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Exploring Self-Repair in a Coupled Spiking

Astrocyte Neural Network
Junxiu Liu, Member, IEEE, Liam J. McDaid, Jim Harkin, Member, IEEE, Shvan Karim,

Anju P. Johnson, Member, IEEE, Alan G. Millard, Member, IEEE, James Hilder, David M. Halliday,

Andy M. Tyrrell, Senior Member, IEEE, and Jon Timmis, Senior Member, IEEE

Abstract—It is now known that astrocytes modulate activity at
tripartite synapses where indirect signalling via the retrograde
messengers, endocannabinoids, leads to a localised self-repairing
capability. In this paper, a self-repairing Spiking Astrocyte Neural
Network (SANN) is proposed to demonstrate a distributed self-
repairing capability at the network level. The SANN uses a
novel learning rule which combines the spike timing dependent
plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM)
learning rules: hereafter referred to as the BSTDP rule. In this
learning rule, the synaptic weight potentiation is not only driven
by the temporal difference between the pre and postsynaptic
neuron firing times but also by the postsynaptic neuron activity.
We will show in this paper that the BSTDP modulates the
height of the plasticity window to establish an input-output
mapping (in the learning phase) and also maintains this mapping
(via self-repair) if synaptic pathways become dysfunctional.
It is the functional dependency of postsynaptic neuron firing
activity on the height of the plasticity window that underpins
how the proposed SANN self-repairs on the fly. The SANN
also uses the coupling between the tripartite synapses and γ-
GABAergic (GABA) interneurons. This interaction gives rise to
a presynaptic neuron frequency filtering capability which serves
to route information, represented as spike trains, to different
neurons in subsequent layers of the SANN. The proposed SANN
follows a feed-forward architecture with multiple interneuron
pathways and astrocytes modulate synaptic activity at the hidden
and output neuronal layers. The self-repairing capability will be
demonstrated in a robotic obstacle avoidance application and
simulation results will show that the SANN can maintain learned
manoeuvres at synaptic fault densities of up to 80% regardless
of the fault locations.

Index Terms—Spiking neural networks, astrocyte, self-repair,
fault tolerance, obstacle avoidance.

I. INTRODUCTION

WHILE state-of-the-art hardware devices and neuro-

morphic chips [1]–[6] replicate to an extent a brain

information processing paradigm, they are not fault-tolerant

and can develop faults due to incorrect operations in post-

manufacturing [7], wear-out failures [8], or radiation effects

[9]. Therefore, fault tolerance is still a key challenge for
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modern hardware systems. Traditional approaches to address

this challenge generally include several stages, e.g. fault de-

tection [7], fault diagnosis [10], and correction/reconfiguration

[11], [12]. Additionally, other techniques like redundancy [13],

error correction method [14] can also be used to enhance the

system fault tolerance. However, most of these approaches

are not distributed and require a central control unit which

can also be compromised due to faults. It has recently been

reported [4], [15], [16] that the coupling of neurons and

astrocytes in the brain may provide an elegant solution to this

problem. Specifically, a network of excitatory and inhibitory

synapses with spiking neurons was employed to develop a self-

adaptive strategy for a robotic controller [17]. The authors have

proposed a plastic spiking neural network model which was

used to develop a fault-resilient robotic controller [18]. The

approach of [19] showed that astrocytes have the potential

to provide a distributed self-repairing function (e.g. when the

spinal cord has injuries).

In this paper, a self-repairing spiking astrocyte neural

network (SANN) is proposed where a novel learning rule

(BSTDP) combining the spike-timing-dependent plasticity

(STDP) and Bienenstock, Cooper, and Munro (BCM) learning

rules is used which serves to initiate/suppress the learning

process depending on the firing activity of pre and postsynaptic

neurons. Specifically, it will be shown that the BSTDP rule

is capable of (1): creating an input output mapping during a

conventional learning phase and (2): maintaining this mapping

in the presence of dysfunctional synaptic connections: this

we define as self-repair. The BSTDP rule couples an γ-

GABAergic (GABA) interneuron with tripartite synapse [20]

which serves to modulate the height of plasticity windows as

a function of presynaptic neuron frequency. This capability

endows the SANN with a computationally useful frequency

filtering capability where spike trains are routed through dif-

ferent synaptic pathways depending on presynaptic frequency.

The proposed SANN is applied to a robotic obstacle avoidance

task which is a well known benchmark in many robotic labora-

tories. Results will show, for the first time, that a computational

network that captures known interactions between neurons and

astrocytes can not only provide a local learning capability,

whereby learning commences when either or both pre and

postsynaptic neuron become relatively inactive, but also yield

a self-repairing capability post learning to maintain learned

mappings. Furthermore, results will also desmonstrate that the

self-repairing capability of SANN can maintain input-output

mappings for a distributed fault density of up to 80%.
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The main contributions of this paper are as follows:

1) A biologically inspired astrocyte-neural network

(SANN) and learning rule is proposed. The BSTDP

learning rule combines the STDP and BCM learning

rules to initiate a conventional learning cycle and

maintain learned input-output mappings in the presence

of dysfunctional synapses, e.g. failures.

2) The BSTDP rule captures the biological interplay be-

tween GABA interneuron, postsynaptic neurons and

the plasticity of synapses. This novel interaction gives

the SANN the capability to continuously route data,

represented in spike train frequencies, to different areas

of the SANN and initiate a repair process in the presence

of faults.

3) The fault tolerance of the proposed SANN architec-

ture is evaluated through simulations using a robotic

application. Results demonstrate the resilience of the

SANN-based robotic controller in an obstacle avoidance

application under various fault densities.

The rest of paper is organized as follows. Section II provides

the background and motivation. Section III presents SANN

models, the BSTDP learning rule and network structure.

Section IV provides simulation results that demonstrate the

performance of the SANN-based robotic controller under

various fault densities and conditions. Section V concludes

and gives insight into the potential directions for the future

work.

II. BACKGROUND AND MOTIVATION

Astrocytes in the central nervous systems can encapsulate

about ten thousand synapses and multiple neurons (e.g. ∼6 in

the cortex) [21]. These cells interact with synapses and neu-

rons to modulate synaptic activity [22], namely the tripartite

synapse [23]. It has been shown that at the tripartite synapse,

the astrocyte cells perform a distributed and fine-grained

repair [15], see Fig. 1, whereby when synapses are damaged,

the Probability of neurotransmitter Release (PR) at synapses

drops which leads to fall off in the activity at postsynaptic

neurons. However, it is now commonly known that a negative

feedback signal, often referred to as the retrograde messengers

(endocannabinoids) pathway, exists where the messengers are

synthesised by active postsynaptic neurons. This retrograde

messenger forms an indirect signalling pathway which in-

creases the PRs of the all functional synapses associated with

postsynaptic neurons enabling the recovery of the postsynaptic

firing rate [15]. We define this process as the self-repair and

the indirect retrograde messenger is the key catalyst.

This self-repairing mechanism has been implemented in

an electronic hardware system [4] and unlike existing fault

tolerance techniques (e.g. triple modular redundancy and er-

ror correction technique) the self-repairing astrocyte-neural

network has shown promise as an effective adaptive com-

putational paradigm as it is not dependant on a central

controller. Furthermore, it has been demonstrated that this

self-repairing approach can maintain the system functionality

for both localised and distributed faults (up to 40% fault

densities), and performance degrades by only 20% if the
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Fig. 1. A tripartite synapse where the direct feedback is from the postsynaptic
dendrite, and the indirect feedback is from the astrocyte cell [15].

network is seriously damaged by a fault density of 80% [4].

This hardware architecture was optimized for the low area

overhead [24] and achieved less hardware resource utilization

than the original work of [4], therefore provides an efficient

design solution for large scale networks. A small SANN has

been applied to a mobile robotic car application [25] with

a fixed input spike train. However, the work in this paper

goes much further and proposes a SANN for a more complex

robotic task in that the SANN takes on the role of a controller

where input-output mappings are initially learned, allowing the

robot to navigate around a series of obstacles. Furthermore, the

SANN controller maintains the obstacle avoidance capability

when faults occur. To the best of the authors’ knowledge,

this is the first time that a network combining astrocytes with

neurons has been shown to implement a learning and fault-

tolerant capability which can be harnessed in a challenging

application.

III. SELF-REPAIRING ASTROCYTE NEURAL NETWORK

MODEL

In this section, the SANN architecture is presented together

with the BSTDP learning rule and neuron/synaptic models.

Specifically, we will start with communication between ex-

citatory neurons, GABA neurons and astrocytes at tripartite

synapses. From this we will distil out biological realistic

models that capture the essence on the biological interplay

between these cells while at the same time minimising the

computational overhead.

A. Activity-dependent Mechanism in the Tripartite Synapses

Recent research shows that the GABA interneuron partici-

pates in the activities of neurons and synapses [26] where for

low presynaptic frequencies the GABA interneuron has an in-

hibitory affect on the presynaptic neuron. The signalling path-

ways between the GABA interneuron and tripartite synapse are

shown in Fig. 2. The conventional tripartite synapse has three
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Fig. 2. Signalling interactions between a tripartite synapse and a GABA
interneuron. (A). A low fpre. (B). A high fpre. (C). IP3 versus fpre.

terminals shown by Fig. 1, which are the presynaptic axon,

the postsynaptic dendrite and the astrocyte cell. However,

the GABA interneuron introduces an additional terminal and

we now consider this. When a spike train of frequency

(fpre) arrives at the presynaptic axon, the neurotransmitter

(in this case glutamate) is released from cleft. It binds to the

receptors at the postsynaptic dendrite, which depolarizes the

postsynaptic neuron. The spikes presenting at the presynaptic

axon also arrive at the GABA interneuron [26] causing GABA

to be released which subsequently binds to GABA-B receptors

at the astrocyte cell. This triggers the release of inositol 1, 4,

5-trisphosphate (IP3). For a low fpre shown in Fig. 2A, the

amount of released IP3 is insufficient to cause the release of

calcium Ca2+ from the Endoplasmic Reticulum (ER) due to

degradation of the IP3. Thus no Ca2+-induced glutamate is

released from the astrocyte. However, GABA also binds to the

GABA-A receptors at the presynaptic terminal which has an

inhibitory effect causing a low PR at the tripartite synapse,

as shown in Fig.2A (red line): PR remains low for low fpre.

As fpre is increased, as shown in Fig. 2B, more GABA binds

to the GABA-B receptors and at some “trigger” frequency a

sufficient amount of IP3 is released to overcome IP3 degra-

dation and a low IP3 threshold ThL is reached, causing Ca2+

released from the ER and a subsequent Ca2+ transient. The

release of Ca2+ results in Ca2+-induced glutamate release

which subsequently binds to group I metabotropic Glutamate

Receptors (mGluR) at the presynaptic terminal. It overcomes

the inhibitory effect of GABA-A leading to an increase in

fpre

PR

  (a)         (b)                   (c)

Fig. 3. Spike frequency fpre vs synaptic PR for a tripartite synapse and
GABA interneuron. In the stage (a), the low fpre is insufficient to cause the
release of Ca2+ in the astrocyte, and no gliotransmitter is released. Thus
the PR is low due to the inhibitory effect from the GABA interneuron. For
the stage (b), as the fpre is high, the IP3 is sufficient (reaching the the
low threshold ThL) to trigger the release of Ca2+. The gliotransmitter is
released which overcomes the inhibitory effect of the GABA, thus the PR is
increasing. In the stage (c), the fpre is too high and causes the IP3 reaching
the upper threshold ThH . It stops the release of Ca2+ and no gliotransmitter
binds to the mGluR at the presynaptic terminal, which causes the inhibitory
effect of GABA to be dominant again and the PR decreases.

PR of the presynaptic terminal, see Fig. 2B (green line). If

fpre continues to increase, the IP3 within the astrocyte also

increases and eventually reaches the upper threshold ThH , as

shown in Fig. 2C, and the oscillatory Ca2+ transient ceases. In

this case glutamate is no longer released causing the inhibitory

effect of GABA-A to be dominant again and the PR decreases

at presynaptic terminal, see Fig. 3 (yellow line). Therefore, the

interactions between the inhibitory GABA interneuron and the

astrocyte can give rise to a frequency selective PR behaviour

at tripartite synapses. This behaviour points towards a “band-

pass” filtering characteristic for presynaptic spike trains where

the passband will be closely related to cellular morphology,

receptor distribution and many other aspects. Therefore, we

assume that, as morphology and receptor density differs across

synaptic sites, there will be a spread in the centre frequency

of bandpass filters across the SANN, which will give rise

to an advantageous SANN signal routing capability (This is

discussed later in the paper). Effectively what is being filtered

is the release of glutamate where with PR approaching unity,

almost every spike arriving at a presynaptic terminal will

cause the release of glutamate. Consequently, with the rapid

arrival of glutamate in the cleft a strong STDP based learning

phase occurs. However, as PR drops then fewer spikes release

glutamate and the plasticity of synapses falls. Therefore, we

propose that PR is effectively a local switch which can turn

on/off learning at synaptic sites by modulating the height of

the plasticity window: as PR → 1 the plasticity window fully

opens and with PR → 0 the window closes. Section III-D of

this paper proposes that activity at postsynaptic neurons also

controls the plasticity of synapses.

To avoid the computational complexity discussed in Fig. 2,

the interactions between GABA and the tripartite synapse can

be approximated by a Gaussian function, which is shown by

Fig. 3. It can be seen that the synaptic PR is a function of fpre,

where the three stages of (a)-(c) correspond to the descriptions

outlined in Fig. 2.
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The Gaussian function in Fig. 3 is described by

PR = e
−

(fpre − fs)
2

2σ2 , (1)

where fs is the sensitive (centre) frequency of the presynaptic

terminal, σ is the width of Gaussian passband: both of these

parameters are set by encoding scheme.

B. Neuron Model

Previous research have proposed several spiking neuron

models, such as Hodgkin-Huxley model [27] and FitzHugh-

Nagumo model [28], [29]. However, these models are

computing-intensive as they used complex mathematics to

describe the biological behaviours of the neuron [30]. Thus

simplified models, including the Izhikevich [31] and Leaky

Integrate-and-Fire (LIF) models [32], were proposed and are

now widely used in many approaches [33]–[35]. In this paper,

the simplified neuron model of LIF [32] is used, which is

given by

τm
dv

dt
= −v(t) +Rm

n
∑

i=1

Iisyn(t), (2)

where v is the membrane potential of the neuron, Iisyn is

the injected current from ith synapse and the total number

of synapse is n. The parameter descriptions of τm, Rm and

vth and their values in this work can be found in Table I. The

neuron goes to the refractory period when v > vth and the

refractory period is ∼2 ms in this approach.

C. Synapse Model

In this work, a probabilistic-based model is used for the

synapses, which is based on the synaptic neurotransmitter

releasing mechanism similar to the approaches of [15], [36]. In

this model when a pre-synaptic spike presents at the synapse,

a random number generator generates a value rand (between

0 and 1) which is used to compare with PR of the synapse.

If rand ≤ PR, the synaptic current is generated, which is

described by

Iisyn(t) =

{

rI ∗ w
i
syn(t)/n, rand ≤ PR

0, rand > PR
(3)

where rand is the generated random number, rI is the

current production rate, wi
syn is the weight of the ith synapse

associated with neuron. All the parameters for the neuron and

synapse models can be found in Table I.

TABLE I
NEURON, SYNAPSE MODEL PARAMETERS

Parameters Parameter description Value

τm Neuron membrane time constant 240 ms
Rm Neuron membrane resistance 1.2 GΩ

vth Firing threshold value 9 mv
rI Synaptic current production rate 8

D. BSTDP Learning Rule

In this paper, a new learning algorithm with the capability

of not only mapping new input data patterns to a desired

output pattern, but also sensing when synaptic pathway(s)

becomes dysfunctional and initiating re-learning or repair,

was developed. If synaptic connections become broken or

damaged, the corresponding currents injected into the neuron

diminishes, which will reduce or even cause the firing activity

of the postsynaptic neuron to cease. The BSTDP continually

monitors the activity of postsynaptic neurons and when the

level of activity of these neurons drops below a predetermined

threshold a feedback signal initiates a localised learning phase.

As learning process progresses, the activity of postsynaptic

neuron increases which strengthens this indirect retrograde

signalling pathway resulting in an increase in the astrocytic

IP3. With sufficiently high postsynaptic activity astrocytic IP3

concentration will cross the upper IP3 threshold and the Ca2+

transient ceases. Thereafter, no glutamate is released and PR

falls off to a low background level resulting is shut down of

learning: the plasticity window in (5) has collapsed. Hence

as astrocytic IP3 can be elevated from either direct signals

by GABA interneurons or the indirect retrograde pathway

originating from the postsynaptic neuron then both the pre

and postsynaptic activity modulate the plasticity at synaptic

sites. Consequently even if the frequency of the presynaptic

neuron fpre is fixed and falls within the bandpass range, as

outlined in Fig.2, the plasticity window will only open if the

postsynaptic neuron activity is below a predefined maximum.

Effectively the height of PR in Fig.2 is modulated by the

postsynaptic neuron frequency and this leads the authors to

propose that the link between postsynaptic neuron activity, PR

and synaptic plasticity may explain the biophysical processes

underpinning the BCM learning function. Furthermore, there is

strong experimental evidence for this feedback pathway where

it has been shown [15], [26] that the retrograde messenger (en-

docannabinoids), which are synthesised in active postsynaptic

neurons, act as an indirect signalling messenger, via astrocytes

and the IP3 pathway, that modulates PR, and hence plasticity,

at local and distal synapses.

However, due to the computational overhead that would be

incurred in modelling this feedback pathway and also its causal

effect is adequately captured in the BCM function, we adopt

the BCM model to map postsynaptic neuron activity directly to

the plasticity of synapses. Hence, we now formulate a model

for the BSTDP rule that merges conventional STDP learning

with the proposed indirect pathway (BCM). The BSTDP rule

updates the synaptic weights according to the timing difference

between the pre and postsynaptic spikes, and is described by

δw(∆t) =















A0exp(
∆t

τ+
), ∆t ≤ 0

−A0exp(
∆t

τ
−

), ∆t > 0

(4)

where δw(∆t) is used to update the synaptic weight, ∆t is the

time difference between presynaptic and postsynaptic spikes,

A0 is the plasticity window height, τ+, τ
−

control the width

of the plasticity window, and they are 40ms in this approach.
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Since the indirect feedback pathway appears to underpin the

BCM rule we can use the established BCM function to model

the relationship between postsynaptic activity and plasticity at

synapses, as follows. The height of the plasticity window A0

is modulated by a BCM type behaviour using the actual and

target postsynaptic firing rates according to

A0 =
A

1 + ea(f−fo)
−A

−
, (5)

where A is the maximum plasticity window height, A
−

is the

maximum plasticity window height for depression, f and fo
are the actual firing rate (i.e. a running average over forty

seconds) and target firing rate of the postsynaptic neuron,

respectively. The parameter a controls the plasticity window

opening and closing rates and was set to 0.2 in this work. All

the parameters for the BSTDP learning rule can be found in

Table II.

When f ≫ fo, then A0 ≈ A
−

, which leads to long-term

depression (LTD) and for f ≪ fo, A0 ≈ A − A
−

, which

gives rise to long-term potentiation (LTP). It is clear that if

the postsynaptic neuron is in the early learning phase or the

firing rate drops off due to the faulty synaptic connections,

then the plasticity window height A0 is positive (the learning

window is open). This initiates a learning phase where the

synaptic weights of the remaining non-dysfunctional synapses

potentiate, eventually stabilising when the neural firing rate

f approaches fo. Thus when faults occur and f diminishes,

this process will recover the postsynaptic neuronal firing rate

to the pre-fault level. This is the self-repairing process which

will be shown in the next section to maintain the functionality

of the network when the synapses are damaged or broken. The

results under various faulty conditions will also be provided

to demonstrate this capability.

E. Self-repairing SANN architecture

The proposed SANN follows the architecture of feed for-

ward neural networks. Fig. 4(a) is an example of the SANN ar-

chitecture which includes an input, a hidden, and an output lay-

ers. Note that we have now modelled the interaction between

the GABA neuron and the tripartite synapse as a Gaussian

function: hereafter referred to as “Gaussian” synapses. The

SANN uses multiple pathway connections, between neurons

in different layers, with different delays for each pre and post

neuron pairing, as shown by Fig. 4(b). Multiple pathways with

delays are required to facilitate spatial data for the formation

of a postsynaptic potential. Note that Fig. 4(a) is an example

TABLE II
BCM-STDP LEARNING RULE PARAMETERS

Parameters Parameter description Value

A Window height of LTP+LTD 1
A

−
Window height of LTD 0.5

a Constant 0.2
τ+ LTP plasticity window 40 ms
τ
−

LTD plasticity window 40 ms

with only one hidden layer, but the SANN could also include

multiple hidden layers.

In the proposed SANN information is passed from layer to

layer in a forward direction where the input sensor data is

encoded into spike trains (see later). Neurons in the middle

and output layers have an associated Gaussian passband,

implemented using (1) and (5), and therefore each neuron

exhibits a unique “receptive field”. For example, consider the

case for the SANN in Fig. 4(a) where there are n unique input

patterns. Each pattern is assigned to a single neuron in the

hidden layer and therefore this layer will contain n neurons

where each of these neurons has a receptive field associated

with one of the n input patterns. This association is achieved

using the centre frequency f = fs of the Gaussian function

whereby a different fs value is used for each Gaussian synapse

and this spread in fs will be sensitive to a unique input pattern:

because of this spread in fs each of hidden layer neurons will

be associated with one only possible input pattern. Hence in

Fig. 4(a) the three input spike patterns can be accommodated

with a corresponding mapping to the output layer neurons.

In real networks many processing neurons exist where

groups of these neurons will be sensitive to different input

patterns. Therefore, in these networks there is likely to exist

neuron grouping that is receptive to a particular pattern where

some will fire maximally to the pattern while others less so.

It may even be possible to tune a neuron receptive fields

as the shape of a receptive field is defined by the synaptic

inputs to that neuron. These local or lateral connections are

often inhibitory and by adjusting the associated weights it

is conceivable that part of the transmitted information could

be removed. However, this is beyond the scope of this paper

and because of the computational overhead we restricted the

number of hidden layer neurons by setting their receptive fields

to match known input patterns.

IV. SIMULATION RESULTS

The test bench setup is discussed followed by simulation

results which show the performance of the SANN in an

obstacle avoidance task. This task is employed as an example

to demonstrate how the SANN can self-adapt to different

fault conditions. The simulation results are provided from

software simulations of the biological SANNs. Then the hard-

ware acceleration is discussed in the final subsection which

demonstrates the possibility of deploying the SANN to real-

world robotic hardware platforms.

A. Example Application Setup

The obstacle avoidance data was collected using the Psi

swarm robot shown in Fig. 5 which was developed by the

York Robotics Laboratory, University of York, UK [37]. In

this task, four infrared sensors were used with one at the front,

one at each side (right and left) and one at the back where

each sensor provided the sensory input data for the SANN

controller, and the SANN output neurons gave the commands

to drive the motors. The Psi swarm robot was deployed and

the sensory data and corresponding controller decisions were

recorded to local memory on the robot, and then downloaded
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Fig. 4. An SANN example is shown by (a) where a pair of neurons is connected by “Gaussian” synapses, and (b) shows the multiple pathways of the synaptic
connections between the pre and postsynaptic neurons.

Fig. 5. The Psi swarm robot developed by York Robotics Laboratory,
University of York.

after the experiments. Moving forward is the default action

for the robot and it has the highest priority whereas moving

backward has the lowest priority. Thus the action priorities are

F > R > L > B, where F/R/L/B represent moving forward,

turning right, left and moving backward, respectively.

In this work sensors have a threshold level at which an

object is detected and for sensory levels above this threshold

the sensor value is mapped to a linear spike train frequency

of 35 Hz, otherwise the mapping is to a frequency of 25 Hz.

The output layer has four neurons corresponding to the four

possible actions that can be taken by the Psi swarm robot to

avoid obstacles. The target firing rates for the neurons in the

hidden and output layers were arbitrarily set to 25 Hz and

10 Hz, respectively. Each synaptic connection has multiple

pathways which are 8 and 16 for the connections in the

hidden and output layers, respectively. Each synaptic pathway

is delayed by 1 ms from the neighbouring pathway. Thus the

minimum delay of a pathway is zero and the maximum is 7

ms and 15 ms for hidden and output layers, respectively: these

delay times were arbitrarily chosen. The SANN architecture

is given by Fig. 6 and each sensory neuron in the hidden

layer generates an input spike train and in this simulation, the

maximum number of possible input spike train in a pattern is

15: no action is needed when all sensors are activated as the

Psi swarm robot is trapped.

B. No Fault Condition

Consider the scenario where there is an obstacle directly in

the front of the robot (denoted by pattern A in Fig. 6) which

would give rise to an input spike train of 35, 25, 25, and 25

Hz across all four sensory neurons. As this pattern matches

the spread in fs across synapses associated with neuron #9 in

the hidden layer then the plasticity window for these synapses

will open and learning will be initiated and continue until

neuron #9 reached a predefined firing frequency of 25 Hz.

Fig. 7(a) shows that this is indeed the case where its firing rate

increases gradually during the learning phase and eventually

at around 170 s the firing rate of neuron #9 reaches 25 Hz

and thereafter stabilises. The corresponding weights associated

with neuron #9 potentiated during this learning phase, as

shown in Fig. 7(b), and also stabilise at ∼170 s because at 25

Hz the plasticity window closes and learning ceases. Activity

at neuron #9 must be mapped to an action where the next

highest priority is turning right, and we associated this action

with neuron #2 in the output layer. Fig. 7(c) shows that the

neuron #2 begins firing at ∼150 s and this is because a period

of learning is required before the weights associated with

neuron #2 are potentiated to a level whereby the postsynaptic

potential is sufficient to cause firing of neuron #2: note that

STDP learning takes place for all synapses associated with

neuron #2 even for subthreshold postsynaptic potentials due

to Slow Inward Currents (SICs) as a result of Ca2+ activity

in the nearby astrocyte. The synaptic weights associated with

neuron #2 are shown in Fig. 7(d) and again it can be seen

that these weights are potentiated and stabilise after a period

of learning: as neuron #2 firing rate approaches the target

frequency of 10 Hz (Fig. 7(c)) the learning window closes and

finally the associated synaptic weights stabilize. Additional

results (not provided due to space) demonstrated that none of

the remaining output neurons were active for this input firing

pattern.

Fig. 7 shows the SANN learning process under the input

pattern A, i.e. an obstacle is directly in front of the robot.

When the input pattern changes to pattern B, obstacles are

placed at both the front and right side of the robot. This

pattern is uniquely associated, through the spread in the centre

frequencies of the Gaussian synapses, with neuron #13 in

the hidden layer and neuron #3 in the output layer. In the

same way as for pattern A, synapses associated with both

these neurons begin to potentiate until both neurons reach

their target frequency and a similar learning process takes

place for all other patterns. Therefore, after a period of

training across all possible input patterns, the SANN will have

implemented a mapping between input patterns generated by

the sensory neurons and the output neurons. For the purposes

of demonstrating the SANN under fault conditions we now
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Fig. 7. Firing rates and synaptic weights of the SANN. (a, b) are the firing
rate and synaptic weights of neuron #9 of the hidden layer while (c, d) are
the firing rate and synaptic weights of neuron #2 of the output layer.

fix all the weights across the SANN at their post trained

values and in the next section we present simulation results

that demonstrate how the SANN maintains this mapping under

fault conditions.

C. Fault Condition

Consider the case where pattern A is presented to the

SANN, and at t = 600 seconds, seven of the eight pathways

linking neuron #2 in the input layer with neuron #9 in the

hidden layer developed faults: in this work we implement a

fault on a pathway by permanently setting PR to zero. At the

same time eight of the sixteen pathways linking neuron #9

in the hidden layer with neuron #2 in the output layer also

developed faults. This reduces the activity at both neuron #9

in the hidden layer and neuron #2 in the output layer. Fig.

8(a) shows the firing rate of the neuron #9 of hidden layer

and it can be seen that this rate drops off to ∼20 Hz from

its target frequency of 25 Hz due to the introduction of the

above faults. This frequency difference causes the plasticity

window to reopen (modelled by (5)) and re-learning or repair

commences (modelled by (4)). Fig. 8(b) shows that during this

repair process the synaptic weights associated with neuron #9

potentiate over a “repair” period of 600 to ∼700 seconds and

thereafter remain stable as the firing rate of this neuron reaches

its target value of 25 Hz. The drop in the firing rate of neuron

#2 in the output layer (see Fig. 8(c)) is much more significant

as half of the associated synaptic pathways are broken and, in

addition, the output spike frequency of neuron #9 in the hidden

layer has reduced due to damage in the hidden layer. Fig. 8(c)

shows the recovery in the activity of neuron #2 to its pre-fault

level (10 Hz) and again this occurs due to re-training which

causes the remaining healthy (undamaged) synaptic pathways

to potentiate, as shown by Fig. 8(d).

Now consider the case where faults are scattered randomly

across the SANN with a fault density of 40%. The aim of this

simulation is to evaluate how well the SANN maintains input-

output mappings with a network-wide distribution of faults.

Four different input patterns were presented to the SANN

where each pattern activates a different output neuron. Fig.

9 shows the firing rates of all four output neurons where it

can be seen that after faults occur, the firing rate of all four

neurons drop significantly, but after a period of re-learning

or repair these neurons become active again and eventually

reach their target firing rate. Note that the recovery time of

each output neuron is different and this correlates with the

fault distribution: the causal effect of the drop in activity of

a hidden layer neuron will be different across all fours output

neurons. This results clearly demonstrate the ability of the



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X XXXX 8

500 600 700 800 900 1000 1100 1200
15

20

25

30

Time (s)

F
ir

in
g
 R

a
te

 (
H

z)

500 600 700 800 900 1000 1100 1200
800

1000

1200

1400

Time (s)

S
y
n

a
p

ti
c 

W
ei

g
h

ts

500 600 700 800 900 1000 1100 1200
0

5

10

15

Time (s)

F
ir

in
g
 R

a
te

 (
H

z)

500 600 700 800 900 1000 1100 1200
0

500

1000

1500

Time (s)

S
y
n

a
p

ti
c 

W
ei

g
h

ts

(a)

(b)

(c)

(d)

Fig. 8. Simulation results when faults occur. (a, b) are the firing rate and
synaptic weights of neuron #9 in the hidden layer while (c, d) are the firing
rate and synaptic weights of neuron #2 in the output layer.

SANN to recover from a scattering of faults.

D. Fault densities variations

The fault tolerance capability of the SANN was also evalu-

ated for different fault densities. The fault density is defined as

the percentage of the dysfunctional (faulty) synapses against

the total number of synapses. In this simulation, only pattern

A is used as the input and faults were localised to pathways

between the input sensory neuron #2 and neuron #9 in the

hidden layer. Faults were set to occur at 300 seconds and two

metrics were used to evaluate the self-repairing performance

of the SANN: the lowest firing rate (fL) of a neuron after

a fault occurs, which reflect the severity of the faults on

neuronal activity, and the fault recovery period (TR) which

reflects the recovery period or speed of recovery. The SANN

was evaluated under fault densities of 20%, 40% and 80%.

Fig. 10 shows the fault recover characteristics for neuron #9

in the hidden layer. It can be seen clearly from this plot both

the neuronal activity and the repair duration correlate with the

fault density.

Table III gives the fL and TR for neuron #9. As more synap-

tic connections become dysfunctional the longer the recovery

time, as expected. However, despite the correlation between

recovery time and faults density, the SANN does recover its

functionality even under a high-density fault condition.

E. Hardware acceleration of the SANN

Note that the recovery time of 20-65 seconds in Section

IV-D is in terms of biological time but it can be accelerated
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Fig. 9. Simulation results under 40% fault density across the network. (a)-(d)
show the firing rates of neuron #1-#4 of the output layer, respectively.

Fig. 10. Firing rate of the neuron #9 of hidden layer under various fault
densities.

with hardware implementations. Based on the authors’ previ-

ous works of [4], [24], the FPGA implementation of an SANN

can execute at clock speeds of 10-50 MHz, where one clock

period is matched to one millisecond of the biological time

step. Therefore, the recovery time of 65 seconds in biology

would only require 6.5 ms when implemented on FPGA

hardware, so this is within real-time constraints for many

visual processing applications. This achieves an acceleration

rate of 104 thus making this approach viable for real-time

implementations of fault tolerance hardware. This is one

direction of future work currently under investigation.

In summary, compared to conventional fault tolerance ap-

proaches, the proposed method has several advantages includ-

ing: a). A distributed fault-resilient mechanism. The proposed

SANN is a distributed neural network which does not require a
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TABLE III
THE fL AND TR OF THE NEURON #9 OF HIDDEN LAYER UNDER VARIOUS

FAULT DENSITIES

Fault density fL (unit: Hz) TR (unit: s)

20% 24.6 20
40% 20.5 35
80% 19.8 65

centre controlling unit and therefore the SANN demonstrates a

higher degree of fault tolerance; b). Fine-grained fault-tolerant

mechanism. The SANN supports repair at the level of synapses

which, when compared to other more conventional approaches,

is at a basic component or multi-transistor (logic gate) level.

We view this as fine grained when compared to, for example,

the approach in [38], where the entire column inside the

FPGA device is reconfigured during partial reconfiguration

(i.e. this is very much coarse-grain repair); and finally c).

Low cost/overhead where unlike the redundancy [13] (e.g.

triple modular redundancy), error detection/correction [7],

[11] methods etc., the SANN does not require additional

components to detect and repair faults. Therefore, the proposed

SANN architecture can provide a low cost, distributed, fine-

grained fault-tolerant route to autonomous hardware.

V. CONCLUSION

A distributed self-repairing spiking astrocyte neural network

with an information routing capability, underpinned by known

interaction between an inhibitory GABA interneuron coupled

with a tripartite synapse, has been presented in this paper.

To minimise the computational overhead this interaction was

realised in a Gaussian synaptic function which serves to

route spike trains of different frequencies to different parts

of the network. Furthermore, a biologically plausible link

between postsynaptic neuron frequency and the probability of

neurotransmitter release at synaptic sites was proposed and

captured in the BSTDP learning rule, which combines the

conventional STDP with the BCM rule. The paper has demon-

strated that the rule provides a novel self-repairing capability

which can not only establish an initial mapping between input

data patterns and desired output response but also maintains

this mapping in the presence of both localised or globally

distributed faults. The fault-tolerant capability of the SANN

was demonstrated in an obstacle avoidance task with results

demonstrating that pre-learned input/output mappings can be

maintained for fault densities up to 80% regardless of whether

the faults are localised or globally distributed. Future work

will apply the SANN to the domain of robotics for mission

critical tasks and swarm applications. In these applications the

robots’ functions can be compromised due to faults (such as

caused by radiations, component ageing etc.), therefore fault

tolerance is an extremely important capability in maintaining

the key functionality of robotic and other hardware systems.
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