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Abstract

Many countries have introduced support schemes to accelerate investments
in renewable energy (RE). Experience shows that, over time, retraction or
revision of support schemes become more likely. Investors in RE are greatly
affected by the risk of such subsidy changes. This paper examines how invest-
ment behavior is affected by updating a subjective belief on the timing of a
subsidy revision, incorporating Bayesian learning into a real options modeling
approach. We analyze a scenario where a retroactive downward adjustment
of fixed feed-in tariffs (FIT) is expected through a regime switching model.
We find that investors are less likely to invest when the arrival rate of a policy
change increases. Further, investors prefer a lower FIT with a long expected
lifespan. We also consider an extension where, after retraction, electricity is
sold in a free market. We find that if policy uncertainty is high, an increase
in the FIT will be less effective at accelerating investment. However, if pol-
icy risk is low, FIT schemes can significantly accelerate investment, even in
highly volatile markets.
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1. Introduction

In this paper, we study investment in a renewable energy (RE) project
from a real options with learning perspective. Since policy uncertainty1 –
in the form of adverse revisions of support schemes – has a large impact on
RE investments, it is important that investors assess and update this risk
over time. In standard real option models, learning is an implicit conse-
quence of postponing investment. We allow for a more realistic modeling of
the investment environment, where information is received, processed and
incorporated explicitly in the decision making process.

The member states of the European Union have agreed to reduce the
emission of greenhouse gases substantially by 2050. Specific targets, like
EU2020 and EU2030, have been set in order to reach this long-term goal.
One of the objectives of The European Strategic Energy Technology Plan
(SET-Plan) is to accelerate investments in renewable energy technologies.
As a consequence of the deregulation of the electricity markets in Europe,
it is private investors with an objective of maximizing profit who choose
whether to invest in an RE project or not (Abadie and Chamorro (2014)).
At the same time, the costs of electricity generation from most renewable
energy sources are significantly above average European market prices of
electricity (Klessmann et al. (2013)). Therefore, several European countries
have changed their policies and introduced various support schemes to ensure
competitiveness of renewable energy production and encourage investment.

Support schemes can be characterized as either quantity-driven2 or price-
driven3. The price-driven feed-in schemes are the most commonly used sup-
port mechanism. In 2015 nearly 80 countries had employed feed-in tariffs
(FIT) as support policy (REN21 (2015)). FITs are considered to be the most
effective scheme for accelerating development of renewable energy sources
(Couture and Gagnon (2010); del Rio and Mir-Artigues (2012); Ritzenhofen

1In line with other research in this field (e.g. Boomsma and Linnerud (2015); Ritzen-
hofen and Spinler (2016); Yang et al. (2008)), the terms “uncertainty” and “risk” will be
used interchangeably in this paper.

2Quantity-driven schemes include electricity certificates, where producers of renewable
energy are given a number of certificates based on the quantity of electricity supplied to
the market.

3Price-driven schemes include feed-in schemes, which can be implemented either as a
price premium paid on top of the electricity price, or as a fixed tariff paid to producers
instead of the electricity price. The fixed tariff is independent of the electricity price.
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and Spinler (2016)).
Under a FIT scheme, producers are often guaranteed a market indepen-

dent and fixed price for every unit of electricity generated, over the lifetime of
a project (Couture and Gagnon (2010)). However, the problem for investors
is that unexpected and retroactive revisions of vital subsidy payments have
occurred in several countries in recent years (REN21 (2015)). In Bulgaria,
Germany, Greece, Italy, and Switzerland, the FIT rate was reduced during
2014, and in Ukraine, the tax exemption for companies that sell renewable
electricity has been removed (REN21 (2015)). In Spain, Belgium, the Czech
Republic, Bulgaria and Greece, the size of subsidy payments was retroac-
tively adjusted, thereby reducing the profitability of already operating plants
(Boomsma and Linnerud (2015)). According to an estimate, the revision in
Spain caused a 40% cut in expected income for a large amount of RE projects
(The Institute of Energy for South East Europe (2014)). These cuts made
the investors unable to meet their debt payments. As a consequence, sev-
eral lawsuits against the Spanish government were filed. In one lawsuit it
was concluded that plaintiff investors could not legitimately expect the FIT
scheme to remain unchanged throughout the life of their RE plants, and that
the investors could have easily foreseen the prospect of a revision.

The possibility of an unexpected subsidy revision has introduced a new
source of uncertainty for investors, since the profitability of RE investments
is largely or entirely dependent on consistent government policy (Helm et al.
(2003)). White et al. (2013) state that policy uncertainty is a significant chal-
lenge for actors in the renewable energy sector. This is in line with Europe’s
largest producer of renewable energy, Statkraft, which states in its annual re-
port of 2014 that uncertainty related to framework conditions, such as taxes,
fees and political regulations are highly accentuated in investment decisions
(Statkraft (2014)). Canada’s Rural Partnership stated the importance of
policy support being consistent, long term, and predictable to avoid boom
and bust cycles (White et al. (2013)). Investors’ subjective belief regarding
a change in support policy is therefore of great importance for investment
decisions in the renewable energy sector.

We develop a model in which a risk-neutral profit maximizing investor,
who expects a future adverse retroactive transition between two regimes of
fixed FIT, has the option to invest in an RE project. The transition can be
thought of as a downward adjustment of FIT received by RE producers. Fur-
thermore, we extend the model and analyze a scenario where investors expect
a retroactive transition from a regime of fixed FIT to a free-market regime,
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where the electricity produced must be sold on the spot or futures market at
a price that varies over time. Similar to Boomsma et al. (2012), Adkins and
Paxson (2016), Boomsma and Linnerud (2015) and Ritzenhofen and Spinler
(2016), we consider a single subsidy revision. Our model distinguishes itself
from the formerly mentioned in that the transition rate between the subsidy
regimes is unknown. Through Bayesian learning, the investor updates her
subjective belief about the value of the transition rate, based on the arrival
of exogenous signals.

The specification of active learning varies among researchers. For this
work, we (similar to Martzoukos (2003)) define the processing of new in-
formation and explicit updating of belief in the decision making as active
learning. In our context, observations and research of markets and frame-
work conditions give rise to active learning.

Applying a real options approach allows us to incorporate some impor-
tant characteristics of RE investments. First, investment costs are often
considered project specific and therefore sunk. Second, the project value is
uncertain, and depends on factors such as fluctuating electricity prices and
changing subsidy schemes. Third, the investor can choose to postpone the
project if the current framework conditions do not justify immediate invest-
ment. The investor has an option to invest in the project, i.e. the right, but
not the obligation to invest.

In standard real options models, the value of the underlying project often
varies according to a stochastic variable, e.g. electricity price. In our main
model, the value of the option to invest varies only with a stochastic belief
process, describing the investor’s expectation about the lifetime of the cur-
rently high FIT scheme. The optimal investment strategy is characterized
by a threshold on the probabilistic belief of the high FIT scheme having a
long lifespan. The explicit opportunity to learn about the lifetime of the sub-
sidy scheme, motivates the investor to postpone investment. In an extension
we also account for a stochastic electricity price. To analyze the results of
our model we present a case study based on a wind power project in Europe.
Sensitivity in the option value and the investment threshold is then examined
for selected parameters.

Real options theory has been applied by several authors to problems re-
garding uncertain market conditions and policy change in the energy sector.
With this work we contribute to two strands of literature. First, we extend
the traditional real options model by including exogenous arrival of informa-
tion in the decision making. Second, we allow for a more realistic analysis of
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RE investments under policy uncertainty, by including an evolving subjective
belief about the timing of a policy revision.

Fuss et al. (2008) analyze the effects of market and policy uncertainty on
investment in a coal-fired electricity generation facility. Policy uncertainty
is modeled by an uncertain drift rate in the price process of CO2. They
find that investors will postpone their decision until the true value of the
CO2 price drift revealed. Their results indicate that uncertainty related to
government policies affects investment decisions more than uncertainty in
market prices.

Boomsma et al. (2012) study investment timing and capacity choice for
renewable energy projects under different support schemes accounting for
stochastic capacity cost, electricity price and subsidy payment. Analyzing
the possibility of a shift from one support scheme to another, they find that
the project value under the current scheme depends on the value under the
alternative scheme and the transition probability. Compared to the case
without policy risk, the risk exposure of energy investors increases. Adkins
and Paxson (2016) compare the effectiveness of different subsidy schemes for
investment decisions in a renewable energy facility under uncertain electricity
price and quantity sold. They shown that the option value is always greater
in the presence of a government subsidy than in its absence. Sudden intro-
duction or retraction of subsidies is modelled by a Poisson jump process with
constant intensity factor. Adkins and Paxson (2016) conclude that a subsidy
having unexpected withdrawal motivates earlier investment, compared to the
case without subsidies.

Closest to our paper is the work of Ritzenhofen and Spinler (2016) and
Boomsma and Linnerud (2015). Ritzenhofen and Spinler (2016) consider a
regime switching model, in which regulators are considering a shift from a
FIT scheme to a free market regime. Their results suggest that policy uncer-
tainty has little impact on investment projects when current FIT regimes are
sufficiently attractive. In contrast, when FIT levels are near electricity mar-
ket prices, regulatory uncertainty reduces the investment rate. Boomsma
and Linnerud (2015) examine how investors in energy projects respond to
possible termination or revision of current support schemes. As in our paper
policy uncertainty is modeled as a Markov process with a given jump inten-
sity. Boomsma and Linnerud (2015) show that the risk of subsidy retraction
will slow down the investment rate if it is retroactively applied, but otherwise
increase the rate. The authors also conclude that policy uncertainty may add
substantial risk to investments in the energy sector.

5



Neither of the aforementioned papers however consider learning. Within
a framework using a time homogeneous Markov process or a Poisson jump
process to model policy changes, the implicit assumption is made that in-
vestors have no information regarding the dynamics governing the changing
policy scheme. Our paper contributes to the existing literature by explicitly
incorporating Bayesian learning in the investment decision.

Contributions to the real options literature considering active learning
are still rather limited. Among one of the first contributions is Pawlina and
Kort (2005), who value an irreversible investment opportunity of a firm where
the investment costs are subject can increase resulting from a policy change.
Harrison and Sunar (2015) examine investment planning in a continuous-
time Bayesian framework. A firm is considering investment in a project with
unknown value. However, the uncertainty about project value can be reduced
by several means of learning. Information gathering in any learning mode
follows a Brownian motion with exogenously given drift and incurs a given
cost. The optimal learning policy is dependent on the drift and corresponding
cost of a learning mode, versus the signal quality. Jensen (1982) studies
adoption behavior of a firm facing the option to invest in a new innovation
when the probability of the innovation being profitable is unknown. In each
time period the decision maker receives a signal indicating the profitability
of the project, and the probabilistic belief is updated in a Bayesian manner.
Thijssen et al. (2004) examine a firm with the option to invest in a project of
unknown profitability. The decision maker’s belief about the profitability of
the project is updated based on the arrival of signals that follows a Poisson
process.

Our starting point is the discrete arrival of signals, as in Thijssen et al.
(2004). We then use a random walk approximation to derive a Brownian
motion-driven stochastic differential equation (SDE) describing the investor’s
belief process where the arrival of signals is continuous. Shiryaev (1967)
and Peskir and Shiryaev (2006) obtain an SDE which is similar to ours,
when studying the problem of minimizing the cost of error when sequentially
testing a hypothesis on the unknown drift rate of a one-dimensional Brownian
motion. The SDE of Shiryaev (1967) is also the starting point for Ryan and
Lippman (2003) and Kwon and Lippman (2011) who analyze decision making
under Bayesian learning.

Learning related to energy has, to the best of our knowledge, only been
examined in relation to global warming. Examples include Kolstad (1996)
who examines optimal climate-related policy when one can learn about uncer-
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tainty about CO2-related damages, and Kelly and Kolstad (1999) who study
the relationship between greenhouse gas levels and global mean tempera-
ture in a Bayesian framework. Ours is the first contribution that considers
Bayesian learning about policy uncertainty in green investments.

2. The Model

We consider a continuous time model, where time is indexed by t ≥ 0.
A risk neutral and profit maximizing investor has the option to invest in an
RE project. At some random point in time, regulators are expected to revise
the current subsidy scheme. The current fixed FIT scheme offers a subsidy
payment of K0, while the subsequent scheme will offer a subsidy payment of
K1. A change is adverse to investors so that K0 > K1.

4

For simplicity, we assume that the state of the world, θ, can only take two
values: good (θ = 1) or bad (θ = 0). In the good (bad) state the duration
of the current subsidy scheme is expected to be long (short). The arrival
rate of subsidy reversal is denoted by λs, s = G,B, where it is assumed that
λB > λG > 0.

The true state of the world is not known to the investor ex-ante. At time
t, the probabilistic belief of being in state G, given all the information that
the investor has received up to time t is denoted by Xt. The prior belief in
the good state is given by P(θ = 1) = X0.

Similarly to Harrison and Sunar (2015), we assume that the frequency of
information arrivals (signals) about the true state of the world is sufficiently
high to be modelled by a Brownian motion. Following a Bayesian approach,
the signals are then used to continuously update the investor’s belief about
the world.

All our modeling assumptions presented and motivated in the following
subsections are in line with the standard real options literature, as well as
with the literature on sequential hypothesis testing in continuous time.

2.1. Derivation of the belief process

We start by modeling the log-likelihood ratio process of the information
arrivals. We follow Dixit (1993), starting with a random walk approximation
and then taking the continuous-time limit. Take a time interval [0, T ] and

4A full glossary of parameters can be found in Appendix A.
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split it up into discrete steps of length ∆t. In each time step, a positive or
a negative signal is received. The probability of receiving a correct signal
about the true state of the world θ is p > 1

2
. The log-likelihood of the signals

received up to time t is denoted by Yt. Conditional on the true state of the
world θ, per time step we have

Yt+∆t|θ =















Yt + (2θ − 1) log

(

p

1− p

)

w.p. p

Yt − (2θ − 1) log

(

p

1− p

)

w.p. 1− p.

The time interval [0, T ] is divided into n time steps of equal length ∆t,
so that n = T

∆t
. We define time step i to be [(i− 1)∆t, i∆t].

Figure 1: Binomial tree showing the possible paths of Y over two time steps conditional
on θ = 1.

Let (Zi)
n

i=1 be a sequence of independent Bernoulli random variables such
that P (Zi = 1) = p and P (Zi = −1) = 1 − p. Then for some initial value,
Y0 = y0, the process Y , conditional on θ = 1, can be expressed as a sum of
Bernoulli random variables:

YT = y0 +∆y

n
∑

i=1

Zi.
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Since the increments of the process are independent, the expectation and
variance over the time horizon are given by (see Appendix B)

E [YT − Y0] =
T

∆t
∆y (2p− 1) , (1)

V ar (YT − Y0) =
T

∆t
(∆y)2 4p(1− p). (2)

Keeping the time horizon fixed at T and taking the limit n → ∞, the
process (Yi)

n

i=1 converges to (Yt)t∈[0, T ], with E[YT ] = µXT and V ar(YT ) =

σ2
XT for some µX and σX . To accomplish this, we choose the parameters

∆y and p such that the expectation and variance stay finite while taking the
limit, i.e.

lim
∆t→0

T

∆t
∆y(2p− 1) = µXT, and lim

∆t→0

T

∆t
(∆y)24p(1− p) = σ2

XT.

For this to hold, we must have (∆y)2

∆t
= σ2

X , which yields

∆y = σX

√
∆t, (3)

and

p =
eσX

√
∆t

1 + eσX

√
∆t
. (4)

The process in fact converges point-wise to an arithmetic Brownian mo-
tion with the desired properties, given that the step size and probability are
consistent with (3) and (4) (see Appendix C for derivation details). That is,

dY |θ = (2θ − 1)µXdt+ σXdW,

where dW is the increment of a Wiener process. Denoting the filtration
generated by Y by FY and the posterior process by Xt := P(θ = 1|FY

t ), and
applying Ito’s Lemma (see Appendix D) we obtain

dX|θ = (2θ − 1)σ2
XX

2−θ(1−X)θ+1dt+ σXX(1−X)dW.

Note that at time t, given the investor’s belief, she expects the change in
her belief to be given by

dXt = XtdXt|{θ = 1}+ (1−Xt)dXt|{θ = 0} = σXX(1−X)dW. (5)
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So, the investor beliefs the posterior process to be a martingale, i.e. she can’t
predict the information she is going to receive in advance. We interpret dX
as the rate of learning. It is evident that the rate of change in the posterior
belief is governed by the value of σXX(1 −X). Firstly, the rate of learning
increases as the signal strength, σX , increases, because each individual signal
carries more information. Secondly, the term X(1−X) reaches its maximum
at X = 1

2
, which means that the rate of learning is highest when the investor

has an equal belief of being in either state. Lastly, the rate of learning
decreases as X moves toward its upper or lower bound. If X = 0 or X = 1,
then dX = 0 and the process is in an absorbing state.

2.2. Policy uncertainty

Policy uncertainty involves the possibility of a change or termination of
the current support scheme. These events occur at discrete points in time.
Policy uncertainty is modeled as a Markov process, (δt)t≥0, with two regimes
{0, 1}, such that

δt =







1, if a policy change has occurred in the time interval [0, t),

0, otherwise,

with δ0 = 0.
Subsidies are normally intended to accelerate investments, as a step to

meet production goals from renewable sources. As technology becomes more
mature and cost-effective, and production goals are met, the need for high
subsidy payments decreases. Reduction of subsidy payments are therefore
permanent, and will not be followed by an increase to previous levels. We only
consider one revision, as in Boomsma and Linnerud (2015) and Ritzenhofen
and Spinler (2016). If the relevant costs continue to decrease in the long-run,
several revisions might however be expected.

The transition rates of the Markov process are denoted by λij, where

λij = λ1i=0,j=1,

with λ ∈ {λG, λB}.

2.3. Model formulation

When an investor has obtained a license to develop and operate a power
plant, she owns the exclusive right to install the project within a given time
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frame. For analytical tractability we assume that once granted, this exclusive
right will be available forever.5

Similar to Boomsma and Linnerud (2015) and Ritzenhofen and Spinler
(2016), we assume that the lifetime of the project is finite and denoted by T ,
construction is instantaneous and the generating capacity is exogenous. The
expected production is constant, and there are no operational flexibility or
other options embedded in the facility.

Renewable electricity generation is largely dependent on weather condi-
tions, making production highly variable both in the short and medium term.
However, according to Boomsma et al. (2012), production is less variable over
longer time scales, e.g., yearly. Less variation in production in the long-term
justifies the assumption of constant expected production.

In contrast to conventional power plants, most of the costs of owning and
operating RE plants are known with great certainty prior to investment (Eu-
ropean Wind Energy Association (2009)). For wind, solar and hydropower,
the operation and maintenance (O&M) costs are relatively low since the en-
ergy input is freely available. Capital costs such as interest and depreciation
can be predicted with a high accuracy at the time of investment, and are
known for sure once the plant is built and financed. Therefore, the risk is
low with regards to cost assessments in RE plants. In the current research in
this field, O&M costs are often assumed constant and included in the invest-
ment cost, as in Boomsma and Linnerud (2015), or neglected, as in Fleten
et al. (2007). We assume constant operating costs and can therefore include
them in the irreversible and fixed investment cost denoted by I.

Electricity markets may be considered incomplete due to the lack of suit-
able hedging instruments for volume risk and risk of revision/retraction of
the current support scheme (Boomsma et al. (2012); Boomsma and Linnerud
(2015)). As a consequence, risk-neutral valuation may not be possible. We
therefore assume an exogenously given real discount rate, denoted by r. The
investor is assumed to be a price-taker in the relevant markets. Furthermore,
we consider subsidies in the form of fixed FIT payments. However, we believe
the model can easily be extended to include static FIT degression.

5A project where the investment decision must be made within a finite amount of time
usually demand a numerical solution, as seen in e.g. Ritzenhofen and Spinler (2016).
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2.3.1. Transition between two regimes of FIT

We consider two regimes, which are characterized by the subsidy scheme
in place,

• Regime 0: A change in FIT payment has not yet occurred, the project
value after investment is denoted by V0(X), the option to invest is
denoted by F0(X) and the instantaneous revenue is denoted K0,

• Regime 1: A change in FIT payment has occurred, the project value
after investment is denoted by V1, the option to invest is denoted by
F1 and the instantaneous revenue is denoted K1, where K1 < K0.

If we are in the regime where the subsidy has been withdrawn (δ = 1),
then the value of investment is given by

V1 =

∫ T

0

K1e
−rsds =

K1

r

(

1− e−rT

r

)

. (6)

For simplicity we assume that V1 < I, so that investment is not optimal with
the lower subsidy.

With retroactive revision of the subsidy scheme and starting in regime 0,
for a given estimate λ, the project value once invested, calculated as revenue
per MWh of electricity produced, is given by (see Appendix E)

Vλ =
K0

r

[

1− λ

r + λ
+

(

λ

r + λ
− 1

)

e−(r+λ)T

]

+
K1

r

[(

1− λ

r + λ

)

e−(r+λ)T +
λ

r + λ
− e−rT

]

.

(7)

Hence, the expected value of an installed project (when δ = 0) is equal
to

V0(X) = XVλG
+ (1−X)VλB

. (8)

We assume that V0(0) − I < 0, otherwise there would be no value of
waiting and the investor would invest as long as the net present value (NPV)
is positive. This assumption is further motivated by the retroactive changes
of the subsidy regime in 2014 in Spain, which led to a significant decrease in
profitability for RE producers and a drastic slowdown in investments (CSP-
World (2014); REN21 (2015)).
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At every point in time the investor has to decide whether to invest, pay-
ing the investment cost I and start accumulating profits in accordance with
V0(X), or to delay investment and continue learning.

We want to find the threshold of the subjective belief, X∗, beyond which
it is optimal to invest. The free-boundary X∗ separates the continuation
region from the stopping region. In the continuation region, (0, X∗), post-
poning investment and learning is more valuable than immediate investment.
Therefore, the option value is higher than the expected payoff from imme-
diate investment and the optimal decision is to postpone. In the stopping
region, X ≥ X∗, the expected gain from immediate investment is greater
than or equal to the option value, and the optimal decision is to invest.

In the continuation region (with δt = 0), the value of the option to invest
must satisfy the Bellman equation:

F0(X) = max
{

V0(X)− I, lim
dt↓0

e−rdt

dt

(

E[(1− λdt)F0(X + dX)]

+E[λdtF1]
)}

.

(9)

Here F1 denotes the value of investing if a regime change occurs, which, over
a time interval of length dt, happens with probability λdt, i.e.

F1 = max {V1 − I, 0} = 0.

The probability of a change in subsidy payment during a short time
interval dt is E [λ dt], and the probability that a change will not occur is
E [1− λ dt]. In regime 1, the revenue is a fixed tariff of K1 for the remaining
lifetime of the facility. The fixed tariff makes the option to postpone invest-
ment worthless, since there is no uncertainty. In addition, the net present
value is assumed to be negative, therefore the value of the option to invest
in regime 1 is zero.

Applying Ito’s lemma and rearranging terms, we obtain the following
second order linear ODE (see Appendix F), which holds when continuation
is optimal

1

2
σ2
XX

2(1−X)2
∂2F0

∂X2
−
(

XλG + (1−X)λB + r
)

F0 = 0. (10)

Equation (10) does not have a closed form solution. The differential
equation is singular at X = 0 and X = 1, thus no solution exists for these
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values of X. We are, however, only interested in a solution on the interval
X ∈ (0, 1), since X = 0 and X = 1 are absorbing and not reachable from
any other state.

We find an analytical solution to (10) in the form of a power series (see
Appendix G):

F0(X) = A1X
c

∞
∑

n=0

an(c)X
n,

where

c =
1

2
+

√

1

4
+

2(λB + r)

σ2
X

,

and where we recursively define

a0(c) = 1,

a1(c) =
σ2
Xc(c− 1)− λB + λG

1
2
σ2
Xc(c+ 1)− λB − r

,

and, for n ≥ 2

an(c) =
2[σ2

X
(n+c−1)(n+c−2)−λB+λG]an−1(c)−[σ2

X
(n+c−2)(n+c−3)] an−2(c)

σ2

X
(n+c)(n+c−1)−2(λB+r)

.

Following Dixit and Pindyck (1994), at the free boundary X∗, the option
to invest must satisfy the value-matching and smooth-pasting conditions

F0(X
∗) = V0(X

∗)− I, (11)

and

∂F0

∂X

∣

∣

∣

∣

X=X∗

=
∂V0

∂X

∣

∣

∣

∣

X=X∗

, (12)

respectively. We solve the free-boundary problem following Pinto et al.
(2009), who use a mixed analytical/numerical solution process based on the
method of Frobenius.
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3. Numerical results

In this section we obtain numerical results for the investment threshold
and the option value for a case study based on a wind power project. We
then examine sensitivity of the investment threshold and option value to
changes in selected parameters. Our choice for an on-shore wind project case
study is motivated by the fact that investments in on-shore wind projects are
currently the most relevant in terms of size of all renewable energy projects in
Europe. In 2017, for example, wind power installed more than any other form
or power generation in Europe accounting for 55% of total power capacity
installations, of which 80% were on-shore wind installations (Wind Europe
(2017)). While the wind power project case is chosen to illustrate our results,
our findings hold more generally.

3.1. Case study

Our case study focuses on an investment in a single onshore wind turbine.
Wind is globally the most important source of renewable energy for electricity
generation, and onshore wind represents the largest fraction (REN21 (2015)).
Although we focus on a single wind turbine, the results extend to for instance
an investment in a wind park containing several turbines or an investment
in solar power. The parameter values used in our calculations below are
summarized in Table 1.

The parameters are based on a typical 2 MW wind turbine installed in
Europe (European Wind Energy Association (2009)). The investment cost
and the project life of the wind power turbine are set to I = 3 320 000 EUR
and T = 20 years, respectively. The investment cost include upfront costs
and operations and maintenance (O&M) costs, and is calculated using a
risk-adjusted nominal discount rate of 7.5%. The O&M costs are set equal
to 15 EUR per MWh of generated electricity (McKenna et al. (2014)). The
capacity factor of an electricity generating facility is the amount of electricity
generated during a year divided by the amount of electricity generated with
the facility running at maximum power output in all 8 760 hours of a year.
For wind turbines the typical capacity factors are in the range 20 - 35%. We
set the capacity factor to FCap = 30%, which is in line with Boccard (2009).
The exact capacity factor of a plant can be estimated to a high degree of
accuracy by analytical tools and simulations, and will depend on, e.g., wind
conditions and the specific technology used.
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Our model is solved using dynamic programming, which entails setting
an exogenous risk-adjusted discount rate in the analysis. This rate is cal-
culated as the sum of the risk-free rate and a risk premium reflecting the
risk embedded in the project. Following Boomsma and Linnerud (2015), we
set the risk adjusted real discount rate equal to 5%. The real discount rate
corresponds to a nominal rate of 7.5% and an inflation rate of 2.5%. Since
I is constant over time, we implicitly assume that the investment cost will
grow at the rate of inflation.

The FIT is K0 = 65 EUR/MWh and K1 = 30 EUR/MWh, for regimes 0
and 1, respectively. The FIT under regime 0 is in line with the rates in
Spain and Germany as reported by the European Wind Energy Association
(2009). The FIT under regime 1 corresponds to the average day-ahead price
of electricity for the period April 2012 to April 2016, based on weekly data
from the Nordic electricity exchange Nord Pool6.

The transition rates are set to λG = 0.05 and λB = 0.2, implying an
expected regime change in 20 years and 5 years, respectively. Hence, in the
Good state, the investor expects to receive subsidy payments throughout the
project lifetime.

The signal strength of the belief process is set to σX = 0.3.

3.2. Results

Based on the values in the presented case study (see Table 1), the invest-
ment threshold and option value are calculated numerically.7

We obtain an investment threshold of X∗ = 0.799. Hence, the investor
must have a strong belief in the subsidies of regime 0 being long-lived before
she is willing to invest. We show in Figure 2 how the value of the option
and the NPV varies with X. The investment threshold, X∗, lies at the
tangency point of the option value and the NPV. In a now-or-never scenario,
the investor will invest if X is greater than or equal to 0.693. For lower
values of X, the project will be rejected even though it might turn out to be
profitable at a later point in time.

6http://www.nordpoolspot.com - Nord Pool is Europe’s leading market for physical
and financial power contracts. The day-ahead market consists of about 360 buyers and
sellers of power, and is the main arena for trading. The electricity price is determined by
supply and demand.

7All numerical results are obtained using MATLAB R2015a. F0(X) is expanded to
n = 1000 terms, so that the error is of order << 10−10.
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Table 1: Parameter values in base case.

Parameter Value Unit Description

I 3 320 000 EUR Investment cost
K0 65 EUR/MWh FIT in regime 0
K1 30 EUR/MWh FIT in regime 1
T 20 Years Lifetime of RE project
λG 0.05 - Rate of revision, Good state
λB 0.2 - Rate of revision, Bad state
σX 0.3 - Signal strength, belief process
r 0.05 - Real discount rate
Capacity 2 MW Capacity of power plant
FCap 0.3 - Capacity factor

The difference between the NPV of investing at the optimal threshold
and investing suboptimally, is called the value of waiting (Dixit and Pindyck
(1994)). We show that the NPV rule can be very misleading and that the
value of waiting can be substantial up to the optimal threshold (see Figure
2) .

3.3. Sensitivity analysis

In this section we examine the sensitivity of the option value and the
investment threshold to selected parameters, and discuss the implications
for investors and policy makers.

3.3.1. Sensitivity to the signal strength (σX)

One important difference between our model and standard real option
models, is that the option dynamics are governed by the evolution of the
belief process and not by a process related to the value of the project. A
change in σX does not affect the value of the project, but does affect the
rate of learning. One can interpret σX as the amount of information received
per signal. With a higher information arrival, the rate of learning increases,
leading to a higher option value as illustrated in Figure 3a.

An increase in the signal strength results in a more volatile belief process,
and the belief of being in the Good state can therefore change more quickly.
For high σX it is more likely that X reaches high values even when the true
state of the world is Bad. The higher rate of learning, and the possibility of
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Figure 2: Option value and NPV vs belief of being in the Good state.

a quickly changing belief, leads to an increase in the investment threshold as
shown in Figure 3b. When σX goes to zero, no information arrives and there
is no value of learning. Since the investor’s initial belief about the state of
the world will not change, she faces a now-or-never scenario with investment
according to the NPV rule.

Generally, in real option models, a higher investment threshold is as-
sociated with a lower investment rate; see Dixit and Pindyck (1994). In
our model, the effects of a higher or lower investment threshold are not as
straightforward. The timing of the investment decision depends on two ef-
fects: the rate of learning and the level of the investment threshold. An
increase in the investment threshold may be counteracted by an increase in
the rate of learning. We might therefore observe a higher investment rate at
a higher investment threshold.

The optimal policy of the investor is characterized by a single threshold.
The expected time to investment is infinite due to a positive probability
that the belief process will never reach this threshold (Kwon and Lippman
(2011)). To illustrate how the investment rate is affected by a change in
the signal strength, we have run Monte Carlo simulations of the probability
process. Since the expected time to investment is infinite, the results are

18



relative, however suitable for our analysis. By discretizising X as given by
Equation (5), we have generated 10 000 sample paths of the belief process in
the base case (Table 1), with the initial belief, X0, set to 0.4.

We find that the relative time to investment is decreasing in σX . The
increasing investment threshold is therefore offset by a higher rate of learn-
ing, and the result is a higher investment rate. In practice, high information
arrival can correspond to a transparent government, which clearly communi-
cates the current and intended framework conditions to RE investors. In the
next sections, we will use that for constant σX , a lower investment threshold
corresponds to a higher investment rate.

(a) (b)

Figure 3: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the signal strength.

3.3.2. Sensitivity to the investment cost (I)

Numerical results indicate that the investment threshold increases in the
investment cost (see Figure 4b). This is an intuitive and standard result
in real options analysis. As the expected gain from investment decreases,
the investor must be more certain of the high FIT scheme being long-lasting
before investing.

Similarly, the option value naturally decreases in the investment cost.
However the optimal payoff is non-monotonic in the investment cost as seen
in Figure 4a. For a standard option to invest the relationship is monotonically
increasing (Dixit and Pindyck (1994)). When the value of the underlying
project is derived from an unbounded stochastic variable, such as price, the
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optimal payoff can always increase to offset an increase in the investment
cost. In our model, the stochastic variable is a probability measure and
bounded between 0 and 1. Since the project value is static in both states of
the world, the expected value can not exceed the value in the Good state.
The combination of the bounded stochastic variable and the static value of
the project leads to the non-monotonic relationship.

One can see from Figures 4a and 4b that the option to learn is valu-
able for only a limited range of investment costs. When the investment cost
approaches the project value given the Bad state, the potential loss from in-
vestment decreases. When the potential loss is zero the investment threshold
is X∗ = 0, which means that the investor would invest immediately. The
NPV in both the Good and the Bad state would be non-negative, and there
would be no downside of investing. By postponing investment the investor
will miss out on the higher revenues under regime 0. When the investment
cost approaches the project value in the Good state, the potential upside from
investing goes to zero and naturally the investment trigger goes to X∗ = 1.
Investment would never happen, since NPV in both states is less than or
equal to zero.

From the perspective of an investor, uncertainty over payoff can be com-
pensated by a reduction in investment cost. A lower total investment cost
can be achieved through lower upfront costs and/or lower O&M costs. The
investor will therefore invest at a lower subjective belief if technology progress
and/or additional subsidies reduce the investment cost. From the perspective
of policy makers, the investment rate can be influenced through subsidizing
the investment cost by introducing for example tax credits. In the United
States, RE plants are subsidized through investment tax credits (ITC)8 and
production tax credits (PTC)9 (US Department of Energy (2015a), US De-
partment of Energy (2015b)). Our results indicate that reducing the total
investment cost of investors by issuing ITC, lowers the investment threshold
and increase the investment rate in RE plants.

8Investment tax credits allow eligible RE producers to subtract a percentage of the
investment cost from the amount of tax owed to the government, indirectly reducing the
investment cost.

9Production tax credits reduces the tax owed to the government for eligible RE pro-
ducers, based on the amount of electricity produced.
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(a) (b)

Figure 4: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the investment cost (in millions in (a)).

3.3.3. Sensitivity to the transition rates (λG and λB)

We start by examining the sensitivity in λG. There are two effects that
cause the option value to decrease in λG (see Figure 5a). First, a higher
transition rate means that a revision of the high FIT scheme is expected to
arrive sooner. This effect makes it less attractive to delay the investment.
Second, as λG increases, the expected value of the project goes to zero since
the expected lifespan of regime 0 will go to zero.

If λG = 0, a revision of the subsidy scheme will never occur and the
project would receive the high FIT throughout its lifetime, given that the
world is in the Good state. The difference between the NPV in the Good
and the Bad state is largest, and the option value is at its maximum, all else
equal. In addition, postponement has no negative effect and will eventually
reveal which state the world is in. Therefore, the value of learning is at its
highest.

The investment threshold is affected by two opposing effects when λG

increases. First, the shorter expected time to a revision makes it less attrac-
tive to postpone investment. As a consequence, the investment threshold
decreases. Second, the expected value of the project decreases, which causes
the investment threshold to increase. The first effect is always dominated by
the second effect, as illustrated by the monotonic relationship in Figure 5b.

As seen in Figures 6a and 7, the sensitivity in λB and λG is similar.
However, a change in λB does not affect the value of the project in the Good
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state, and the value of waiting is non-monotonic in λB. As λB increases, the
expected lifespan of the high FIT scheme decreases. Therefore the option to
postpone investment has less value. In effect, for large enough λB, it becomes
costlier to wait instead of investing (see Figure 6b).

The investment threshold increases in λB, by the same reasoning as for
λG. Therefore, we conclude that a higher arrival rate of the policy change
(both for the Good and the Bad state) leads to a higher investment threshold,
and therefore according to the analysis presented in Section 3.3.1., to a lower
investment rate.

From equation (6) and (8), we also see that the value in the Bad state
approaches the value of the project under regime 1 for large λB. Since the
potential downside has a lower bound and the NPV in the Good state is
positive for all λB, the investment threshold is less sensitive for larger λB.

(a) (b)

Figure 5: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the arrival rate of a policy change, given the Good state.

3.3.4. Sensitivity to the FIT (K0 and K1)

We start by looking at the FIT level in regime 0. As shown in Figure 8a,
the option value increases in K0. This result is intuitive, since a higher K0

leads to a higher expected value of the project. However, the optimal payoff
is non-monotonic in K0, by the same reasoning as for I. The investment
threshold decreases in K0 (see Figure 8b). As K0 decreases, the NPV of the
project in the Good state goes to zero, and the investor needs to be more
certain of regime 0 being long-lasting before investment.
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(a) (b)

Figure 6: The figures (a) and (b) show the sensitivity of the option value to the arrival
rate of a policy change, given the Bad state. Plot (b) is zoomed in to illustrate the
non-monotonic optimal NPV.

The sensitivity in investment threshold and option value and the non-
monotonic optimal payoff is similar for K1, as shown in Figure 9a and 9b.
As K1 increases, the expected value of the project increases, and naturally
the option to invest becomes more valuable. Since the expected project
value in regime 1 increases in K1, the investment decision is less dependent
on the lifespan of the high FIT scheme. As a result, the investment threshold
decreases in K1.

3.3.5. Relationship between FIT and transition rate

We illustrate the FIT payment needed for a constant investment threshold
for different transition rates in Figure 10, 11 and 12a. As previously stated,
the investment trigger increases in the arrival rate and decreases in the FIT
level. Thus, in order to keep the investment trigger and investment rate
constant, an increase in λ must be offset by an increase in K, and vice versa.
The marginal required subsidy level decreases in λB (see Figures 10b and
11b). This result follows from the fact that the investment trigger becomes
less sensitive to changes in λB as λB increases. Similarly, a diminishing
increase in K1 for increasing λG is illustrated in Figure 11a.

These results indicate that a lower subsidy payment, which is expected to
be sustainable in the long term, gives the same investment rate as a higher
payment which is believed to be less sustainable.

In Figure 12b, we plot the expected NPV at the time of investment,
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Figure 7: Sensitivity of the investment threshold to the arrival rate of a policy change,
given the Bad state.

(a) (b)

Figure 8: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the fixed feed-in tariff in regime 0.

V0(X
∗)− I, for the different combinations of K0, λG and λB found in Figure

12a.10 Interestingly, even though the expected NPV at investment varies
greatly for the different combinations of subsidy payment and transition
rates, the investment rate is the same. We find that the expected NPV
is higher for a combination of lower K0, λG and λB. This implies that an in-

10For a given combination of λG and λB , we find the necessary K0 for keeping the invest-
ment threshold constant. Based on the investment threshold, X∗ = 0.799, we calculate
V0(X

∗)− I for this mix of K0, λG and λB . The other parameters are given by Table 1.
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(a) (b)

Figure 9: The figures show the sensitivity of (a) the option value and (b) the investment
threshold to the fixed feed-in tariff in regime 1.

(a) (b)

Figure 10: The figures show the relationship between the fixed feed-in tariff in regime 0
and the arrival rate of a policy change for a constant investment rate, given (a) the Good
state and (b) the Bad state.

vestor who chooses to invest will prefer a lower subsidy payment for a longer
expected lifespan.

Examining the relationship between K1 and the corresponding expected
NPV at the time of investment showed that the same conclusions can be
drawn with respect to the subsidy after the policy revision as for the case of
K0.
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(a) (b)

Figure 11: The figures show the relationship between the fixed feed-in tariff in regime 1
and the arrival rate of a policy change for a constant investment rate, given (a) the Good
state and (b) the Bad state.

(a) (b)

Figure 12: The figures show, for a constant investment rate, (a) the relationship between
K0, λG and λB and (b) the expected NPV at investment for different values of λG and
λB (and implicitly K0 as given in (a)).

4. Model extension

So far we have considered a policy change in the form of a retroactive
downward adjustment of the FIT received by RE producers. In the follow-
ing, we extend our model and examine a scenario where investors expect an
adverse retroactive transition from a regime of FIT to a regime where elec-
tricity is sold in a free market. Investors are now exposed to both the policy
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uncertainty and fluctuating electricity prices.

4.1. Model formulation

We still take the perspective of a single RE investor, and consider two
regimes

• Regime 0: the termination has not yet occurred, project value denoted
by V0(X,S), option to invest denoted by F0(X,S) and instantaneous
revenue denoted K,

• Regime 1: a termination of the subsidy scheme has occurred, project
value denoted by V1(S), option to invest denoted by F1(S) and instan-
taneous revenue at time t denoted St.

We assume that the electricity price (St)t≥0 follows a geometric Brownian
motion (GBM), such that

dSt = µSSt dt+ σSSt dWSt,

where µS and σS are constants that represent the drift and volatility of
the electricity price, respectively, and dWSt is the increment of a Wiener
process.11

While Lucia and Schwartz (2002) find that two factor models12 provide a
better fit than one factor models to the data of the Nordic electricity market,
Nord Pool, Schwartz and Smith (2000) claim that the short-term variations
can be neglected for long-term investments. Similarly, when considering long-
term commodity related investments, Pindyck (2001) states that the assump-
tion of energy prices following a GBM will not lead to large errors. Fleten
et al. (2007) argue that an investment in an RE generation unit should be
treated as a long-term investment. Correspondingly, Fleten et al. (2007) as-
sumes that long-term electricity prices follow a GBM. Other research using
a GBM to model electricity prices include Boomsma and Linnerud (2015),
Boomsma et al. (2012), and Ritzenhofen and Spinler (2016).

The belief process is assumed to be independent of the electricity price,
so that E [dWXdWS] = 0. In addition, the policy change is independent of
the electricity price.

11For ease of notation, we will drop the subscript t on S in the following.
12In two factor models of energy prices, short-term variations are often assumed to follow

a mean reverting process and long-term variations are assumed to follow a GBM.
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With retroactive revision of the subsidy scheme and starting in regime 0,
for a given λ, the project value, calculated as revenue per MWh of electricity
produced, is given by

V0(S) = K
1− e−(r+λ)T

r + λ
+ S

(

1− e−(r−µS)T

r − µS

− 1− e−(r+λ−µS)T

r + λ− µS

)

.

This value is derived in a similar way as described in Appendix E, together
with the observation that E(St|S0 = S) = SeµSt.

Starting in regime 0, and considering the two possible transition rates,
the expected value of the project is equal to

V0(X,S) = X

[

K
1− e−(r+λG)T

r + λG

+ S

(

1− e−(r−µS)T

r − µS

− 1− e−(r+λG−µS)T

r + λG − µS

)]

+ (1−X)

[

K
1− e−(r+λB)T

r + λB

+ S

(

1− e−(r−µS)T

r − µS

− 1− e−(r+λB−µS)T

r + λB − µS

)]

.

(13)

Under regime 1, the project value is given by

V1(S) = S

[

1− e−(r−µS)T

r − µS

]

.

The value of the option to invest in the two regimes must then satisfy the
following Bellman equations

F0(X,S) = max
{

V0(X,S)− I, lim
dt↓0

e−rdt

dt

(

E[(1− λdt)F0(X + dX, S + dS)]

+E[λdtF1(S + dS)]
)}

,

(14)

and

F1(S) = max
{

V1(S)− I, lim
dt↓0

e−rdt

dt
E[F1(S + dS)]

}

. (15)

Since the electricity price is stochastic, the option to invest under regime
1 has positive value, in contrast to the model in Section 2.3.1.

Applying Ito’s lemma and rearranging terms, we obtain the following
system of second order partial differential equations (PDEs), which must
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hold when continuation is optimal:

1

2
σ2
XX

2(1−X)2
∂2F0

∂X2
+
1

2
σ2
SS

2∂
2F0

∂S2
+ µSS

∂F0

∂S

−
(

XλG + (1−X)λB

)(

F0 − F1

)

− rF0 = 0,
(16)

and
1

2
σ2
SS

2∂
2F1

∂S2
+ µSS

∂F1

∂S
− rF1 = 0. (17)

Equation (17) can be solved analytically in the usual way (see Dixit and
Pindyck (1994)) to obtain

F1(S) = A1S
β1 , (18)

where β1 > 1 is the positive root of the quadratic equation 1
2
σ2
Sβ(β − 1) +

µSβ− r = 0. Since (16) has no analytical solution, we apply a finite element
algorithm to solve the PDE numerically; see Appendix H for some details.

4.2. Numerical results for the case study

We now apply this model to the case study presented in Section 3.1.13

We also examine sensitivity in the investment threshold to the volatility in
electricity prices and the FIT level.

A retroactive termination of the FIT scheme will happen at a random
point in time. Following the termination, the electricity produced will be
sold on a free market. The FIT is set equal to K = 65 EUR/MWh. For the
electricity price, we set µS = 0 and σS = 0.06, as Boomsma and Linnerud
(2015).14 Setting the drift term equal to zero implies that the electricity price
will grow according to the inflation rate. All other values are as in Table 1.

The optimal investment threshold is characterized by both the electricity
price and the investor’s belief in the FIT scheme being long-lived. In effect,
the threshold for undertaking investment, the free-boundary, is defined by
a line that separates the continuation region from the stopping region (see
Figure 13). At each point in time, the investor observes the electricity price,

13The variational formulation (see Appendix H) is solved by FEM using FreeFem++;
see Hecht (2012). Level-set and plots have been made using MATLAB R2015a.

14Boomsma and Linnerud (2015) estimate σS by the annual standard deviation of the
log returns implied by average weekly prices of three-year forward contracts traded at
NASDAQ OMX for the period 1 January 2005 to 30 April 2015.
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(a) (b)

Figure 13: The figures show (a) the option value as a function of X and S (free-boundary
as solid line), and (b) the free-boundary that separates the continuation region from the
stopping region in two dimensions. The area below the free-boundary is called the contin-
uation region (postponing investment is optimal) and the area above the free-boundary is
called the stopping region (investment is optimal). Investment is undertaken as soon as
the combination of X and observed S is above the free-boundary.

and must decide whether the combination of the expected lifespan of the
FIT scheme and electricity price justifies investment. The first time this
combination is at or above the free-boundary, the investor will choose to
invest.

If the investor expects the lifespan of the FIT scheme to be short, a higher
electricity price is needed before she is willing to invest. Hence, we can con-
clude that either a high electricity price or a high probabilistic belief of an
attractive FIT scheme being long-lived, is needed in order to motivate invest-
ment. The effect of the FIT scheme on the investment behavior is largely
dependent on the perceived policy uncertainty. For high X, investors expect
the lifespan of the FIT scheme to be long. Hence, a high X corresponds to
a low perceived policy uncertainty.

In regime 1, where the FIT has been terminated, we find that the in-
vestor will choose to invest at an electricity price of 60 EUR/MWh (see the
expression (H.11) for the threshold in Appendix H). In Figure 13b we show
that FITs with a low expected lifespan will accelerate investments. However,
FIT schemes are most effective when the perceived risk of a revision is low.
Active learning, as modeled by an increasing X, can significantly decrease
the electricity price at which it is optimal to invest.
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4.3. Sensitivity analysis

4.3.1. Sensitivity to the volatility of the electricity price (σS)

For standard real option models, an increase in the volatility of an un-
derlying price process will increase the value of the project; see Dixit and
Pindyck (1994). Therefore, the value of the option to invest and the critical
price at which it is optimal to invest increase. The critical price increases
since the option value is more sensitive to changes in volatility than the
project value. For a higher volatility the investment rate is expected to de-
crease, due to the higher investment threshold.

We conclude that the exercise boundary shifts upwards if σS increases;
see Figure 14. For a given X, the required S at which it is optimal to
invest, increases in σS. This effect is decreasing for larger values of X. As
the investor becomes more confident in the FIT scheme being long-lived, a
higher volatility in electricity prices has less effect on the investment decision.

For investors in more volatile electricity markets, the FIT scheme is less
effective at accelerating RE investment when the perceived risk of a revision
is high. When X = 0, the investor expects the revision to arrive in a relative
short amount of time and the policy uncertainty is high. At this point,
there is a large difference between the electricity price at which it is optimal
to invest for a high and a low σS. Conversely, when X = 1, the policy
uncertainty is low and a larger σS has little effect on the electricity price
needed for investment.

Figure 14: Sensitivity in free-boundary/investment threshold for different volatility of
electricity prices.
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Figure 15: Sensitivity in free-boundary/investment threshold for different values of the
fixed feed-in tariff.

4.3.2. Sensitivity in the FIT

We find that the exercise boundary decreases as the FIT level increases
(see Figure 15). The effect is stronger when the belief in a long-lived FIT
scheme increases, since the investor is increasingly eager to take advantage
of the subsidies. When the perceived policy uncertainty is low (X close to
1), policy makers can have a relatively large impact on the investment rate
in RE capacity by a relatively small change in the FIT even in highly volatile
markets. This is due to the fact that in this case the investment decision
is not sensitive to price volatility, a result shown in the previous section.
The effect is significantly lower when the perceived policy uncertainty is
high, which means a more generous subsidy is required to achieve the same
investment rate. Therewith, we can conclude that if policy uncertainty is
high, an increase in the FIT will be less effective at accelerating investment.

5. Conclusion

This paper extends standard real options models by including exogenous
arrival of information in the decision making process through a Bayesian
learning approach. We consider an investor with a perpetual option to invest
in a renewable energy project. The profitability of the project is highly de-
pendent on long-lasting government subsidies. Policy uncertainty in the form
of adverse changes of a subsidy scheme have a large effect on the investment
decision.

A support scheme of fixed feed-in tariff (FIT) is considered, where at some
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random point in time, investors expect a retroactive downward adjustment
of the FIT. We extend our model and examine a situation where the subsidy
scheme will be retroactively terminated and electricity must be sold on a free
market where the market price is uncertain.

The arrival rate of a subsidy revision is unknown, but as time passes, the
investor updates her belief of the expected lifespan of the support scheme.
The aim of our paper is to examine how this learning affects investor behavior.

At every point in time, the investor must weigh the benefits from exercis-
ing the investment option, against continued observation and learning. We
find that the optimal investment decision is characterized by a threshold on
the subjective posterior belief of the current subsidy scheme being long-lived.
In an extension of the model, the investor faces both policy uncertainty and
uncertain electricity prices. The optimal investment threshold is a function
of both electricity price and the subjective belief of the investor.

We find that policy uncertainty may introduce risk in the environment
given by fixed FIT regimes, due to the likelihood of a revision. Our results
have three important implications for the designers of FITs: i) The invest-
ment threshold increases in the arrival rate of a policy change, thereby reduc-
ing the investment rate in renewable energy plants. ii) We find that investors
who choose to invest will prefer a lower FIT with a long expected lifespan,
while policy makers might have different preferences depending on their ob-
jectives (e.g. highest investment rate, lowest total amount of subsidies paid
out given a certain investment rate that they aim for). The challenge for
policy makers is to find the right mix of subsidy payment and risk that trig-
ger the intended amount of investment. This mix should reflect the specific
characteristics of a given RE project. iii) We conclude that policy makers can
have a large impact on the investment rate by a relatively small change in
the FIT, when the policy uncertainty is low. The effect is significantly lower
when the policy uncertainty is high, so a more generous subsidy is required
to achieve the same investment rate. Active learning can greatly reduce the
perceived policy uncertainty, and thereby increase the effectiveness of subsidy
schemes.

We can identify at least three potential directions for further research.
One possibility is to examine different type subsidy schemes, e.g. feed-in
premiums or green certificates, in a similar way to Boomsma and Linnerud
(2015). Adding another stochastic process will however, increase the mathe-
matical complexity of the model, which already requires advanced numerical
methods for partial differential equations.
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Information arrival is likely to vary. Some events might lead to a large
amount of information in a short amount of time, and there might be peri-
ods of very little or no information arrival. This effect can be captured by
modeling information arrival as a Poisson process or a jump-diffusion process.

Finally, it is reasonable to assume that investors do have some discretion
over the magnitude of investment. Incorporating capacity choice will allow
for an analysis of how policy uncertainty affects the investment rate and
installed capacity at the same time.

Appendix A. Nomenclature

θ state of the world S electricity price
r (risk-adjusted) discount rate µS electricity price trend

σX volatility of learning process σS electricity price volatility
Y likelihood ratio process K1 subsidy after policy change
X posterior belief process K0 subsidy before policy change
λG regime transition rate if θ = 1 T lifetime of RE project
λB regime transition rate if θ = 0 I sunk investment costs
p probability of correct signal

Appendix B. Expectation and variance of YT − Y0

The expectation follows from a standard computation:

E [YT − Y0] = E

[

∆y

n
∑

i=1

Zi

]

=
T

∆t
∆y E[Z]

=
T

∆t
∆y (p− (1− p)) =

T

∆t
∆y (2p− 1) ,

To find the variance, we note that since Zi are independent random vari-
ables their correlation is 0:

V ar (YT − Y0) = V ar

(

∆y

n
∑

i=1

Zi

)

= (∆y)2
n
∑

i=1

V ar (Zi)

= (∆y)2
n
∑

i=1

E
[

(Zi)
2]−

(

E [Zi]
)2

= (∆y)2
n
∑

i=1

(

1− (2p− 1)2
)

=
T

∆t
(∆y)2 4p(1− p)
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Appendix C. Derivation of dY

The expectation and the variance of Y over the time horizon are given
by

E[YT ] =
T

∆t
∆y(2p− 1), (C.1)

V ar(YT ) =
T

∆t
(∆y)24p(1− p). (C.2)

While taking the limit as ∆t → 0 we want the variance (C.2) to stay
finite and independent of ∆t. Thus we must have

(∆y)2

∆t
= constant ⇒ (∆y)2 = constant ·∆t

Setting the constant variance equal to σ2
X we get

∆y = ln

(

p

1− p

)

= σX

√
∆t ⇒ p =

eσX

√
∆t

1 + eσX

√
∆t

(C.3)

Next, we want the mean, µ, to be independent of ∆t. Substituting (C.3)
into (C.1), we get

σX

√
∆t

∆t

(

2eσX

√
∆t

1 + eσX

√
∆t

− 1

)

=
σX√
∆t

(

−1 + eσX

√
∆t

1 + eσX

√
∆t

)

= µ

Now, taking the series expansion of e, we have

σX√
∆t





−1 + 1 + σX

√
∆t+ 1

2
σ2
X∆t+O

(

(∆t)
3

2

)

1 + 1 + σX

√
∆t+ 1

2
σ2
X∆t+O

(

(∆t)
3

2

)





= σ2
X





1 + 1
2
σX

√
∆t+ 1

6
σ2
X∆t+O

(

(∆t)
3

2

)

2 + σX

√
∆t+ 1

2
σ2
X∆t+O

(

(∆t)
3

2

)



 = µ

Finally, we take the limit as ∆t → 0, and obtain

σ2
X

2
= µX

Then, in the limit,
dY = µXdt+ σXdW
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Appendix D. Derivation of dX

Consider a function F (x, t) that is at least twice differentiable in x. Ito’s
Lemma gives the differential dF as (Dixit and Pindyck, 1994)

dF =
∂F

∂x
dx+

1

2

∂2F

∂x2
(dx)2

Our starting point is the arithmetic Brownian motion dY , given by

dY =







µX dt+ σX dW if θ = 1

−µX dt+ σX dW if θ = 0
,

where Yt = ln Xt

1−Xt

Assuming θ = 1 and applying Ito’s Lemma, we obtain

dX =
∂X

∂t
dt+

∂X

∂Y
dY +

1

2

∂2X

∂Y 2
(dY )2

=
∂X

∂Y

[

µX dt+ σX dW
]

+
1

2

∂2X

∂Y 2

[

µX dt+ σX dW
]2

.

Using that X = eY

eY +1
, we get

dX =
eY

(eY + 1)2

[

µX dt+ σX dW
]

+
1

2
σ2
X

eY (1− eY )

(eY + 1)3
dt

=
σ2
X

2

[

eY

(eY + 1)2
+

eY (1− eY )

(eY + 1)3

]

dt+ σX

eY

(eY + 1)2
dW

=
σ2
X

2

[

2eY

eY + 1

(

1− eY

eY + 1

)2
]

dt+ σX

eY

eY + 1

[

1− eY

eY + 1

]

dW

= σ2
XX(1−X)2 dt+ σXX(1−X) dW,

which describes the evolution of X given the Good state.

Following the same procedure given θ = 0, we get that the process X

evolves according to

dX =







σ2
XX(1−X)2 dt+ σXX(1−X) dW if θ = 1

−σ2
XX

2(1−X) dt+ σXX(1−X) dW if θ = 0
.
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Appendix E. Derivation of V0

Define the stopping time

τδ := inf{t ≥ 0|δt = 1; δ0 = 0},

and the functions g01 : [0, T ] → R and g0 : [0, T ] → R by

g01(t) :=

∫ t

0

K0e
−rsds+

∫ T

t

K1e
−rsds

=
K0

r

(

1− e−rt
)

+
K1

r

(

e−rt − e−rT
)

and

g0(t) :=

∫ T

0

K0e
−rsds =

K0

r

(

1− e−rT
)

.

Note that τδ ∼ Exp(λ), with distribution function F (t) = 1 − e−λt and
density function f(t) = λe−λt. The result now follows from direct computa-
tion of the expectation

V0 =E [g01(τδ); τδ < T ] + E [g0(τδ); τδ ≥ T ]

=

∫ T

0

g01(t)f(t)dt+ g0(T )P(τδ > T ).

Appendix F. The Bellman equation

Starting in regime 0, the value of the option to invest must satisfy the
Bellman equation

F0(X) = max
{

V0(X)− I, lim
dt↓0

e−rdt

dt

(

E[(1− λdt)F0(X + dX)]

+E[λdtF1]
)}

.

In the continuation region, it then holds, for small dt, that

(1 + r dt)F0 = E[1− λ dt]E[F0 + dF0] + E[λ dt]E[F1] + o(dt),
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where we have used the fact that the Poisson jump and the learning process
are independent. Note that

F1 = max {V1 − I, 0} = 0, V1 − I < 0 by assumption,

and that
E[λ] = XλG + (1−X)λB.

Applying Ito’s lemma and using that X is the probabilistic belief of being in
the Good state, we then get

(1+r dt)F0 =
(

1−XλG dt− (1−X)λB dt
)

E

[

F0 +X (σ2
XX(1−X)2 dt+ σXX(1−X)dW ) ∂F0

∂X

+ (1−X) (σ2
XX

2(1−X) dt+ σXX(1−X)dW ) ∂F0

∂X
+ 1

2
σ2
XX

2(1−X)2 ∂
2F0

∂X2 dt
]

+ o(dt)

=
(

1−XλG dt− (1−X)λB dt
)[

F0 +
1
2
σ2
XX

2(1−X)2 ∂
2F0

∂X2 dt
]

+ o(dt).

We rearranging terms, dividing by dt and taking the limit dt ↓ 0 we obtain
the following second order ODE for the continuation region:

1

2
σ2
XX

2(1−X)2
∂2F0

∂X2
−
(

XλG + (1−X)λB + r
)

F0 = 0. (F.1)

Since the ODE is independent of the drift term in dX, we do not have to
consider the two possible states of the world. Hence, we can reduce dX to
the much simpler form

dX = σXX(1−X) dW, (F.2)

regardless of the state of the world.

Appendix G. Solving the ODE

We seek an analytical solution of the ODE

1

2
σ2
XX

2(1−X)2
∂2F0

∂X2
−
(

XλG + (1−X)λB + r
)

F0 = 0, (G.1)

for X ∈ (0, 1).
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Assuming a solution on the form of a Frobenius series

F0(X) = Xc

∞
∑

n=0

an(r)X
n. (G.2)

We want to find the terms and coefficients of the series solution cor-
responding to the differential equation at hand. Differentiating (G.2) and
substituting into (G.1), we get

1

2
σ2
XX

2(1−X)2
∞
∑

n=0

(n+ c)(n+ c− 1) an(r) x
n+c−2

−
(

XλG + (1−X)λB + r
)

∞
∑

n=0

an(r) x
n+c = 0.

Next, we examine the coefficients of different powers of X. For the first
term of the series (n = 0), we get

1

2
σ2
X

(

1− 2X +X2
)

c(c− 1) a0 X
c

− (λB + r) a0 X
c − (λG − λB) a0 X

c+1 = 0.
(G.3)

Equation (G.3) has two trivial solutions: a0 = 0 and X = 0. We are, how-
ever, interested in finding a nontrivial solution and must, therefore, examine
the three equations

p0(c) =
1

2
σ2
Xc(c− 1)− λB − r,

p1(c) = −σ2
Xc(c− 1)− λG + λB,

p2(c) =
1

2
σ2
Xc(c− 1),

corresponding to the different powers of X.

The possible values of c are determined by p0(c), as we seek the non-trivial
solution (a0 6= 0). Therefore, we get two possible values of c,

c1 =
1

2
+

√

1

4
+

2(λB + r)

σ2
X

, (G.4)

c2 =
1

2
−
√

1

4
+

2(λB + r)

σ2
X

. (G.5)
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The Frobenius method states that the solution corresponding to c2 does
not exist if the difference between c1 and c2 is an integer (Theorem 7.5.3,

Trench (2013)). Hence, if
√

1
4
+ 2(λB+r)

σ2

X

is an integer, only the solution cor-

responding to c1 will be valid.

Assuming that the difference between c1 and c2 is not an integer, the
general solution can be expressed as

F0(X) = A1X
c1

∞
∑

n=0

an(c1)X
n + A2X

c2

∞
∑

n=0

an(c2)X
n.

The solution is valid and converges for X ∈ (0, 1) (Trench, 2013).

The option to invest is worthless if X = 0, which is an absorbing state
of the belief process. Therefore, limX→0 F0(X) = 0 should hold. For λB > 0
and/or r > 0, we have c2 < 0, and Xc2 goes to infinity as X goes to zero.
This implies that we must have A2 = 0.

We continue to examine the coefficients of different powers of X, in order
to find the terms of the series. For the two first terms (n = 0 and n = 1), we
get

1

2
σ2
X

(

1− 2X +X2
)

c(c− 1) a0 X
c − (λB + r)a0X

c

−(λG − λB) a0 X
c+1 +

1

2
σ2
X

(

1− 2X +X2
)

c(c+ 1) a1 X
c+1

−(λB + r) a0 X
c+1 − (λG − λB) a0 X

c+2 = 0.

Collecting the coefficients of Xc+1, we get

(

1

2
σ2
Xc(c+ 1)− λB − r

)

a1 −
(

σ2
Xc(c− 1) + λG − λB

)

a0 = 0. (G.6)

Choosing a0 = 1, gives

a1(c) =
σ2
Xc(c− 1) + λG − λB

1
2
σ2
Xc(c+ 1)− λB − r

= − p1(c)

p0(c+ 1)
. (G.7)
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For the three first terms (n = 0, n = 1 and n = 2), we have

1

2
σ2
X

(

1− 2X +X2
)

c(c− 1) a0 X
c − (λB + r) a0 X

c

−(λG − λB) a0 X
c+1 +

1

2
σ2
X

(

1− 2X +X2
)

c(c+ 1) a1 X
c+1

−(λB + r) a1 X
c+1 − (λG − λB) a1 X

c+2 +
1

2
σ2
X

(

1− 2X +X2
)

(c+ 2− 1)(c+ 2) a2 X
c+2

−(λB + r) a2 X
c+2 − (λG − λB) a2 X

c+3 = 0.

Collecting the coefficients of Xc+2, we get

1

2
σ2
Xc(c− 1) a0 −

(

σ2
Xc(c+ 1) a1

+ λg − λB) a1 +

(

1

2
σ2
X(c+ 2− 1)(c+ 2)− λB − r

)

a2 = 0.

Thus,

a2(c) =
2 [σ2

Xc(c+ 1)a1 + λg − λB] a1 −
[

σ2
Xc(c− 1)

]

a0

σ2
X(c+ 2− 1)(c+ 2)− λB − r

= −p1(c+ 2− 1) a1(c) + p2(c+ 2− 2) a0(c)

p0(c+ 2)
.

Examining the terms n− 2, n− 1 and n and collecting the coefficients of
Xc+2, we get the general expression for the nth coefficient

an(c) = −p1(n+ c− 1) an−1(c) + p2(n+ c− 2) an−2(c)

p0(n+ c)
, n ≥ 2.

Thus, the solution of the ODE can be expressed as

F0(X) = A1X
c1

∞
∑

n=0

an(c1)X
n,

where

c1 =
1

2
+

√

1

4
+

2(λB + r)

σ2
X

,
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and

a0(c) = 1,

a1(c) =
σ2
Xc(c− 1)− λB + λG

1
2
σ2
Xc(c+ 1)− λB − r

,

an(c) =
2[σ2

X
(n+c−1)(n+c−2)−λB+λG]an−1(c)−[σ2

X
(n+c−2)(n+c−3)] an−2(c)

σ2

X
(n+c)(n+c−1)−2(λB+r)

, n ≥ 2.

Appendix H. Solving the system of PDEs

We want to solve the following system of PDEs

1

2
σ2
XX

2(1−X)2
∂2F0

∂X2
+
1

2
σ2
SS

2∂
2F0

∂S2
+µSS

∂F0

∂S
−
(

XλG+(1−X)λB

)(

F0−F1

)

−rF0 = 0

(H.1)

1

2
σ2
SS

2∂
2F1

∂S2
+ µSS

∂F1

∂S
− rF1 = 0 (H.2)

From the PDE in Equation (H.1), we observe that the value of the option
to invest in Regime 0, F0, depends on the option value in regime 1, F1.
Therefore, our starting point is to find an expression for F1.

Solving Equation (H.2)

In regime 1, a revision has already occurred, and the option value depends
only on the stochastic electricity price. We assume that the solution of (H.2)
is of the form

F1(S) = A1S
β1 + A2S

β2 . (H.3)

By substitution, we see that (H.3) satisfies Equation (H.2) if β1 > 1 and
β2 < 0 are the roots of the characteristic equation

Q1(β) =
1

2
σ2
Sβ(β − 1) + µSβ − r. (H.4)

Finally, F1(S) must satisfy the following boundary conditions

F1(0) = 0, (H.5)

F1(S
∗) = S∗

[

1− e−(r−µS)T

r − µS

]

− I, (H.6)

∂F1

∂S

∣

∣

∣

∣

S=S∗

=

[

1− e−(r−µS)T

r − µS

]

. (H.7)
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Condition (H.5) arises since S = 0 is an absorbing state of a GBM, and
the option is worthless for S = 0. Since Sβ2 → ∞ when S → 0, we must
have A2 = 0. Condition (H.6) is a value-matching condition and condition
(H.7) is a smooth-pasting condition. Solving for A1 and S∗, we get

F1(S) = A1S
β1 , (H.8)

where

A1 =

(

β1 − 1

I

)β1−1(
e(µS−r)T − 1

β1(µS − r)

)β1

, (H.9)

β1 =
1

2
− µS

σ2
S

+

√

(

µS

σ2
S

− 1

2

)2

+
2r

σ2
S

, (H.10)

S∗ =
β1

β1 − 1
I

µS − r

e−(r−µS)T − 1
. (H.11)

Rewriting Equation (H.1)

Next, we substitute (H.8) into (H.1) and let u = F0, x = X and s = S.
Equation (H.1) can then be written more compactly as

a(x)
∂2u

∂x2
+ b(s)

∂2u

∂s2
+ c(s)

∂u

∂s
+ d(x) u+ e(x, s) = 0, (H.12)

where

a(x) =
1

2
σ2
Xx

2(1− x)2, b(s) =
1

2
σ2
Ss

2, c(s) = µss,

d(x) = (λB − λG)x− λB − r, e(x, s) =
(

(λG − λB)x+ λB

)

A1s
β1 .

Boundary conditions

On the bottom boundary, the electricity price is 0, and the option value
must be 0. On the top boundary we are in the stopping region, and the
option value must equal the payoff. We get

u(x, 0) = 0 on Γ1, (H.13)

u(x, s) = V0(x, s) on Γ4. (H.14)
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On the left boundary we must solve Equation (H.12) for x = 0 and on
the right boundary for x = 1 (see below for derivation), which gives

u(0, s) = C1s
γ1 + A1s

β1 on Γ6, (H.15)

u(0, s) = V0(0, s) on Γ5, (H.16)

u(1, s) = D1s
η1 + A1s

β1 on Γ2, (H.17)

u(1, s) = V0(1, s) on Γ3. (H.18)

Figure H.16: Domain Ω = (0, 1) × (0, Smax). Dashed line illustrates the free-boundary
and separates the continuation region (light shade) and stopping region (dark shade).

Boundary conditions at X = 0

When X = 0, the transition rate is λB, and the differential equations that
must be satisfied by F0 and F1, is reduced to

1

2
σ2
SS

2F0SS + µSSF0S − λB(F0 − F1)− rF0 = 0 (H.19)

1

2
σ2
SS

2F1SS + µSSF1S − rF1 = 0 (H.20)

The solution of (H.20) is given by equation (H.8). The solution to equa-
tion (H.19) takes the form

F0(0, S) = C1S
γ1 + C2S

γ2 + A1S
β1
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where A1 and β1 are specified by equation (H.9) and (H.10), respectively,
and γ1 > 1 and γ2 < 0 are the roots of the characteristic equation

Q2(γ) =
1

2
σ2
Sγ(γ − 1) + µSγ − (r + λB) (H.21)

Finally, F0(0, S) must satisfy the following boundary conditions

F0(0, 0) = 0, (H.22)

F0(0, S
∗) = K

1− e−(r+λB)T

r + λB

+ S∗

[

(

1− e−(r−µS)T
)

r − µS

+

(

e−(r+λB−µS)T − 1
)

r + λB − µS

]

− I,

(H.23)

∂F0

∂S

∣

∣

∣

∣

S=S∗

=
1

r − µS

(

1− e−(r−µS)T
)

+
1

r + λB − µS

(

e−(r+λB−µS)T − 1
)

,

(H.24)

Since the option is worthless for S = 0, we must have C2 = 0. We
therefore have

F0(0, S) = C1S
γ1 + A1S

β1 (H.25)

where

γ1 =
1

2
− µS

σ2
S

+

√

(

µS

σ2
S

− 1

2

)2

+
2(λB + r)

σ2
S

,

and C1 and S∗ are solved for numerically. Note that S∗ defines the left
endpoint of the free boundary, separating Γ5 from Γ6.

Boundary conditions at X = 1

When X = 1 the transition rate is λG and the same system of PDEs as
for the case with X = 0 must be solved, only with λG in stead of λG. We get

F0(1, S) = D1S
η1 + A1S

β1 (H.26)

where

η1 =
1

2
− µS

σ2
S

+

√

(

µS

σ2
S

− 1

2

)2

+
2(λG + r)

σ2
S

.
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and D1 and S∗∗ are solved for numerically from

F0(1, S
∗∗) = K

1− e−(r+λG)T

r + λG

+ S∗∗

[

(

1− e−(r−µS)T
)

r − µS

+

(

e−(r+λG−µS)T − 1
)

r + λG − µS

]

− I,

(H.27)

∂F0

∂S

∣

∣

∣

∣

S=S∗∗

=
1

r − µS

(

1− e−(r−µS)T
)

+
1

r + λG − µS

(

e−(r+λG−µS)T − 1
)

,

(H.28)

Note that S∗∗ defines the right endpoint of the free-boundary, separating
Γ2 from Γ3.

Variational formulation

FEM requires the PDE to be expressed in its variational form. To ar-
rive at the variational formulation we multiply Equation (H.12) with a test
function v(x, s) ∈ H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}, to get

a(x)
∂2u

∂x2
v + b(s)

∂2u

∂s2
v + c(s)

∂u

∂s
v + d(x) u v + e(x, s) v = 0. (H.29)

Then integrating over the domain yields

∫

Ω

a(x)
∂2u

∂x2
v +

∫

Ω

b(s)
∂2u

∂s2
v +

∫

Ω

∂u

∂s
v +

∫

Ω

d(x) u v +

∫

Ω

e(x, s) v = 0 (H.30)

Applying Green’s Theorem to the first integral gives

∫

Ω

a(x)
∂2u

∂x2
v =

∫

∂Ω

a(x)
∂u

∂x
nxv −

∫

Ω

∂u

∂x

∂

∂x

(

a(x) v

)

, (H.31)

=

∫

∂Ω

a(x)
∂u

∂x
nxv −

∫

Ω

∂u

∂x

(

∂a(x)

∂x
v + a(x)

∂v

∂x

)

, (H.32)

= −
∫

Ω

a(x)
∂u

∂x

∂v

∂x
−
∫

Ω

∂u

∂x

∂a(x)

∂x
v. (H.33)

The last equality follows from v being defined to be zero on Dirichlet
boundaries.
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Applying Green’s Theorem to the second integral gives

∫

Ω

b(s)
∂2u

∂s2
v =

∫

∂Ω

b(s)
∂u

∂s
nsv −

∫

Ω

∂u

∂s

∂

∂s

(

b(s) v

)

(H.34)

=

∫

∂Ω

b(s)
∂u

∂s
nsv −

∫

Ω

∂u

∂s

(

∂b(s)

∂s
v + b(s)

∂v

∂s

)

(H.35)

= −
∫

Ω

b(s)
∂u

∂s

∂v

∂s
−
∫

Ω

∂u

∂s

∂b(s)

∂s
v. (H.36)

Now, substitute (H.33) and (H.36) back into (H.30) to get

−
∫

Ω

a(x)
∂u

∂x

∂v

∂x
−
∫

Ω

∂u

∂x

∂a(x)

∂x
v

−
∫

Ω

b(s)
∂u

∂s

∂v

∂s
−
∫

Ω

∂u

∂s

∂b(s)

∂s
v+

∫

Ω

c(s)
∂u

∂s
v+

∫

Ω

d(x) u v+

∫

Ω

e(x, s) v = 0.

Rearranging, gives

∫

Ω

(

a(x)
∂v

∂x

∂u

∂x
+ b(s)

∂v

∂s

∂u

∂s

)

+

∫

Ω

∂a(x)

∂x

∂u

∂x
v +

∫

Ω

(

∂ b(s)

∂s
− c(s)

)

∂u

∂s
v =

∫

Ω

d(x)uv +

∫

Ω

e(x, s)v. (H.37)

The variational formulation can then be written as,

Find u such that

u = gΓi
on ∂Ω for i = 1, ..., 6

Equation (H.37) holds for all v, such that v = 0 on ∂Ω

where gΓi
is a given function on the Dirichlet boundary Γi.
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