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Abstract: The Metropolitan Area of São Paulo (MASP) is the largest megacity in South America,

with 21 million inhabitants and more than 8 million vehicles. Those vehicles run on a complex fuel

mix, with ethanol accounting for nearly 50% of all fuel sold. That has made the MASP a unique

case study to assess the impact of biofuel use on air quality. Currently, the greatest challenge in

terms of improving air quality is controlling the formation of secondary pollutants such as ozone,

which represents the main air pollution problem in the MASP. We evaluated the temporal trends in

the concentrations of ozone, its precursors (formaldehyde, acetaldehyde, and NO2), CO, and NO,

from 2012 to 2016. Formaldehyde and acetaldehyde concentrations were frequently higher in winter

than in other seasons, showing the importance of meteorological conditions to the distribution of

atmospheric pollutants in the MASP. We found no clear evidence that the recent growth in ethanol

consumption in Brazil has affected acetaldehyde concentrations, which are associated with emissions

from ethanol combustion. In fact, the formaldehyde/acetaldehyde ratio remained relatively constant

over the period studied, despite the change in the fuel consumption profile in the MASP.

Keywords: air quality; aldehydes; biofuels; carbonyl compounds; ozone precursors; pollution trends;

volatile organic compounds (VOCs)

1. Introduction

The metropolitan area of São Paulo (MASP), the most important economic region in Brazil,

located in São Paulo State, in southeastern Brazil, is one of the largest urban agglomerations in the

world. It covers an area of 8051 km2, with 21 million inhabitants, and the urban area is concentrated

in ≈2500 km2 [1]. The state of São Paulo is the leading producer of sugarcane/ethanol in Brazil,

accounting for 53.4% of sugarcane production (337.7 million tons per crop), 48.4% of ethanol production

(13.7 billion liters per crop) and 61.6% of sugar production (21.9 billion tons per crop). Sugarcane

cultivation occupies 6.17 million hectares, nearly 25% of the state [2]. The nearest sugar cane plantation

and ethanol refinery are ≈150 km from the MASP, the harvest occurring between May and October. The

effects of ethanol production on the atmospheric concentrations of volatile organic compounds (VOCs),

such as aldehydes and ethanol itself, are still unknown in Brazil, and there are few data in literature.

Studies conducted near the city of Ribeirão Preto (320 km from the MASP), a region that produces

more than 1.9 billion liters of ethanol a year, reported ethanol concentrations of 3750 ± 430 nmol/L in

rainwater [3] and 12.4–14.8 ppbv in the atmosphere [4], compared with only 10 ppbv in the atmosphere

over the third largest fuel ethanol refinery in the United States in June–July 2013 [5].

The Official Brazilian National Inventory stated that contributions from land use change, forests,

and agribusiness account for more than 50% of atmospheric emissions (expressed as CO2 equivalent),

Atmosphere 2017, 8, 144; doi:10.3390/atmos8080144 www.mdpi.com/journal/atmosphere



Atmosphere 2017, 8, 144 2 of 18

whereas those same sectors account for less than 1% of atmospheric emissions in the MASP [6]. The

energy sector is responsible for ≈80% of atmospheric emissions in the MASP, 75% being attributable to

the transportation sector (vehicle emissions) [7].

Megacities around the world face environmental problems associated with rapid, unplanned

demographic growth, air quality deterioration being one of the most prevalent environmental hazards

and responsible for health problems among the population [8]. Vehicle emissions have been recognized

as the main air pollution source in the MASP, where there are more than 8 million vehicles burning a

mix of fossil fuels and biofuels, accounting for 97% of CO, 76% of hydrocarbons, 68% of nitrogen oxides

(NOx), 17% of SOx, and 40% of particulate matter, in 2015 [9]. To minimize this hazardous situation,

the Brazilian vehicle emissions control program (PROCONVE), created in the 1980s, has resulted in

significant decreases in the concentrations of pollutants in the last decades in the MASP [8,10–12].

Nevertheless, the air quality standards are often exceeded, especially that for ozone, which represents

one of the main air pollution problems. Ozone, a secondary pollutant produced in the atmosphere by

nonlinear interaction among NOx and VOC during photochemical processes, frequently surpasses

the attention concentration (200 µg/m3 in 8 h) established by the São Paulo State Environmental

Agency—CETESB. In addition, an analysis of the trends in the three-year 8-h moving means in the

MASP showed that the maximum ozone concentrations have remained relatively constant over the

last 15 years, with no decreasing trend [9]. However, the concentrations of ozone precursors have

decreased as a result of PROCONVE [13,14]. Empirical findings and modeling hypotheses suggest

that ozone production over the MASP is VOC-limited [15,16]. Ozone isopleth simulations conducted

in the MASP have estimated a VOC/NOx ratio of approximately 11 [15]. Those results indicate a

VOC-limited atmosphere, in which a 30% reduction in VOC emissions would result in a 30–42%

reduction in ozone concentrations.

Fuel consumption and the number of vehicles circulating in the MASP are shown in Figure 1.

Vehicles in the MASP fleet run on gasohol (75% gasoline + 25% anhydrous ethanol), hydrous ethanol,

or diesel with 8% biodiesel (from soy). Large quantities of ethanol have been consumed in the MASP,

where ethanol has accounted for nearly 50% of all fuel sold since 2008, as can be seen in Figure 1.

Ethanol is still used in older (pre-2007) vehicles, which are powered exclusively by hydrous ethanol.

Since 2003, ethanol has also been used in flex-fuel vehicles, which can run on hydrous ethanol or

gasohol and currently account for 40% of the vehicle fleet in the MASP (Figure 1).
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Figure 1. Annual evolution of the amount of fuel sold (in millions of cubic meters) [17], for gasohol (red

shaded area) and hydrous ethanol (blue shaded area), as well as of the numbers of gasohol-powered

vehicles (GPVs, black line) [9], ethanol-powered vehicles (EPVs, blue line), and flex-fuel vehicles (FFVs,

green line) in the Metropolitan Area of São Paulo (2000–2016).
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Ethanol is well-recognized as a less-polluting vehicle fuel, in terms of local emissions (lower

emissions of particulate matter, sulfur, and lead) and emissions of greenhouse gases (carbon

dioxide and methane) [18]. However, several studies have implicated ethanol in certain air quality

problems [19–23]. Ethanol contributes to ozone formation in two distinct ways: by direct emissions

of acetaldehyde resulting from incomplete combustion; and by evaporative emissions. Although

ethanol has low reactivity and a low capacity for ozone formation, it is converted to acetaldehyde and

peroxyacetyl nitrate by oxidation and photo-oxidation processes in the atmosphere [12]. The reasons

for exceedances of the ozone air quality standard in the MASP are not fully understood, although

emissions from ethanol combustion might be responsible [8,12]. Previous studies have suggested that

ozone in the MASP should have been reduced by the shift from ethanol use to gasohol use by the

owners of flex-fuel cars [19–21]. Another study showed that, in comparison with gasoline, the use of

E85 (gasoline containing 85% ethanol) slightly increases ozone in the presence or absence of fog under

summer conditions but increases ozone significantly under winter conditions [23].

The cause of the elevated concentrations of ozone and the role that ethanol use plays in ozone

formation in the atmosphere over MASP are still open questions [22,23]. Although the annual mean

concentrations of other air pollutants (NOx, CO, and PM10) showed a decreasing trend in the MASP,

no trend has been observed for ozone [8,10–13]. However, increases in ozone concentrations have been

observed at some air quality monitoring stations operated by CETESB [9].

In this study, we show seasonal trends in the concentrations of ozone and its key precursors,

as well as in those of aldehydes (formaldehyde and acetaldehyde) and NO2, between 2012 and

2016. We provide a detailed analysis of meteorological conditions, analyzing their relationship with

ozone, ozone precursors, and other pollutants (NO and CO), in order to further understanding of the

photochemical process and of the effect of weather on the regulation of pollutant concentrations in the

atmosphere, as well as of the effects of increased ethanol use by vehicles in the MASP.

2. Materials and Methods

2.1. Sampling Site and Study Period

Concentrations of aldehydes, NO, NO2, CO, and ozone were obtained from the CETESB air

quality monitoring network [24]. The sampling site was the Pinheiros air quality monitoring station

(23◦33′39.77” S, 46◦42′6.62” W), located in the MASP western region, near a busy street and 200 m from

one of the busiest roads (Marginal Pinheiros). The analyzer devices and analytical methods employed

for those pollutants are summarized in Table 1. Carbonyl samples were collected over a total of

246 days during the 2012–2016 period. Samplings were performed over 24-h periods once every 6 days,

on weekdays and weekends. We performed 48 samplings (38 weekday samplings and 10 weekend

samplings) in 2012; 35 (28 weekday samplings and 7 weekend samplings) in 2013; 49 (35 weekday

samplings and 14 weekend samplings) in 2014; 57 (42 weekday samplings and 15 weekend samplings)

in 2015; and 57 (41 weekday samplings and 16 weekend samplings) in 2016.

Table 1. Methods and analyzers employed for the measurement of pollutants at the São Paulo State

Environmental Protection Agency Pinheiros air quality monitoring station, together with the precision

and limit of detection for each method.

Variable
Formaldehyde

and Acetaldehyde
NOx (NO and NO2) CO Ozone

Method
DNPH method +
HPLC technique

Chemiluminescence
Nondispersive infrared

photometry
Ultraviolet photometry

Analyzer Shimadzu LC-10A Thermo-electron (42i) Thermo-electron (48i) Thermo-electron (49i)

Precision <1.5% ±0.4 ppbv ±0.1 ppmv ±1 ppbv

Detection Limit 0.01 ppbv 0.50 ppbv 0.04 ppmv 0.50 ppbv
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2.2. Formaldehyde and Acetaldehyde Measurements

The most well-known and well-established method for collecting gas-phase carbonyl compounds

is the 2,4-dinitrophenylhydrazine (2,4-DNPH) technique. The sampling and analyses used in the

2,4-DNPH technique follow the standard US EPA TO-11A method [25], and the technique has been

largely applied in different places and field campaigns [26–34], as well as in previous campaigns carried

out in the MASP [35–38]. It is based on the specific reaction of carbonyl compounds to 2,4-DNPH in

the presence of a strong acid, as a catalyst, to form stable color hydrazone derivatives [25], which are

then identified by high performance liquid chromatography (HPLC) with ultraviolet detection.

Most of the aldehyde samplings were performed once a week, over a 24-h period, using an

automatic pump with a 0.7 L/min flow rate. The samples were collected in commercial silica cartridges

coated with 2,4-DNPH solution. To avoid artifacts, a potassium iodide scrubber for ozone retention

was used and replaced each day of sampling [39]. After the samples had been collected, the cartridges

were duly sealed, packed, and refrigerated until the extraction procedure. In the laboratory, blanks

and samples were eluted by acetonitrile with a syringe and transferred to 5-mL volumetric flasks.

All solvents and reagents were HPLC grade.

The derived carbonyls were analyzed by HPLC (LC-10A; Shimadzu, Tokyo, Japan). Hydrazones

were separated on a Zorbax-ODS column (4.6 mm × 250 mm, 5 µm; Agilent Technologies, Wilmington,

DE, USA) with a 365-nm UV detector [40]. Elution was performed with an acetonitrile/water solution

(65:35, acetonitrile:water, v/v) as a mobile phase and filtered through a cellulose membrane (0.45 µm

pore size). The mobile phase flow rate was 1.0 mL/min, and the injection volume was 10 µL. Carbonyls

in the air samples were quantified using the external calibration data from the calibration curve derived

from carbonyl-DNPH standards (Sigma-Aldrich, St. Louis, MO, USA). The precision of DNPH method

+ HPLC technique and their limit of detection are shown in Table 1.

2.3. NO, NO2, CO, and Ozone Measurements

NO, NO2, CO and O3 were measured hourly at the Pinheiros air quality monitoring station [24].

The analytical methods and analyzer devices employed, together with their precision and detection

limits, are summarized in Table 1. Calibration procedures for the air quality network were automatically

performed by CETESB, on a daily basis, for every instrument at all of the air quality monitoring stations.

2.4. Meteorological Parameters and Ancillary Data

Hourly meteorological data (temperature, precipitation, relative humidity, and incoming solar

radiation) were provided by the Meteorological Station of the University of Sao Paulo, Institute of

Astronomy, Geophysics, and Atmospheric Sciences [41]. Instruments were calibrated on a regular basis,

and data quality control analysis procedures were routinely performed. The station has maintained an

important observational database of information collected since 1932. In the present study, seasons

were defined in relation to the southern hemisphere, as follows: summer from December to February;

autumn from March to May; winter from June to August; and spring from September to November.

Fuel consumption data were provided by the Brazilian National Petroleum Agency [17] and the

number of vehicles operating in the region was obtained from the mobile source inventory for the

São Paulo State [9].

3. Results and Discussion

3.1. Seasonal Variations in Formaldehyde and Acetaldehyde Concentrations

The seasonal variations in the 246 samples of formaldehyde and acetaldehyde, corresponding

to 246 days sampled between 2012 and 2016, are shown in Figure 2. Seasonal mean formaldehyde

concentrations ranged from 3.0 ± 0.9 ppbv (spring 2013) to 5.2 ± 1.1 ppbv (winter 2012), with a mean

of 3.9 ± 1.3 ppbv for the study period as a whole (Figure 2). Formaldehyde was the most abundant

carbonyl in 18 of the 20 seasons sampled. The mean acetaldehyde concentration for the study period
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as a whole was 3.2 ± 1.3 ppbv, ranging from 5.5 ± 1.4 ppbv in the winter of 2013 to 2.2 ± 0.8 ppbv in

the summer of 2015/2016.
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Figure 2. Seasonal variations in formaldehyde and acetaldehyde concentrations at the Pinheiros

air quality monitoring station [24] between 2012 and 2016. The black line represents a

formaldehyde/acetaldehyde (F/A) ratio of 1.0, and the green triangles represent the observed

F/A ratios.

As can be seen in Table 2, the highest annual mean concentrations for formaldehyde and

acetaldehyde (4.3 ± 1.2 and 3.7 ± 1.5, respectively) were recorded in 2012, whereas the lowest

(3.7 ± 1.3 and 2.8 ± 1.5, respectively) were recorded in 2016. Decreases in the atmospheric concentration

of VOCs have recently been observed in the MASP [38,42]. From 2012 to 2016, the observed trend for the

mean annual concentrations of formaldehyde was −0.14 ppbv/year (Fcalculated < Fcritical: 2.4 < 10), with

no statistical significance (p > 0.05), whereas that for the mean annual concentrations of acetaldehyde

(−0.24 ppbv/year; Fcalculated > Fcritical: 72 > 10) was significant (p > 0.0017; Figure 3). The trend

toward a slight decrease in the aldehyde concentrations in the MASP runs contrary to the expectation

that the increase in ethanol sales in the MASP (Figure 1) would result in higher concentrations of

atmospheric acetaldehyde. Some studies have demonstrated that an increase in the quantity of ethanol

sold increases evaporative (hot-soak, running loss, resting loss, gas station leak/spill) emissions of

ethanol [43]. In the United States, the use of ethanol in gasoline has led to an increase in the ambient

concentration of ethanol [44], as well as an increase in acetaldehyde emissions [45]. We believe

that evaporative emissions can play a significant role in the formation of ozone, the atmospheric

concentration of which cannot be explained by exhaust emissions alone.

Table 2. Mean formaldehyde and acetaldehyde concentrations (ppbv), together with F/A ratios, in the

Metropolitan Area of São Paulo (MASP) between 2012 and 2016.

Variable

2012 2013 2014 2015 2016

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

(Min–Max) (Min–Max) (Min–Max) (Min–Max) (Min–Max)

Formaldehyde
4.3 ± 1.2 3.9 ± 1.1 3.4 ± 1.2 3.7 ± 1.4 3.7 ± 1.3
(1.7–7.7) (2.1–6.4) (1.2–6.2) (1.3–6.9) (1.4–6.5)

Acetaldehyde
3.7 ± 1.5 3.5 ± 1.7 3.1 ± 1.5 2.9 ± 1.5 2.8 ± 1.5
(1.4–8.9) (1.3–8.3) (0.9–9.1) (0.6–7.7) (0.9–7.1)

F/A ratio 1.2 1.1 1.1 1.3 1.3

N of samples 48 35 49 57 57

Source: Pinheiros air quality monitoring station [24].



Atmosphere 2017, 8, 144 6 of 18

5.0

4.0

3.0

2.0

1.0

p
p

b
v

20162015201420132012

Acetaldehyde, slope = -0.24 ± 0.03, R
2
 = 0.96, p-value = 0.0017

 Formaldehyde, slope = -0.14 ± 0.09, R
2
 = 0.44, p-value = 0.11

Figure 3. Annual trends in formaldehyde and acetaldehyde concentrations in the Metropolitan Area of

São Paulo between 2012 and 2016. The dashed lines indicate the linear fit, and the bars indicate the

bars indicate the standard deviation. Source: Pinheiros air quality monitoring station [24].

The concentrations of atmospheric formaldehyde and acetaldehyde were often higher in winter

than in other seasons, in accordance with the meteorological conditions, given that vehicle emissions

can be considered constant all over the year. As can be seen in Figure 4, the summer/winter,

autumn/winter, and spring/winter carbonyl ratios were lower than 1.0 in most cases, except

for the summer/winter and spring/winter formaldehyde ratios in 2014 and the summer/winter

formaldehyde ratio in 2015. This pattern was similar to that observed in the city of Londrina,

located in the state of Paraná (Table 3), where the concentrations of formaldehyde and acetaldehyde

have been found to be higher in winter [29]. However, the pattern observed in the present study

differed from those reported in studies conducted in urban areas in China and France [30–33],

where the summer/winter, autumn/winter, and spring/winter ratios were often higher than 1.0

for formaldehyde and acetaldehyde, indicating that their concentrations were lower in winter.
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Figure 4. Formaldehyde and acetaldehyde summer/winter (Su/Win), autumn/winter (Aut/Win), and

spring/winter (Spr/Win) ratios in Metropolitan Area of São Paulo. The dashed black line corresponds

to a 1:1 ratio between seasons.
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Table 3. Seasonal comparison of formaldehyde and acetaldehyde mean concentrations (in ppbv), together with the ratios between the seasons, in the Metropolitan

Area of São Paulo and in other regions worldwide.

Pollutant
Summer Autumn Winter Spring Su/Win Aut/Win Spr/Win Reference

Locale

Formaldehyde

MASP 4.3 ± 1.4 3.5 ± 1.0 4.3 ± 1.4 3.5 ± 1.2 1.0 0.8 0.8 This work
Londrina, Brazil 4.11 ± 0.97 n.a. 5.07 ± 2.09 n.a. 0.8 n.a. n.a. Pinto and Solci. [29]

Nanning, China * 8.7 4.1 2.5 6.4 3.5 1.7 2.6 Guo et al. [30]
Hong Kong (Roadside) * 5.5 ± 2.2 5.9 ± 1.2 4.6 ± 1.1 4.7 ± 1.0 1.2 1.3 1.0

Hong Kong (Urban) * 8.7 ± 2.1 3.2 ± 0.8 2.9 ± 1.3 3.2 ± 1.0 3.0 1.1 1.1 Cheng et al. [31]
Hong Kong (Background) * 2.1 ± 2.0 2.1 ± 0.7 1.9 ± 0.5 1.6 ± 0.6 1.1 1.1 0.8

Guangzhou, China * 11.0 3.8 4.5 4.7 2.4 0.9 1.0 Lü et al. [32]
Guangzhou, China * 8.9 n.a. 3.2 5.8 2.8 n.a. 1.8 Lü et al. [32]

Orléans, France 3.08 ± 2.21 2.28 ± 0.82 1.46 ± 0.4 2.16 ± 0.59 2.1 1.6 1.5 Jiang et al. [33]

Acetaldehyde

MASP 2.8 ± 1.0 2.8 ± 1.1 4.3 ± 1.8 2.8 ± 1.3 0.7 0.7 0.7 This work
Londrina, Brazil 3.02 ± 1.10 n.a. 5.72 ± 2.66 n.a. 0.5 n.a. n.a. Pinto and Solci [29]

Nanning, China * 10.4 4.6 4.7 14.9 2.3 1.0 3.3 Guo et al. [30]
Hong Kong (Roadside) * 1.3 ± 0.8 1.6 ± 0.4 1.6 ± 0.4 1.3 ± 0.4 0.8 1.3 0.8

Hong Kong (Urban) * 0.8 ± 0.3 1.0 ± 0.3 1.1 ± 0.5 1.0 ± 0.5 0.7 0.9 0.9 Cheng et al. [31]
Hong Kong (Background) * 0.5 ± 0.6 0.7 ± 0.2 0.8 ± 0.2 0.5 ± 0.3 0.6 0.9 0.6

Guangzhou, China * 5.8 3.9 3.1 1.9 1.8 1.2 0.6 Lü et al. [32]
Guangzhou, China * 9.5 n.a. 2.1 3.4 4.6 n.a. 1.6 Lü et al. [32]

Orléans, France 1.0 ± 0.5 0.7 ± 0.3 0.7 ± 0.2 1.0 ± 0.3 1.6 1.0 1.5 Jiang et al. [33]

* Mean values, expressed as µg/m3 in the literature, were converted to ppbv using 20 ◦C and 1.0 atm. MASP, Metropolitan Area of São Paulo, n.a.: not available.
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3.2. Seasonal Meteorological, NO, NO2, CO, and Ozone Variations

As discussed in previous studies [10,16,38,42,46], meteorological conditions are key factors in

the modulation of pollutant concentrations in the MASP. The region is characterized by a dry season

(winter, June to August) and a rainy season (summer, December to March), bracketed by intermediate

conditions (in spring and autumn). In general, the minimum daily temperatures and minimum relative

humidity occur during July and August, respectively, and the maximum daily temperatures occur in

February [47].

Among the synoptic systems that operate in the MASP, frontal systems and their passage are of

chief importance. Whereas heat fronts typically trigger rain events, the passage of cold fronts in winter

intensifies the southern quadrant winds, bringing polar air masses and lowering the temperature.

Another important synoptic phenomenon in summer in the Brazilian Southeastern region is the

South Atlantic Convergence Zone (SACZ), the increased intensity of which causes rainfall events.

Meteorological conditions (accumulated rainfall, temperature, and incoming solar radiation) during

the period studied are shown, by season, in Figure 5. The main characteristics of winter in the MASP are

low solar radiation, temperature, and precipitation, together with 3–5 times more thermal inversions

within the planetary boundary layer below 200 m than in other seasons [9]. Consequently, winter has

been characterized by the accumulation of primary pollutants such as CO and NO (Figure 6a,d). The

winter of 2014 was the driest season, with 101 mm of accumulated rainfall, compared with 859 mm

during the rainiest season (summer of 2012/2013). The mean monthly temperature ranged from

14.4 ◦C in June 2016 to 24.3 ◦C in February 2014. The mean daily solar radiation, which correlates

directly with positive photochemical production, was higher during summer and spring.

The meteorological conditions observed during 2013, 2014, and 2015 were atypical. The driest

period in eleven years, with precipitation 13% lower than the climatological mean, occurred in 2014,

the driest months being January, February, June, July, September, and October. In addition, throughout

2014, the monthly mean temperatures were higher than the climatological mean, as well as the monthly

mean levels of incoming solar radiation, especially in January, when the total maximum radiation

set a record—8478 W/m2 (climatological mean, 6970 W/m2)—the highest level since 1961 [48]. In

contrast, the precipitation in 2013 was 7% higher than the climatological mean, particularly in summer

and winter [49]. A similar pattern was observed in 2015, when precipitation was 30% higher than the

climatological mean, mainly during spring, when it was more than twice the respective climatological

mean. Nevertheless, the monthly mean temperatures were higher than the respective climatological

means throughout the year, making 2015 an extremely wet and warm year [48]. However, although

ethanol was the best-selling fuel, with ethanol sales reaching 9 × 106 m3 in that year (Figure 1), no

significant peaks were observed in the concentrations of aldehydes (Figure 2) or ozone (Figure 6c).

The seasonal variability of NO and NO2 concentrations is presented in Figure 6a,b, respectively.

Higher concentrations of NO were observed in winter periods, the mean being highest (127 µg/m3)

in the winter of 2014 and lowest (11 µg/m3) in the summer of 2015/2016. Except in the summer of

2012/2013, the mean NO2 concentrations were lowest in the summer periods, whereas they were

highest in the winter and spring periods. The seasonal mean NO2 concentration was also lowest

(23 µg/m3) in the summer of 2015/2016, whereas it was highest (52 µg/m3) in the spring of 2012.

During the study period as a whole, the maximum NO2 concentration was 250 µg/m3, which did not

exceed the 1-h air quality standard for the state of São Paulo (260 µg/m3) [9].
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≈
≈

Figure 5. Seasonal variations in precipitation, temperature, and incoming solar radiation in the

Metropolitan Area of São Paulo, between 2012 and 2016 [41].

The seasonality of ozone concentrations is presented in Figure 6c. The seasonal mean was

calculated using the daily 8-h mean (from 11 a.m. to 6 p.m.). The data show marked seasonality.

Because ozone is formed in the atmosphere by photochemical reactions that are dependent on factors

such as solar radiation and temperature (Figure 5), the spring and summer were the seasons that were

most favorable to ozone formation (Figure 6c). The seasonal mean ozone concentration was highest

(78 µg/m3) in the spring of 2012 and lowest (31 µg/m3) in the winter of 2016. Higher mean ozone

values were frequently observed during the spring. The incidence of solar radiation can be higher in

summer (Figure 5). However, in the MASP, summer is characterized by a lower number of days with

clear sky conditions in the afternoon due to rain events or sea breeze circulation bringing humidity

and cloudiness (Figure 5), which can reduce ozone formation by photochemical reactions [10]. During

the study period, the highest 8-h mean ozone concentration recorded at the Pinheiros station was

265 µg/m3 in 2014, a year in which the ozone standard (140 µg/m3 in 8 h) was reportedly exceeded on

35 days.

The seasonality of CO concentrations is shown in Figure 6d, with the maximum mean value

reported as 7.3 ppmv. Therefore, no exceedances of the CO standard (9 ppmv in 8 h) were observed

during the study period at the Pinheiros air quality monitoring station. As previously mentioned, the

mean concentrations of atmospheric pollutants in the MASP are higher during the colder seasons,

when there is a prevalence of thermal inversions near the surface, weak winds, and lower precipitation

(Figure 5), causing pollutants to accumulate. The seasonal mean CO concentration was highest

(1.5 ppmv) in the winter of 2012 and lowest (0.4 ppmv) in the summer of 2016/2017. This marked

trend in seasonal CO concentrations has also been observed in other studies of air quality in the

MASP [10,50].

Some studies have indicated that the formaldehyde production from isoprene oxidation is

dependent on the NOx concentration and temperature [51]. In the present study, NOx reached

maximum values of 400 ppbv, with a mean of ≈50 ppbv, at the Pinheiros air quality monitoring

station, between 2012 and 2016. In the MASP, near a small urban park (≈5 km from Pinheiros

station), analyses of 2998 hourly hydrocarbons samples performed in 2013, equally distributed

across all seasons, showed a maximum isoprene concentration of 3.9 ppbv, with a mean value

of 0.38 ± 0.47 ppbv [42]. Another study, in which measurements were taken from 8 February to

23 April, 2013 [52], reported mean isoprene and acetaldehyde concentrations of 1.06 ± 0.68 ppbv and

3.42 ± 1.98 ppbv, respectively, near an avenue with heavy vehicular traffic. Whereas the contribution

of isoprene from vehicle emissions has been reported for other cities worldwide [53–55], studies in the

MASP briefly discussed isoprene sources [42,52]. The study conducted in the MASP shows that even

compounds associated with biogenic or secondary sources, such as acetone, acetaldehyde and MVK +

MACR, presented a high nighttime correlation with CO (R2 > 0.8) [52]. High nighttime correlation
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indicates that VOCs share a common source with CO, for instance combustion, instead evaporation [52].

Moreover, the atmospheric concentrations are affected by meteorological conditions, especially during

nighttime due to the lower boundary layer and calm winds contributing to the increase of atmospheric

pollutants concentrations [56,57]. Therefore, both vehicular emissions and biogenic emissions should

be considered in the MASP. The presence and emission of isoprene from biogenic sources in urban areas

cannot be ignored [54,56,57] and the contribution of biogenic sources and their role in formaldehyde

formation need to be thoroughly addressed in future studies in the MASP.
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Figure 6. Box-whisker plots showing the hourly concentrations of NO (a); NO2 (b); ozone O3 (c); and

CO (d) at the Pinheiros air quality monitoring station, color-coded by season [24]. The rectangles

represent the 25th and 75th percentile values, the lines and squares within the rectangles represent the

medians and arithmetic means, respectively. The whiskers indicate the 10th and 90th percentiles.
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3.3. F/A Ratio

It is known that formaldehyde and acetaldehyde are emitted as primary pollutants by vehicle

fleets in urban centers [38,58] and by biogenic sources (emissions from trees) [59,60]. In addition,

they are important secondary pollutants created through oxidation reactions of hydrocarbons

from anthropogenic or biogenic emissions [61,62]. However, these carbonyls (formaldehyde and

acetaldehyde) are removed by photochemical reactions, contributing to the production of ozone, as

well as of the OH and HO2 radicals [61,63]. The atmospheric concentrations of formaldehyde and

acetaldehyde are the result of these different processes of emission, production, and photochemical

consumption, as is the F/A ratio [64–67]. The photolysis of carbonyls and their chemical reactions with

the OH radical are the dominant processes in the removal of carbonyls from the atmosphere, changing

the F/A ratio by altering the distribution of atmospheric formaldehyde and acetaldehyde [64–67].

Therefore, the F/A ratios should be higher in the presence of high hydrocarbon concentrations and

photochemical conditions that are more intense.

The mean seasonal F/A ratios, ranging from 0.9 in winter to 1.7 in summer, are shown in Figure 2.

Table 2 shows F/A ratios, yearly, revealing no trend. During the period studied, the mean F/A ratio

in the MASP was higher (1.3–1.7), which implied intense photochemical reactivity leading to the

formation of atmospheric carbonyls in summer. This high photochemical reactivity corresponds to

the high levels of incoming solar radiation in summer and spring (Figure 5). The mean F/A ratio was

lower (0.9–1.1) in winter, due to lower incoming solar radiation (Figure 5) and possible accumulation

of acetaldehyde during thermal inversions.

Several studies conducted in urban areas of Brazil have reported F/A ratios below 1.0 [27–29,68].

The high acetaldehyde concentration in Brazil has been attributed to vehicle emissions and to the

composition of the biofuels used. Incomplete combustion of ethanol results in higher acetaldehyde

emissions, whether the vehicle is powered by hydrous ethanol or gasohol. For instance, there is

evidence that the addition of ethanol to gasoline results in a substantial (100–200%) increase in

acetaldehyde emissions [69]. However, previous studies conducted in the MASP [38,68] have shown

that, over the last 30 years, there has been a reduction in acetaldehyde emissions from light-duty

vehicles, resulting in higher F/A ratios. During the 1980s, the F/A ratio in the MASP was frequently

below 0.5 [26], whereas it is currently above 1.0. As discussed in a previous study [38], despite

a considerable increase in ethanol sales in the MASP, attributable in part to an increase in the

number of light-duty flex-fuel vehicles (Figure 1), there is no evidence of an increase in acetaldehyde

concentrations, as would be reflected in the F/A ratio. The technological improvements incorporated

into the design of the flex-fuel vehicles prevented any significant increase in aldehyde concentrations

in the atmosphere [38].

Some studies have demonstrated an increase in acetaldehyde emissions associated with biodiesel

use [27,70]. A study conducted in the city of Salvador, Brazil, showed that the addition of 5% biodiesel

to diesel fuel resulted in an increase in acetaldehyde emissions and a consequent change in the

atmospheric F/A ratio [27]. However, in the present study, we found that the F/A ratio was not

sensitive to the recent increase in biodiesel consumption in the MASP (data not shown).

3.4. Primary vs Secondary Sources of Aldehydes in the MASP

Pearson’s correlation coefficient was used in order to investigate the characteristics of sources

and sinks or interactions among the compounds analyzed in the MASP. Table 4 shows the correlation

coefficients for formaldehyde, acetaldehyde, and other pollutants measured in this study, in summer

and winter, from 2012 to 2016. In both seasons, good correlations were observed between formaldehyde

and acetaldehyde (R > 0.9), suggesting that both carbonyls came from the same source and had common

sinks in both seasons. Both aldehydes showed stronger correlations with primary vehicular pollutants

during winter. CO is well-known as primary pollutant, mainly from light-duty vehicle emissions

resulting from incomplete combustion, whereas NO is known as a primary pollutant produced mainly

by diesel-powered heavy-duty vehicles [14,31,71]. Acetaldehyde correlated better with CO and NO in
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winter (R = 0.85 and 0.79, respectively) than in summer (R = 0.61 and 0.55, respectively). Formaldehyde

also correlated better with CO and NO in winter (R = 0.70 and 0.59, respectively) than in summer

(R = 0.42 and 0.38, respectively). However, formaldehyde and acetaldehyde both showed weaker

correlations with ozone in winter (R = 0.46 and 0.33, respectively) than in summer (R = 0.65 and 0.57,

respectively). This suggests that primary emissions from vehicles, rather than photochemical processes,

were the major sources of aldehydes in winter, whereas in summer they arise as primary pollutants

from vehicle emissions and as secondary pollutants from photochemical processes. It is of note that

formaldehyde showed a stronger correlation with ozone, whereas acetaldehyde presented stronger

correlations with primary pollutants, in both seasons. These findings are in alignment with our finding

that the mean F/A ratio was higher in summer (1.5 ± 0.2) than in winter (1.0 ± 0.1), indicating that

secondary sources make a significant contribution to formaldehyde concentrations in summer. Better

correlations between formaldehyde and ozone in summer than in winter have also been reported in

studies conducted in other urban areas, such as those conducted in Rome [72] and in Hong Kong [31].

Table 4. Pearson’s correlation coefficients between aldehydes and other pollutants in summer and

winter in the Metropolitan Area of São Paulo (2012–2016).

Summer Formaldehyde Acetaldehyde NO NO2 NOx CO Ozone

Formaldehyde 1.00 0.92 0.38 0.49 0.43 0.42 0.65
Acetaldehyde 1.00 0.55 0.64 0.60 0.61 0.57

NO 1.00 0.79 0.96 0.45 0.11
NO2 1.00 0.91 0.80 0.03
NOx 1.00 0.76 0.12
CO 1.00 0.26

Ozone 1.00

Winter Formaldehyde Acetaldehyde NO NO2 NOx CO Ozone

Formaldehyde 1.00 0.90 0.59 0.74 0.63 0.70 0.46
Acetaldehyde 1.00 0.79 0.79 0.82 0.85 0.33

NO 1.00 0.61 0.99 0.90 0.12
NO2 1.00 0.67 0.71 0.39
NOx 1.00 0.84 0.15
CO 1.00 0.22

Ozone 1.00

3.5. OH Reactivity and Ozone Formation

In urban atmospheres, the photochemical reactions leading to the formation of tropospheric

ozone, as well as of the OH, HO2, and organic peroxy radicals, are mainly related to the concentration

and reactivity of ozone precursors, especially VOCs. Aldehydes are important precursors of ozone,

and each species has an inherent reactivity, predominantly related to the reactions with the OH radical

and the potential to produce ozone [73–75]. To estimate potential formation reactions, reactivity scales

have been used extensively in various studies conducted in Brazil, showing the impact that individual

compounds have on ozone formation [15,19,37,38,42,68,76]. Two methods in particular have been

employed: the maximum incremental reactivity (MIR) coefficient [73]; and the propylene equivalent

(propy-equiv) scale.

MIR coefficients represent the ozone formation potential (OFP), defined as the ozone mass

produced per gram of VOC added into the system. The MIR value, which is dimensionless, has been

estimated for a large quantity of compounds [74] with the following equation:

OFP (µg/m3) = ci × MIRi (1)

in which ci is the concentration of the organic compound i, in µg/m3, and MIR is the coefficient for the

individual compound i.
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The propy-equiv scale is an OH-reactivity indicator based on a scale normalized to the reactivity

of propylene (kOH = 26.3 × 10−12 cm3/molecule × s) and indicates the concentration of propylene

required to produce a carbon oxidation rate equal to that of a specific VOC species [77]:

Propy − equiv =
Ci × kOHi

kOH(C2H6)
(2)

in which ci is the concentration of the compound i, kOHi is the reactivity rate of the compound i, and

kOH (C2H6) is the reactivity rate of propylene. The propy-equiv scale was used in order to analyze the

importance of the various VOC species in producing ozone at a specific location [77].

The OFP and propy-equiv scale values for acetaldehyde and formaldehyde concentrations are

shown in Figure 7. In the present study, acetaldehyde contributed much more to propy-equiv

concentrations than did formaldehyde, due to the differences in their reactivity rates (15 and

9.37 × 10−12 cm3/molecule × s, respectively) [73]. In terms of seasonality, higher contributions

(up to 7 µg/m3) were observed during winter, when higher concentrations of acetaldehyde were

also observed. This pattern differs from those observed in cities in China, where propy-equiv values

have been found to be higher in summer [30,32]. For example, despite differences in seasonality, the

maximum values observed in the Chinese city of Nanning were similar to those observed in the MASP

(6.0–9.9 µg/m3) [30].
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Figure 7. Mean propy-equiv (a) and ozone formation potential (OFP) (b) values for concentrations of

formaldehyde and acetaldehyde in the Metropolitan Area of São Paulo between 2012 and 2016.

In the present study, the OFPs for acetaldehyde and formaldehyde ranged from 26 to 65 µg/m3

and from 35 to 60 µg/m3, respectively. Despite the maximum values observed, the mean OFP was

higher for formaldehyde than for acetaldehyde (45 µg/m3 vs. 37 µg/m3). Higher OFP were frequently

observed in summer, when photochemical reactions were also favored by solar radiation availability

leading to ozone formation. In the MASP, the mean seasonal OFP was highest in winter (50 µg/m3) and

summer (48 µg/m3) for formaldehyde, whereas it was highest in winter for acetaldehyde (51 µg/m3).
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Although the OFPs were lower than those observed in other megacities [30,32], there is no clear

seasonality pattern for the OFPs in the MASP. That could be explained by the effects that meteorological

conditions have on pollutant dispersion, as well as by the unfavorable photochemical reactions

during wintertime.

4. Conclusions

In this study, we monitored carbonyl compounds in the MASP, evaluating a total of 246 samples

collected over a five-year period (2012–2016). The seasonal evaluations showed that concentrations

of formaldehyde and acetaldehyde were frequently higher in winter than in other seasons. Seasonal

aldehyde ratios showed a pattern different from that observed in other regions around the world,

although similar to those reported for other Brazilian cities.

Our results underscore the effect that meteorological conditions have on pollutant concentrations

in the MASP atmosphere, with carbonyl concentrations being higher in winter. This pattern was in

alignment with those of other pollutants such as CO and NO (both primary pollutants emitted mainly

by vehicles) because during the colder months, thermal inversions near the surface prevail, inducing

stable atmospheric conditions, weak winds, and less precipitation.

The ozone pattern is related to photochemical activity. Ozone is one of the main pollutants

in the MASP, where ozone concentrations often exceed the air quality standard of São Paulo State.

During the period under study, exceedances of the ozone standard were observed on 128 days at the

Pinheiros station.

During winter, aldehydes correlated better with primary vehicular pollutants and poorer with

ozone. In contrast, aldehydes correlated better with ozone in summer, when there are apparently

two major sources and sinks of formaldehyde and acetaldehyde: primary emissions and secondary

pollutants. This suggests that primary vehicular emissions, rather than photochemical processes, are

the major source of aldehydes in the winter. However, the contribution from biogenic sources and

their role in formaldehyde formation through secondary process in the MASP should be investigated

in future studies.

The propy-equiv and OFP showed higher values in winter. Nevertheless, ozone concentrations

were higher during spring, when radiation, temperature, and meteorological conditions were favorable

for ozone formation.

Finally, our findings show that the increases in ethanol consumption did not have a direct impact

on acetaldehyde concentrations associated with emissions from ethanol combustion, a pattern that

seems to have been maintained over the last few years. In addition, evaporative emissions, also

associated with the quantity of ethanol sold and contributing to acetaldehyde formation through

ethanol reactions in the atmosphere, seemed to have no effect on atmospheric concentrations of

acetaldehyde. Furthermore, despite the greater biodiesel content in diesel fuel since 2008, no increases

in atmospheric acetaldehyde concentrations were detected. Moreover, the F/A ratio was not sensitive

to the changes in the vehicle fuel consumption profile in the MASP. The implementation of programs to

control vehicle emissions has resulted in a decrease in the exhaust emissions of primary pollutants such

as NO, CO, and VOCs, as evidenced by the lower concentrations of formaldehyde and acetaldehyde.
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