
h

2600

2700

2800

2900

3000

3100

3200

(b) WS

Number of Edit operations

0 10 20 30 40 50 60

E
u
c
le

d
e
a
n
 d

is
ta

n
c
e
 f
ro

m
 s

e
e
d
 g

ra
p
h

300

400

500

600

700

800

900

1000

(c) BA

FIG. 7. Effect of structural modification

Figure 7(c) shows similar results for a graph that is generated using the BA model. In this case, the

seed graph was generated using parameters n = 30, n0 = 10 and k = 8. The results shown in Figure

7 illustrate that the WPS can be used to capture the regularity structure of a graph. It is interesting to

note that the WS networks have low standard errors as compared to the BA networks. This is due to the

small world property of the WS networks, where the removal of an edge will have little effect on the

propagation of wave packet.

Finally, to demonstrate the effectiveness of the WPS in distinguishing between different types of

complex networks, we have generated 50 instances of each of the three random graph models discussed

above, i.e., the ER, WS and BA networks. The number of nodes for each model varies from 151 to

200. For each graph we compute the wave packet signature. Next, we apply Principal Component

Analysis (PCA) on feature vectors consisting of the histogram bin contents (where the feature vector

components correspond to individual bin contents). PCA is mathematically defined as an orthogonal

linear transformation that transforms the data to a new coordinate system such that the greatest variance

by any projection of the data lies in the first principal component direction, the second greatest variance

on the second principal component direction, and so on [42]. We embed the transformed data in to

a three-dimensional space spawned by the leading three principal components. Figure 8 shows the

resulting embedding of feature vectors.

The embedding results in Figure 8 show that the WPS can be effectively used to distinguish different

complex network models. Note that for the WS and BA models, the graphs generated using the same

model are clustered close to each other and the embedding also provides a clear separation between the

two classes of the networks, i.e., WS and BA. The ER graphs, on the other hand, show high inter-class

variation due to their random structures.

Running time Analysis: The local subgraph Gti can be computed in O(|E|2) time, once all the eigen-

functions are computed. This is because the solution of the wave equation for each time sample will

take O(|E|) time, and there are total 2|E| time samples. Therefore WPS can be computed in O(|E|3)
time. The vertex supported eigenfunctions can be computed in O(|V |3) time while the edge-interior

eigenfunctions will require O(|E|3) time. Therefore the total running time of the WPS is O(|E|3) in

worst case.
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FIG. 8. Embedding of Random Graphs

7. Experiments

In this section, we test the proposed method on both real-world data and synthetic graphs. We also

compare the performance of the proposed method with following state-of-the-art methods and report

the results.

Heat kernel signature[60]: The HKS is based on analysing the heat diffusion process defined using the

classical Laplacian over different time samples. The HKS is a local descriptor defined for every vertex

of the graph. A globlal descriptor is obtained by binning the contents of the local descriptors. In our

experiments, we have chosen a bin size of 100.

Wave kernel signature [1]: The WKS represents the average probability of measuring a quantum

mechanical particle at a specific location at different time intervals. Like HKS, WKS is also a local

signature. A global signature is constructed by binning the local signatures by keeping a bin size of 100.

Random walk kernel [63]: Random walk kernel is state-of-the-art graph kernel used to compare

graphs. It gauges the similarity between two graphs by counting the frequencies of matching random

walks in the two input graphs. Rather than decomposing the graph into walks of different length, it can

be efficiently computed using the product graph formalism [63].

Graphlet count [43]: This method decomposes a graph into a set of common graphlets, which are small

connected non-isomorphic induced subgraphs of a large graph. Here we set the size of the graphlet to 4.

Shape-DNA [57]: This method uses the first few smallest eigenvalues of the normalized Laplacian

matrix of the graph and the oriented line graph, which are treated as the components of a feature vector.

For our experiments, we tried vectors of different length and reported the results that give the best per-

formance.

Heat Kernel Trace [67]: Heat kernel trace is a function of time and is given by the sum of the Laplacian

eigenvalues exponentiated with time. It was used by Xiao et al. [67] to characterize the structure of a

graph.

Ihara coefficients [56]: This method uses a feature-vector that records prime cycle frequencies in a

graph. These cycle frequencies are computed using first few coefficients of the Ihara zeta function
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of the graph. The Ihara zeta function is simply the reciprocal of the characteristic polynomial of the

oriented line graph, extracted from the graph in hand.

To evaluate the performance of the proposed method and compare it to alternative methods, we have

used k-fold cross-validation. In k-fold cross validation the original data is partitioned into k subsamples

of equal size. Of these k subsamples a single subsample is retained as the validation data for testing the

model, and the remaining k−1 subsamples are used as training data. This process of cross-validation is

then repeated k times. The classification accuracies are estimated using k-nearest neighbours algorithm

(k-NN). k-NN is non-parametric method that classifies each object based on k closest training examples

in the feature space, i.e., an object is assigned the label that obtains the maximum votes amongst the k

nearest neighbours.

7.1 Bioinformatics datasets

We commence by experimenting our method on graphs extracted from bioinformatics datasets. For this

purpose we use the following datasets.

MUTAG [59]: The Mutagenesis dataset consists of a set of chemical compounds. The data consists of

two classes, one which produces mutagenic activity and one which does not. The goal, from the point of

view of classification, is to identify the mutation-causing molecules from their structure. There are 125

chemicals in the active class and 63 in the inactive class. The average number of nodes and the edges of

these graphs is 17.93 and 19.79 respectively.

PROTEINS [19]: In this dataset each protein is represented as a graph, where the nodes correspond

to secondary structure elements. Two nodes are connected whenever they are neighbours either in the

amino acid sequence or in the 3D space of the protein tertiary structure [11]. The task is to distinguish

between enzymes and non-enzymes. There are 1113 graphs in the dataset. The minimum number of

nodes of the graphs is 4 while the maximum number is 620. The average number of nodes is 39.06.

We have computed the WPS for both the datasets and measured their performance using 10-fold

cross validation. We have also performed similar experiments with some other stat-of-the art methods

including the heat kernel signature, the wave kernel signature, the random walk kernel, the coefficients

of the Ihara zeta function, the graphlet count and the normalized Laplacian of both the graph and the

oriented line graph. Table 3 compares the resulting accuracies.

Table 3. Performance Comparison.

Method MUTAG PROTEINS

Wave Packet Signature 86.84 70.01

Heat Kernel Signature 85.79 66.27

Wave Kernel Signature 81.91 67.39

Random Walk 85.79 68.64

Graphlet Count 86.31 64.41

Heat Kernel Trace 84.21 62.88

Ihara Coefficients 84.21 66.21

Normalized Laplacian of graph 85.78 65.85

Normalized Laplacian of OLG 74.21 60.63

These results suggest that the WPS can be used on bioinformatics datasets with higher accuracy.
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Note that both MUTAG and PROTEINS are labelled datasets, where the nodes/edges are annotated with

unique labels. However, in our experiments we have ignored these labels as currently our method works

only on unlabelled simple graphs.

7.2 Graphs extracted from Images

We now perform experiments on graphs that are extracted from the images in the Columbia object

image library (COIL) dataset [51]. This dataset contains views of 3D objects under controlled viewer

and lighting conditions. For each object in the database there are 72 equally spaced views taken at 5

degree intervals, as the object is rotated on a turntable. The objective here is to cluster different views

of the same object onto the same class. To establish a graph on the images of the different object views,

we first extract feature points from the image. For this purpose, we use Harris corner detector[39]. We

then construct the following types of the graphs using the selected feature points as vertices.

Delaunay triangulation [18]: A Delaunay triangulation (DT) for a set P of points in a Euclidean space

is a triangulation, DT (P), such that no point in P is inside the circumcircle of any triangle in DT (P) .

Gabriel graphs [31]: The Gabriel graph (GG) for a set of n points is a subset of Delaunay triangula-

tion, which connects two data points vi and v j for which there is no other point vk inside the open ball

whose diameter is the edge (vi,v j).

The purpose of performing experiments on Gabriel graphs is to investigate the performance of WPS

under controlled structured modifications. To evaluate the performance of WPS we select four different

object with all their 72 views. We extract the Delaunay triangulation and Gabriel graph for each view

and compute its WPS. The average number of nodes of these graphs is 89, and the average number of

edges of the Delaunay triangulation is 245, while the average number of edges of the Gabriel graph

is 175. Next we measure the performance of the proposed method using 9-fold cross validation. The

reason for choosing 9 -fold is that it nicely splits the set into 9 sets each with 32 objects. The resultant

accuracies are reported in Table 4. To compare the performance of the proposed method with other

state-of-the-art methods, we have performed a similar experiment with the heat kernel signature, the

wave kernel signature, the random walk kernel, the coefficients of the Ihara zeta function, the graphlet

count and the normalized Laplacian of both the graph and the oriented line graph. These results are also

shown in Table 4. As with the bioinformatics datasets, in all cases, we have applied PCA to the resulting

signatures and have used the first ten principal components in each case.

Table 4. Performance Comparison.

Method DT GG

Wave Packet Signature 99.65 98.61

Heat Kernel Signature 99.31 98.96

Wave Kernel Signature 96.86 96.53

Random Walk 99.31 97.91

Graphlet Count 99.65 93.05

Heat Kernel Trace 99.65 98.96

Ihara Coefficients 99.65 93.75

Normalized Laplacian of graph 99.65 89.58

Normalized Laplacian of OLG 93.75 60.63
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From Table 4, the WPS gives the same performance on Delaunay triangulations as some of the alter-

nate state-of-the art methods. However on Gabriel graphs the proposed method gives higher accuracy

compared to the alternate methods, except the heat kernel trace and the heat kernel signature, which

give slightly higher accuracy. The above results suggest that WPS can be a powerful tool to characterize

graphs. Although its performance is comparable to some state-of-the-art methods on regular graphs,

such as Delaunay triangulations and Gabriel graphs, it outperforms most state-of-the-art methods on

irregular graphs such as bioinformatics data. In the next section we will show that the WPS is also a

very powerful tool for distinguishing between cospectral graphs.

7.3 Cospectral graphs:

One of the advantages of using the solution of wave equation defined using the edge-based Laplacian is

that it is less prone to the problem of failing to distinguish graphs due to cospectrality of the Laplacian

or adjacency matrices. To demonstrate this we have selected pairs of graphs that are the cospectral with

respect to their different matrix representations. Figure 9(a) and Figure 9(b) show two pairs of cospectral

graphs with respect to both their adjacency matrices and the adjacency matrices of their compliments.

We have computed the WPS of these two graphs and applied Principal Component Analysis (PCA) [42]

on the resultant feature vectors. Figure 12 shows the first two principal eigenvectors. The embedding

results show that the WPS can be used to distinguished non-isomorphic graphs that are cospectral with

respect to their adjacency matrix representations.

(a) G1 and G2. (b) G3 and G4.

FIG. 9. Examples of cospectral graphs with respect to adjacency matrices of graphs and adjacency matrices of their compliment

graphs

Next we perform a similar experiment with graphs that are cospectral with respect to their Laplacian

matrix representation. Figure 10(a) shows a pair of non-isomorphic graphs that are cospectral with

respect to their Laplacian matrix representation, while Figure 10(b) shows a pair of graphs that are

cospectral with respect to their normalized Laplacian matrix representation. We have computed WPS

for both pairs and applied PCA on the resultant feature vectors. The resultant embedding is shown in

Figure 12.

To demonstrate the power of WPS to distinguish graphs that are cospectral with respect to other

matrix representations, we select a pair of non-isomorphic graphs with same number of nodes and

edges and with same degree distribution (see Figure 11). These graphs are cospectral with respect to

their adjacency matrix, normalized adjacency matrix, Laplacian matrix, Normalized Laplacian matrix

and signless Laplacian matrix.

We have computed the WPS for these two graphs and embed the resulting feature vectors in a two-
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(a) G5 and G6. (b) G7 and G8.

FIG. 10. Examples of cospectral graphs with respect to Laplacian matrix (left) and normalized Laplacian matrix (right).

FIG. 11. Non-isomorphic graphs G9 and G10 that are cospectral with respect to their adjacency, normalized adjacency, Laplacian,

normalized Laplacian, and signless Laplacian matrices.

dimensional space, shown in Figure 12. Although the graphs were embedded very close in feature space,

the proposed method was still able to distinguished between the two graphs.
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FIG. 12. Embedding of cospectral graphs.

The above results suggest that WPS is a powerful tool for distinguishing between graphs that are

cospectral with respect to their different matrix representations including adjacency, normalized adja-

cency, Laplacian, normalized Laplacian, and signless Laplacian matrices. Note that some of these pair

of graphs cannot be distinguished by some of the graph characterization methods. For example in [3],

we have shown that graphs of Figure 9 cannot be distinguished by random walks on graphs. This is

due to the fact that the structure of random walk is determined by the power of adjacency matrix and

these graphs are cospectral with respect to their adjacency matrices. Similarly the graphs of Figure 10(a)
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cannot be distinguished by any method that is based on the Laplacian spectrum, and these include the

heat kernel trace [67]. Note that these two graphs can not be distinguished by Ihara coefficients which

are considered as a powerful tool to distinguish between non-isomorphic cospectral graphs [3]. This

suggests that the proposed method is a powerful tool to distinguish cospectral graphs.

8. Conclusion

In this paper we have developed a complete solution of the wave equation on a graph defined using the

edge-based Laplacian of a graph and used the resulting solution to define a signature for characterizing

graphs. We assume the initial condition to be a Gaussian wave packet on a single edge of the graph. The

advantage of using the edge-based Laplacian over the vertex-based Laplacian is that it allows the direct

application of many results from analysis to the graph theoretic domain. Another advantage of using

edge-based Laplacian is that it allows finite speed of propagation of a signal on a graph. This allows

for the implementation of many partial differential equations on a graph including the wave equation,

which does not have finite speed of propagation if defined using the discrete Laplacian. This may be

of potential utility in the study of networks where distance and speed of propagation are important. We

have also experimentally demonstrated that the partial differential equations defined using the discrete

Laplacian may fail to capture the connectivity structure of a network. The current analysis is limited to

the case of uniform edge lengths.

There are a number of directions in which the work reported here can be developed. In terms of

immediate developments, it would be interesting to focus on the case where edge lengths may vary, or

equivalently the speed of propagation between nodes is non-uniform. From a methodological point of

view, it would also be interesting to explore the solutions to alternative differential equations such as

the Fokker-Plank and relativistic wave (Dirac) equation. Finally, it would be interesting to use the wave

packet approach to study non-dispersive solutions or solitons on graphs, and to explore how they can be

used to categorize different types of graph.

As far as applications are concerned there are many potential avenues that can be explored. For

instance, in computer vision it would be interesting to study whether the packet-solution of the wave

equation can be applied to three-dimensional shapes, and whether they can give better result to the state

of the art heat kernel signature [60]. As far as network science is concerned, there are a numerous

potential applications. First, it would be interesting to study whether the application to the packet-

solutions of the wave equation can be applied to epidemiological data [14, 40], and whether they can

furnish better models of the spread of epidemics. It would also be interesting to explore if the proposed

framework can be applied to citation networks in order to capture the dynamic growth of publications

of researchers [50, 71]. Second, the new models presented in this paper may provide alternative ways

of studying properties such as network centrality and communicability, as well as an alternative means

of modelling network evolution via processes such as preferential attachment [8, 52].

A. Solution of Wave Equation

In this section we provide a general solution of a wave equation on a graph. Let the graph coordinate

X define an edge e and a value of the standard coordinate on that edge x. The eigenfunctions of the

edge-based Laplacian, corresponding to eigenvalue ω +2nπ , are

φω,n(X ) =C(e,ω)cos [B(e,ω)+ωx+2πnx] .
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The edge-based wave equation on the graph is

∂ 2

∂ t2
u(X , t) = ∆u(X , t). (A.1)

To solve the above equation, we seek separable solutions of the form u(X , t) = φω,n(X )g(t). Substi-

tuting this separable solution into the above equation, we obtain

φω,n(X )
∂ 2

∂ t2
g(t) =−g(t)(ω +2πn)2 φω,n(X ),

which implies that,

∂ 2

∂ t2
g(t) =−g(t)(ω +2πn)2 ,

This is a second order partial differential equation whose characteristic equation has complex roots at

±i(ω +2πn). Therefore the time-based part of the solution becomes

g(t) = αω,n cos [(ω +2πn)t]+βω,n sin [(ω +2πn)t] .

From the principal of superposition, the general solution is the sum of above solutions, for all the

possible values of ω and n. Therefore the general solution takes the form

u(X , t) = ∑ω ∑n C(e,ω)cos [B(e,ω)+ωx+2πnx]{αω,n cos [(ω +2πn)t]+βω,n sin [(ω +2πn)t]}.
(A.2)

Here the coefficients αω,n and βω,n depend on the initial conditions of the wave equation.

A.1 Initial conditions

Since the wave equation is a second order partial differential equation, we can impose initial conditions

on both the position and speed of the wave. Hence we write

u(X ,0) = p(X ) (A.3)

and
∂u

∂ t
(X ,0) = q(X ), (A.4)

where p(X ) and q(X ) are initial conditions on position and speed respectively. To find p(X ), we

take the value of u(X , t = 0) from Equation(A.2) and equate this with Equation(A.3). Therefore, we

obtain

p(X ) = ∑
ω

∑
n

αω,nC(e,ω)cos [B(e,ω)+ωx+2πnx] , (A.5)

Now differentiating Equation(A.2), taking the value at t = 0, and equating this with Equation(A.4), we

obtain

q(X ) = ∑
ω

∑
n

βω,n(ω +2πn)×C(e,ω)cos [B(e,ω)+ωx+2πnx] . (A.6)
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We can determine the coefficients αω,n and βω,n using the orthogonality of the eigenfunctions. So

from Equation (A.5), we obtain

αω,n = ∑
e

C(e,ω)
1

2

[

Fe,ω,n +F∗
e,ω,n

]

, (A.7)

where

Fe,ω,n = exp [iB(e,ω)]
∫ 1

0
dxp(e,x)exp [iωx]exp [i2πnx] .

We can determine βω,n, in a similar manner, using Equation A.6, to obtain

βω,n(ω +2πn) = ∑
e

C(e,ω)
1

2

[

Ge,ω,n +G∗
e,ω,n

]

,

where

Ge,ω,n = exp [iB(e,ω)]
∫ 1

0
dxq(x,e)exp [i(ω +2πn)x]

The values of Fe,ω,n and Ge,ω,n depend on the initial position and the speed of the wave.

A.2 Gaussian wave packet

In this section, we obtain a complete solution of the wave equation, where the initial condition is a

Gaussian wave packet confined to an edge of the graph. For this purpose, we assume that the initial

position of the wave equation is the Gaussian wave packet

p(e,x) = exp
[

−a(x−µ)2
]

on one particular edge and zero everywhere else. In practice, this can be done by taking the mean of

the wave packet to be the centre of the edge (i.e., µ = 0.5) and keeping the variance sufficiently small.

Since the variance or the width of the wave packet is very small compared to the length of the edge, we

assume the energy of the wave packet outside the edge is negligible. We therefore have

Fe,ω,n = exp [iB(e,ω)]×
∫ 1

0
dxexp

[

−a(x−µ)2
]

exp [iωx]exp [i2πnx] ,

= exp [iB(e,ω)]exp [iµω]exp

[

−ω2

4a

]

×
∫ 1

0
dxexp

[

−a

(

x−µ − iω

2a

)2
]

exp [i2πnx] .

When the Gaussian wave packet is fully contained by one edge, i.e., p(x,e) is only supported on one

edge, then

Fe,ω,n = exp [iB(e,ω)]exp [iµω]exp

[

−ω2

4a

]

×
∫ ∞

−∞
dxexp

[

−a

(

x−µ − iω

2a

)2
]

exp [i2πnx] .

Since sin(2πnx), is an odd function, the integral in the above equation evaluates to

∫ ∞

−∞
dxexp

[

−a

(

x−µ − iω

2a

)2
]

exp [i2πnx] =
∫ ∞

−∞
dxexp

[

−a

(

x−µ − iω

2a

)2
]

cos [2πnx] .
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Using integration by parts and substituting the result into equation (A.8), we obtain

Fe,ω,n =

√

π

a
exp [i(B(e,ω)+µ(ω +2πn))]× exp

[

− 1

4a
(ω +2nπ)2

]

.

In a similar manner, solving for F∗
e,ω,n, we obtain

F∗
e,ω,n =

√

π

a
exp [−i(B(e,ω)+µ(ω +2πn))]× exp

[

− 1

4a
(ω +2nπ)2

]

.

Now the coefficient αω,n can be found by substituting the values of Fe,ω,n and F∗
e,ω,n into Equation (A.7).

Hence,

αω,n =

√

π

a
exp

[

− 1

4a
(ω +2nπ)2

]

×C(e,ω)cos[B(e,ω)+µ (ω +2πn)]. (A.8)

Since p(x,e) is zero at both ends of the edge, the coefficients β can be found straightforwardly, as

βω,n =

√

π

a
exp

[

− 1

4a
(ω +2nπ)2

]

C(e,ω)sin[B(e,ω)+µ (ω +2πn)]. (A.9)

Substituting the values of αω,n and βω,n into Equation (A.2) gives us the general solution to the wave

equation on a graph.

A.3 Complete reconstruction

Let f be the single edge of the graph on which the initial function is non-zero. Let the Gaussian wave

packet be fully contained on this edge. Then the general solution is given by:

u(X , t) = ∑
ω

√

π

a
C(e,ω)C( f ,ω)×∑

n

exp

[

− 1

4a
(ω +2πn)2

]

×cos [B(e,ω)+ωx+2πnx]× cos [B( f ,ω)+(ω +2πn)(t +µ)] .

For a particular principal frequency ω , we need to calculate

uω = ∑
n

√

π

a
exp

[

− 1

4a
(ω +2πn)2

]

× cos [B(ω,e)+ωx+2πnx]× cos [B(ω, f )+(ω +2πn)(t +µ)] .

Writing the cosines appearing above in complex exponential form, we obtain

uw =
1

4
∑
n

√

π

a
exp

[

− 1

4a
(ω +2πn)2

]

× (exp [i[B(e,ω)+B( f ,ω)]] × exp [i(ω +2πn)(x+ t +µ)]

+exp [−i[B(e,ω)+B( f ,ω)]]× exp [−i(ω +2πn)(x+ t +µ)]

+exp [i[B(e,ω)−B( f ,ω)]]× exp [i(ω +2πn)(x− t −µ)]

+exp [−i[B(e,ω)−B( f ,ω)]]×exp [−i(ω +2πn)(x− t −µ)]) .

To solve the above equation, we therefore need to evaluate terms of the form

∑
n

π

a
exp

[

− 1

4a

]

exp [i[B(e,ω)+B( f ,ω)]]exp [i(ω +2πn)(x+ t +µ)] ,

where the values of ω and n depend on the particular eigenfunction under evaluation. We solve the

above equation for each case separately. Table 1 lists all solutions for each possible set of principal

frequencies.
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