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Plasticity of hippocampal memories in humans
Aidan J Horner1 and Christian F Doeller2,3

The human hippocampus is a brain region that supports

episodic and spatial memory. Recent experiments have drawn

on animal research and computational modelling to reveal how

the unique computations and representations of the

hippocampus support episodic and spatial memory. Invasive

electrophysiological recordings and non-invasive functional

brain imaging have provided evidence for the rapid formation of

hippocampal representations, as well as the ability of the

hippocampus to both pattern-separate and pattern-complete

input from the neocortex. Further, recent evidence has shown

that hippocampal representations are in constant flux,

undergoing a continual process of strengthening, weakening

and altering. This research offers a glimpse into the highly

plastic and flexible nature of the human hippocampal system in

relation to episodic memory.
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Introduction
Patients with lesions to the hippocampus have marked

deficits in episodic [1] and spatial [2] memory. In partic-

ular, selective hippocampal damage, without damage to

the surrounding medial temporal lobes (MTL), disrupts

performance in tasks that test memory for multimodal

associations [3,4] and relational representations [5,6].

Thus, the hippocampus is thought to support the

recollection [7] of episodic events by representing the

complex spatiotemporal patterns that uniquely define

typical real-world events.

More recently, focus has shifted from the representations

supported by the human hippocampus to the computa-

tions it performs. These were first postulated in the

seminal work of Marr [8�], and have been further devel-

oped in recent decades [9–11]. This computational

approach has been highly influential in the study of

the rodent hippocampus [12–14], however it is only

recently that it has informed research into the human

hippocampus. The principle tenets of this approach are

that the hippocampus is able to: (1) rapidly form associa-

tions between arbitrary stimuli—one-shot learning, (2) form

distinct representations despite similar input from the

neocortex—pattern separation, and (3) retrieve a complete

representation in the presence of an ambiguous or partial

input —pattern completion.

Despite the difficulties associated with studying learning-

related plasticity in the human hippocampus, direct,

invasive, electrophysiology as well as indirect, non-inva-

sive, functional brain imaging allows us to infer the

presence of these processes. Here we review recent

electrophysiology and brain imaging studies in humans

that reveal both the representational content and com-

putations performed by the hippocampus. We focus on

the three tenets of the computational model outlined

above. Further, we discuss recent research that extends

the role of the hippocampus, from encoding and

retrieving distinct episodic memories, to modifying and

integrating pre-existing memories into network-like

mnemonic structures. This new avenue of research has

highlighted the highly plastic and dynamic nature of the

hippocampus. Ultimately, it is this flexibility that ensures

our memories of the past are continually relevant to

decision-making processes in the present.

Rapid learning in the human hippocampus
No two real-world events are identical; each one is

uniquely defined by its complex spatiotemporal charac-

teristics. The individual elements of an event, such as the

location you are in or the person you are talking to, are

thought to be represented in distinct neocortical regions.

The hippocampus is thought to receive input from these

neocortical regions, acting as a convergence zone [15], rap-

idly binding together this multimodal information into a

coherent event engram (Figure 1a,b) [8�]—a population of

interconnected hippocampal neurons that represent

the constituent elements of a specific event. Combining

connectivity and pattern similarity measures of fMRI,

recent research suggests that the human hippocampus

represents associations between multimodal stimuli,

whilst simultaneously acting as a ‘hub’ within an extended

cortical network, during memory retrieval (Figure 1c)
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[16��], providing experimental evidence for Marr’s pro-

posal [8�].

What form do these hippocampal event engrams take and

how rapidly are they established? Invasive electrophysio-

logical recordings of single neurons in the human hippo-

campus of patients with epilepsy have demonstrated the

presence of cells that fire in response to unique environ-

mental features. In line with rodent research [17], single

neurons fire in relation to specific locations in virtual

reality (VR) environments [18]. The existence of place

cells and other spatially modulated neurons in the human

hippocampus [19,20], alongside fMRI studies of spatial/

scene processing [21,22�,23,24�,25], confirm the spatial
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Event engrams in the human hippocampus. (a) Schematic of computational model of episodic memory. Distinct neocortical representations for

event elements (e.g. locations and people) form links with individual neurons in the hippocampus (e.g. place and ‘concept’ cells). When

experienced together, hippocampal place cells (green) and concept cells (blue) can rapidly form direct associations, forming ‘event engrams’. At

retrieval, when the location is cued, the hippocampus receives a partial input. All associated elements are retrieved via the process of pattern

completion, supported by the recurrent connections of subfield CA3 (simplified wiring diagram of CA3 in zoomed in panel in bottom left) and

subsequently the retrieved elements are reinstated in the neocortex, allowing for the experience of ‘recollection’. (b) Simplified example of an

‘event engram’. Place cells (example shown from a rodent, showing firing in the top right corner of the environment, with permission from Ref.

[66]) and concept cells (e.g. a neuron that fires when presented with any image of Halle Berry) may act as the ‘building blocks’ of episodic

memory, the formation of an ‘event engram’ results from these cells forming direct associations when experienced together, such that the

associated concept cell will fire when the place cell fires (and vice versa). Note, event engrams are likely to be much more complex in nature than

simple pairwise associations, and may include multiple (i.e. >2) elements, with direct connections between the neurons coding for each

constituent element. (c) Evidence for the ‘convergence zone’ hypothesis—multivariate and graph-theoretic network analyses suggest the

hippocampus represents multimodal pairwise associations (left) and demonstrates ‘hub-like’ properties (middle) during episodic retrieval

(conjunction shown on right; with permission from Ref. [16��]).
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nature of representations in the hippocampus and

surrounding MTL.

Neurons with non-spatial firing patterns have also been

shown, specifically in relation to well-known celebrities,

famous buildings, and animals [26�,27]. These so-called

concept cells can respond to the identity of a person in a

stimulus-invariant manner. For example, one neuron was

shown to respond to both the written name, and a photo

of, Halle Berry [26�]. Despite ongoing debate concerning

how such neurons are best conceptualised [28–30], recent

evidence suggests they could potentially represent long-

term real world (perhaps not task-specific) associations

[31]. As such, they may represent non-spatial environ-

mental features in an analogous manner to spatially

modulated place cells—that is, in a stimulus-invariant

manner over relatively long times-scales. The presence of

both spatial and non-spatial cells that code for specific

elements (e.g. locations and people) in the real world

appears to provide the ideal ‘building blocks’ [32] for

event engrams (Figure 1b). In short, event engrams can

be rapidly formed via direct associations between hippo-

campal neurons coding for the individual elements of any

specific event.

Importantly, these neurons appear to tune their respective

firing fields relatively quickly. Concept cells can respond

to individual researchers that the patient only met on the

day of testing [33], and recent rodent research has shown

that place cell firing fields become tuned after only a single

visit to that specific location [34��]. Thus, at the level of

individual neurons, the hippocampus represents any pos-

sibly behaviourally relevant element in the environment,

and these representations can be formed rapidly.

Events are more complex than single locations or indi-

viduals though. The hippocampus therefore needs to

rapidly form direct associations between these neurons.

For example, if you met Halle Berry at the Eiffel Tower,

the hippocampus needs to form an association between

the neurons coding for both of these elements from that

single encounter. Recent electrophysiology has shown

that individual neurons, which initially fire selectively

to a famous person and landmark, change their firing

properties after exposure to a composite image (i.e. an

image of both the person and landmark) such that they

subsequently fire to either image in isolation [35��].

Further, following an object-location encoding task in a

VR environment, place cells associated with the location

of a specific object were shown to fire during a free recall

task when participants recalled that specific object [36].

These studies suggest the rapid formation of direct asso-

ciations between neurons in the hippocampus, supporting

the subsequent retrieval of an episodic-like memory.

Real word events are more complex in nature than

the simple pairwise associations tested in the studies

presented above, involving multiple elements that form

complex configural representations. Nonetheless, the

studies support the concept that the hippocampus acts

as a convergence zone, rapidly forming associations

between stimuli represented in distinct neocortical

regions. However, one critical outstanding question is

how such hippocampal neurons continue to differentiate

between specific elements in the environment—once

Halle Berry has been seen at the Eiffel Tower, how

is the hippocampus able to independently represent

Halle Berry and the Eiffel Tower (allowing them to be

separately incorporated into future events), whilst simul-

taneously maintaining a configural representation of the

two elements?

Pattern separation and pattern completion in
the human hippocampus
Pattern separation refers to the production of distinct

(orthogonal) non-overlapping representations from

similar overlapping input. It decreases interference at

retrieval by minimising the representational overlap

between two similar events at encoding. The dentate

gyrus (DG), with its large number of neurons (relative to

its principal input, the entorhinal cortex) and sparse

coding, is thought to primarily support pattern separation

in the hippocampus.

fMRI has been used to provide evidence for pattern

separation in the human hippocampus [37�]. The pres-

ence of pattern separation should mean that similar

stimuli, for example two different images of an apple,

are encoded as distinct representations. The authors used

the well-known effect of adaptation, where repetition of

the same stimulus results in reduced BOLD responses, to

infer the presence of pattern separation. They took a

release from adaptation when presented with a similar,

but not identical, stimulus as a marker for pattern separa-

tion (Figure 2a). They saw this effect in a combined DG/

CA3 region, but not in CA1 or surrounding MTL regions.

Further studies have parametrically manipulated the

similarity of repeated stimuli to show a non-linear map-

ping between the input and output of the hippocampus

[38,39], consistent with a pattern separation process.

However, the studies presented pictures of objects rather

than more complex events known to be supported by the

hippocampus. Further, the results may be explicable in

terms of a ‘match-mismatch’ signal unrelated to pattern

separation [40].

More recently, videos of events with overlapping content

have been combined with multivariate analyses of fMRI

to provide further evidence of pattern separation [41].

By orthogonally combining two background contexts

(scenes) with two foreground ‘events’ (people with

objects), creating four related videos, the authors showed

that representations in the hippocampus successfully dis-

tinguished each individual video. Further, multivariate

104 Neurobiology of learning and plasticity
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analyses of high-resolution fMRI were used to successfully

classify similar indoor scenes in DG (but not entorhinal

cortex) [42]. Thus, despite the highly overlapping input,

the hippocampus produced stable differentiated (i.e. pat-

tern-separated) representations. Potential evidence has

also been provided for a lack of pattern separation for

similar VR environments (similar shops in different loca-

tions; however the effects may also reflect inappropriate

pattern completion) [43]. Finally, recent research has

shown the extent of pattern separation for related events

(scene-face pairs) predicts subsequent memory interfer-

ence [44], linking pattern separation at encoding with

reduced interference at retrieval. The studies provide

critical evidence for pattern separation, for simple objects

and more complex episodic events and spatial environ-

ments, in the human hippocampus.

Pattern completion refers to the retrieval of a complete

distinct representation (or ‘pattern’) given a partial or

ambiguous input. It is thought to underlie our ability

to recollect prior events from minimal cues. For example,

we might see a picture of a friend and recollect all the

details of a social occasion with them from the previous

week. Hippocampal subregion CA3, with its dense recur-

rent connections, is thought to act as an attractor network

[45,46], underpinning pattern completion.

One way to assess pattern completion is to present

participants with a single cue related to a complex event

and assess whether all details of that event are subse-

quently retrieved. The presence of pattern completion

predicts memory retrieval to be all-or-none, consistent

with the ‘recollection’ component in dual process models

of recognition memory [47]. Recent behavioural and

fMRI evidence has been shown for this prediction. First,

when complex events are learnt, for example location-

person-object triplets, the retrieval success of elements

within an event are related—if you retrieve one element

correctly you are more likely to retrieve the other ele-

ments of the event successfully [48,49�]. Using fMRI, it

was shown that retrieval of these complex events was

associated with a ‘reinstatement’ effect for all event

elements in the neocortex, and that this reinstatement

effect correlated with the hippocampal BOLD response

[50��] (Figure 2b). Cuing with the location leads to

reinstatement of the person and object, and this reinstate-

ment correlates with hippocampal activity. This is con-

sistent with a pattern completion process in the hippo-

campus driving reinstatement of the complete event.

However, the reinstatement effect was specific to the

category (e.g. people vs. locations), but not the element of

the event (e.g. Barack Obama vs. Hilary Clinton), and

therefore could not distinguish between reinstatement of

the correct vs. incorrect within-category element. Fur-

ther, the authors were unable to distinguish between

different hippocampal subfields, so were not able to

conclude the hippocampal signal originated specifically

from CA3.
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Pattern separation and pattern completion. (a) Evidence for pattern separation in the human hippocampus was first shown by Bakker et al. The

repetition of a stimulus leads to the well-known phenomenon of adaptation, or repetition suppression. However, when a similar looking ‘lure’

image is shown, DG showed a BOLD response similar to the first presentation of the image (see Ref. [37�] for details). This suggests that DG is

pattern separating the ‘lure’ image—encoding it as a separate representation despite the similar perceptual input. Example shown is illustrative,

and does not present actual stimuli used or data presented. (b) Evidence for pattern completion in the human hippocampus has recently been

shown by Horner et al. After learning location-object-person events (across three separate encoding trials, see Ref. [50��] for details), participants

were tested on specific pairwise associations (e.g. cue location, retrieve object). Neocortical reinstatement was critically shown for the ‘non-target’

elements (e.g. person), suggesting all elements were retrieved and reinstated in the neocortex. Critically, the amount of reinstatement for ‘non-

target’ event elements correlated with hippocampal BOLD response at retrieval, consistent with the proposal that the hippocampus retrieves all

event elements via pattern completion, leading to their reinstatement in the neocortex (hippocampal image and % signal change graph with

permission from Ref. [50��]).

www.sciencedirect.com Current Opinion in Neurobiology 2017, 43:102–109



More recently, evidence for attractor dynamics in relation

to spatial environments has been provided [51�]. Here,

two distinct VR environments were learnt, and in a

subsequent fMRI scanning phase, participants were

placed in environments that morphed the surrounding

landscape between the two learnt ‘endpoint’ environ-

ments. Consistent with rodent research [12], hippocampal

representations for morphed environments showed a

non-linear response where they became more similar to

one of the endpoint representations across the trial, and

this response predicted trial-by-trial mnemonic decision

making. Thus, in the presence of an ambiguous cue, the

hippocampus pattern completes to one of the learnt

environmental representations.

In sum, fMRI has shown the presence of both pattern

separation and pattern completion in the human hippo-

campus. What is unclear is the relationship between

these two computations. Typically, pattern separation

is thought to occur at encoding and pattern completion

at retrieval, however the distinction between encoding

and retrieval is not clear in the real world. How do these

two processes, and the two hippocampal subfields (DG

and CA3), interact to maximise our ability to not just
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Suppression, generalization and integration of pre-existing memories. (a) Evidence for suppression of associated material in the neocortex during

selective retrieval was first provided by Wimber et al. Participants learn A-B, then A-C pairs. They are then cued with A and asked to selectively

retrieve B (not C). During selective retrieval, neocortical patterns associated with B increased, while those associated with C decreased,

suggesting the suppression of the competing associated item. Critically, the extent of neocortical suppression predicted later forgetting,

suggesting that retrieval can adaptively shape our episodic memories of the past. (b) Evidence for integration following reactivation was first

provided by Zeithamova et al. Participants first learnt A-B pairwise associations, followed by A-C pairs. Memory for A-B and A-C pairs was tested,

as well as ‘memory’ for the non-encoded pairs (B-C). The extent of reactivation (measured by pattern classification of fMRI data) of item B when

learning the A-C pairs correlated with performance for the non-encoded pairs. This suggests reactivation at encoding can result in the formation of

novel associations between items never seen together (the B-C pairs). Examples shown in (a) and (b) are illustrative, and do not present actual stimuli

used or data presented (see Refs. [57,56��] for details). (c) Evidence that insight triggers the integration of separately learnt narrative structures in the

hippocampus (and mPFC) was first shown by Milivojevic et al. Neural similarity (as measured with representational similarity analyses – RSA – of

fMRI) between two separately learnt narratives (videos) increases after showing a ‘linking’ narrative (Section C with permission from Ref. [59�]).

Current Opinion in Neurobiology 2017, 43:102–109 www.sciencedirect.com



recall a previous event accurately, but also to apply our

memories of the past to guide future behaviour? One

possibility is that the hippocampus temporally segregates,

but rapidly alternates between, pattern separation and

completion, consistent with models proposing the segre-

gation of encoding and retrieval within separate phases of

the hippocampal theta rhythm [52�].

This temporal segregation may also provide an answer to

how a ‘Halle Berry’ and ‘Eiffel Tower’ neuron could

maintain independent representations, whilst simulta-

neously maintaining a configural representation of the

two elements. During specific phases of the theta rhythm,

firing of hippocampal neurons will be primarily driven by

neocortical input, and as such individual neurons will fire

in relation to specific elements (e.g. Halle Berry). In other

phases, firing will be driven by intra-hippocampal con-

nections (e.g. recurrent connections in CA3), such that the

‘Halle Berry’ neuron will fire when presented with either

Halle Berry or the Eiffel Tower.

Post-encoding learning and plasticity
Our memories are as much about the future as the past.

Ultimately, they must be behaviourally relevant to support

decision-making processes. A new line of fMRI research

has underlined how hippocampal representations are not

static, but are malleable in nature—constantly being

strengthened, weakened and altered in the presence of

new information to ensure their continued behavioural

relevance. The studies draw attention to the highly dyna-

mic, plastic nature of representations in the hippocampus.

First, in an awake delay period between learning and test,

endogenous reactivation of specific event memories was

seen in entorhinal and retrosplenial cortex [53�]. Impor-

tantly, the extent of reactivation correlated with subse-

quent memory performance. Thus, following initial

encoding, memories are strengthened (or maintained)

by a process of continuous reactivation in the MTL

and neocortex. Interestingly, this endogenous reactiva-

tion also appears to facilitate learning of new overlapping

material [54]. Memories can also be disrupted after

encoding. When participants learn overlapping A-B and

then A-C pairwise associations, the repeated retrieval of

one pair (e.g. A-B) can result in poorer memory perfor-

mance for the overlapping pair (e.g. A-C) [55]. Recent fMRI

evidence shows that during retrieval of the A-B pair, the

overlapping pair (A-C) is inhibited and the underlying

representation is disrupted [56��] (Figure 3a). Thus, mem-

ories can be strengthened or weakened after initial encod-

ing dependent on the extent of post-encoding reactivation

or suppression.

Event memories can also be altered and integrated with

existing memories in order to generalise to novel situa-

tions. After learning an A-B pairwise association, the

reactivation of element B (measured with fMRI) when

learning an overlapping A-C association correlates with

participants’ subsequent performance on the non-

encoded B-C pair [57] (Figure 3b). Further, the anterior

hippocampus (and medial prefrontal cortex) appear to

play a role in integrating representations for overlapping

information [58�]. Thus, reactivation of previously learnt

information can lead to generalisation between previously

unseen elements. The hippocampus also appears to play a

crucial role in the integration of separately learnt narrative

structures when participants become aware that they

relate to a larger coherent narrative, resulting in an

insight-triggered reconfiguration of memory space [59�]

(Figure 3c). Interestingly, these reconfigured narratives

might be represented in a hierarchical manner along the

long-axis of the hippocampus [60]. Related to this, the

hippocampus also appears to represent the community

structure of temporally related stimuli [61]. In sum, the

representational space in the human hippocampus can be

complex, structured and hierarchical, and most impor-

tantly, it is highly dynamic, constantly strengthening,

weakening and altering existing representations to appro-

priately guide decision-making processes [62,63��].

Conclusion
Recent electrophysiology and functional brain imaging

research has focused on the computations performed by

the human hippocampus. In line with computational

models, the human hippocampus appears to rapidly learn

arbitrary associations between event elements, pattern

separate overlapping neocortical input at encoding, and

pattern complete partial neocortical input at retrieval.

Thus, it is only recently that the mechanistic underpin-

nings of episodic and spatial memory in humans have been

revealed. Further, research has suggested the hippocampus

is involved in more than simply ‘remembering’. Rather, it

supports a dynamic, plastic, flexible representational space

that is continually altering and integrating memories of the

past in order to guide decisions in the present [64,65].
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