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CO2 emission from passenger travel in Guangzhou, China: A small area 

simulation

Abstract:  passenger travel is a major source of greenhouse gas emission. For 

China, understanding how passenger transport CO2 emission varies within cities is 

constrained by data availability, which limits development of mitigation policies and 

interventions targeted at specific areas or populations. We address this problem by 

applying an improved bottom-up methodology to provide temporal and spatially 

resolved estimates of daily passenger transport CO2 emission for urban Guangzhou. 

Drawing on sample census data we develop a spatial microsimulation of the population, 

which applied with an activity diary survey allows spatial simulation of the synthetic 

population’s daily travel and transport CO2 emission at the sub-district scale for 

workday and weekend, respectively. Point-of-interest (POI) data is used to quantify the 

connection between urban form, passenger travel and transport CO2 emission. Results 

show that people residing in the compact city centre make shorter trips, have more non-

motorised travel and emit less CO2 on both workday and weekend. In contrast, residents 

of newly developed urban areas and remote districts, characterised by low population 

and employment density, and poor accessibility to facilities and services, travel further 

generating more CO2 emission on a typical workday, but exhibit significant variation 

between workday and weekend. The microsimulation approach presents greater insight 

into the micro-scale spatio-temporal variability of passenger transport CO2 emission in 

a Chinese mega-city than has previously been possible. 

Keywords: Spatial microsimulation, urban passenger travel, transport CO2 emission, 

small area simulation, urban form, Guangzhou
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CO2 emission from passenger travel in Guangzhou, China: A small area 

simulation

Introduction

rapid urbanisation and motorisation to serious ms the 

inc dramatic in consumpti � emissi  and air 

ion (e.g. persistent smog) and its associated h impacts. road transport 

sector represents the ing source greenhouse gases in 

due to a rapid tra demand and i

combustion et 2007). Zheng et al. (2015) estimated that China’s road 

transport CO2 emissions increased more than seven-fold from 1990 to 2013, compared 

to an average five-fold increase for other economic sectors. Zhang and Nian (2013) 

forecast a 43% increase in global transport energy to 3260 million tonnes of oil 

equivalents (Mtoe) in 2035, of which China will account for more than 30%. Urban 

passenger travel is the main source of the transport-related CO2 emissions. Hao et al. 

(2014) estimated that in 2010 China’s urban passenger transport accounted for 2815 

billion passenger kilometres of motorised travel, 77 Mtoe fuel use, and 335 Mt CO2 

equivalent lifecycle GHG emission. Moreover, as China expects continuous 

urbanisation and increase in car use over the next few decades, passenger travel will 

grow rapidly with effects on energy consumption and CO2 emission, and the road 

transport sector will in future dominate China’s emission inventory (Wang et al., 2007). 

Reducing transport CO2 emission is thus a major challenge for China, one that can 

be more easily tackled with a better understanding of the spatial distribution of carbon 

emission and the travel behaviour that shapes it (Ma et al., 2015). However, as China 

has no national travel survey, and energy data are published at a relatively coarse 

geography, prior studies have resorted to aggregate data, such as total energy use or 

registered vehicle population reported in the Chinese Statistical Yearbook, to estimate 

transport CO2 emission, at national and regional level (e.g. Dhakal, 2009; Hao et al., 

2014). Little research has used disaggregate travel attribute data to estimate transport 



3

� emission r geogra such are 

important in supporting targe ntions to reduce emissions.

 ation creates c c ons that rea

match attribute ations at ous ge and thus 

represents a tec to rcome mitations imposed a oded 

micro datasets (e.g. et 2012; Hermes & Poulsen, 2012). It offers great 

potential for transport planners and policy makers who lack access to travel survey data, 

or individual-level data at fine geographic resolution (Lovelace et al., 2014). Using 

individuals or households as the basic analytical unit, a spatial microsimulation model 

can generate disaggregate estimates or forecasts at a micro scale, and can also perform 

‘what-if’ simulations to assess the impacts of policy or planning interventions in 

specific areas or on targeted populations (Ballas & Clarke, 2001). Spatial 

microsimulation has been applied in geography and social sciences in developed 

countries, but has been little used to simulate urban passenger travel and its emissions, 

or to explore geographic variation and evaluate transport policies (Lovelace & Philips, 

2014; Ma et al., 2015). Partly due to a lack of supporting data, microsimulation studies 

are rare in developing countries, including China, where travel patterns are often highly 

complex and where problems of traffic congestion, carbon emission and air pollution 

are particularly serious (Ma et al., 2014).   

To address this challenge, this paper shows how microsimulation can be applied to 

provide improved spatially resolved estimates of urban passenger transport CO2 

emission. Drawing on sample census data we develop a spatial microsimulation of the 

population, which applied with an individual-level activity diary survey allows the 

spatial simulation of the synthetic population’s daily travel and CO2 emission at the 

sub-district scale, for both workday and weekend. Data limitations have meant prior 

studies have relied on a ‘top-down’ approach to estimate national and regional scale 

transport emissions. In contrast, the microsimulation based ‘bottom-up’ approach 

enables greater insight into the micro-scale spatio-temporal variability of transport CO2 

emission for a Chinese mega-city than has previously been possible. It also provides a 

basis from which to improve understanding of the relationship between transport CO2 
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emission and urban characteristics that can better anning Chinese 

cities.   

Background

Travel behaviour and GHG emission

People’s travel behaviour, including mode choice and distance travelled, is an 

important influence on passenger transport CO2 emission. There is growing emphasis 

on the connections between individual’s daily travel behaviour, GHG emission and 

global climate change (Barr & Prillwitz, 2012), with some research analysing variation 

of individual daily travel behaviour and associated carbon emission at the disaggregate 

level. For instance, using a travel survey with a sample of 456 individuals in 

Oxfordshire, UK, Brand and Boardman (2008) proposed a method to profile annual 

GHG emission from personal daily travel across various transport modes. Results 

showed that air and car travel dominated GHG emissions, and that emissions from the 

population were unequally distributed, with the top 10% of emitters responsible for 43% 

of emissions and the bottom 10% for only 1%. Brand and Preston (2010) further 

profiled UK GHG emissions for non-business-related passenger travel across multiple 

modes, and found a “60-20 emission” rule operated, stable across several scales, with 

the top 20% of emitters producing 61% of emissions. 

Studies investigating the impact of urban form on travel behaviour and carbon 

emission are widespread (Anderson et al., 1996; Ewing & Cervero, 2010). For example, 

using a 1998 Dutch housing survey, Grazi et al. (2008) examined the impact of urban 

density on commuting behaviour and CO2 emission, and found that higher density areas 

had lower car based carbon emissions. Lee and Lee (2014) investigated the relationship 

between urban form and household carbon emission in the 125 largest urbanised areas 

of the U.S., and found that doubling population-weighted density reduced CO2 emission 

from household travel by 48%, while doubling per capita transit subsidy could reduce 

vehicle miles travelled (VMT) by 46% and transport carbon emission by 18%. Such 

studies are illustrative of prolonged efforts to understand the role of urban form in urban 

travel and emissions, and in particular to demonstrate the advantages of the compact 
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urban form, yet the effect of form remains contested. For example, based on the 2001 

National Household Travel Survey data in the U.S., Brownstone and Golob (2009) 

explored the impact of residential density on vehicle use and energy consumption in 

California, and reported significant correlations between density, travel and energy use, 

yet using the same data, Liu and Shen (2011) found urban form did not significantly 

affect VMT or energy use. Debate over the relationship between urban form and travel 

remains vigorous and contested (see e.g. Ewing & Cervero, 2017; Stevens, 2017).

In addition to daily travel behaviour, studies also analyse how leisure and holiday 

travel affects transport carbon emission. Drawing on the German national transport 

survey, Reichert et al. (2016) examined the variation in GHG emissions from daily and 

long-distance travel. Results showed that residents in rural and suburban areas had 

higher GHG emissions from daily travel, but lower for long-distance travel than urban 

residents; however, people living in densely populated cities cumulatively emitted less 

CO2 from all trips than their counterparts. Using focus groups and a survey of 1500 

residents in Southwest England, Barr and Prillwitz (2012) explored attitudes and 

decisions explaining daily, leisure and holiday travel. Different lifestyle groups had 

very different travel behaviour, particularly with respect to holiday travel, hence they 

concluded that measures intended to reduce travel carbon must be adapted to fit lifestyle 

groups. 

Much passenger travel carbon research adopts a ‘bottom-up’ approach in which 

emissions are estimated from disaggregated attributes, such as trip frequency, travel 

distance, mode choice and mode specific emission factor (Liu et al., 2017). Studies 

mainly investigate the relationships between travel behaviour and GHG emission at the 

individual level, and thus can differentiate emissions by mode and social group. 

However, sample sizes in these studies are relatively small, hence unsuited to 

estimation of spatial variation in passenger transport CO2 emission within cities. 

Detailed travel information for larger populations is often unavailable in many countries, 

particularly in developing economies such as China. 
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Spatial analysis of GHG emission

to data ations at a micro studies ten adopt a ‘top-down’ approach 

to estimate total energy consumption and GHG emission at the national scale, or to 

examine the spatial and temporal distribution of GHG emission by region or 

metropolitan area. Typically, aggregate VMT statistics, fuel consumption and total 

population at broad (national or regional) scales are used to produce generalised 

emission estimates (Hillmer-Pegrama et al., 2012). For instance, based on national 

statistics for the vehicle fleet, VMT and fuel economy, He et al (2005) explored the 

current and future energy consumption and GHG emission from road transport at the 

national scale for China. For the provincial scale, Huang and Meng (2013) estimated 

total energy use and carbon emission using National Bureau of Statistics of China 

national and provincial energy data. They then downscaled these emission estimates to 

distribute them to urban areas, using regression models. However, results are tentative 

due to uncertainty in the statistical yearbooks’ data and for the assumption of a linear 

relationship between GDP and GHG emission used for each province (Huang & Meng, 

2013). 

Loo and Li (2012) found that the spatio-temporal distribution of road transport CO2 

emission in China had become more uneven from 1988 to 2008, with most emission 

concentrated in the more developed provinces (e.g. Beijing and Guangdong), with 

much lower emission growth in the less developed western regions (e.g. Qinghai and 

Ningxia). Clarke-Sather et al (2011) supported this conclusion of geographical disparity 

across China, finding that GHG emissions from the eastern regions are much higher 

than from westerns regions and inequality in per capita CO2 emission reflects the 

inequality in per capita GDP at the interprovincial scale. 

Some studies have applied remote sensing to investigate the spatio-temporal 

evolution of carbon emission fluxes induced by land use and land cover change 

(Evrendilek et al., 2011; Sohl et al., 2012). However, as spatially resolved travel data 

for large populations is generally unavailable in many developing countries, including 

China, these, like other ‘top-down’ analyses continue to focus on the spatial distribution 

of GHG emission at aggregate national or regional scales, and so are unable to provide 
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a more  is at geographic res ution needed to urban anning 

s (Güneralp & Seto, 2012). 

Spatial simulation at a micro level

Developing a more fine-grained understanding of the spatial distribution of 

individual travel and carbon emission and the spatial effects of interventions is 

important for research and policy. However, due to confidentiality issues, spatially 

resolved microdata sets with a wide range of individual characteristics are rarely 

publicly accessible in many countries (Ballas & Clarke, 2001). Mining of ‘Big Data’ 

offers promise in terms of a more disaggregate analysis of travel behaviour (Cai & Xu, 

2013; Cai et al., 2014), yet issues of partial, incomplete and inconsistent data, data 

standards and integration, and privacy continue to pose challenges. There remains a 

strong demand for the development of small area estimates of individual behaviour and 

the potential effects of urban planning and transport policies, which could guide 

government acquisition of detailed information at fine geographic scale, better allocate 

limited resources to specific places, and evaluate the impacts of policy decisions 

(Harland et al., 2012).

Spatial microsimulation, aimed at generating large-scale microdata sets on 

individual or household attributes at fine geographic scale, allows the investigation of 

spatial heterogeneity of the distribution of individual-level populations and of potential 

policy impacts (Ballas & Clarke, 2001). It has been used to generate small-area income 

distributions (e.g. Birkin & Clarke, 1989; Tanton, 2011), forecast activity-travel 

demand (e.g. Veldhuisen et al., 2000; Miller et al., 2004), and simulate small area 

health-related behaviour or outcomes, such as smoking or obesity respectively (e.g. 

Tomintz et al., 2008; Koh et al., 2015). Using the person or household as the basic 

analytical unit, microsimulation represents an effective method for explicitly 

replicating disaggregated travel behaviour for travel demand forecasting and transport 

policy analysis, with various models developed since the 1990s simulating the temporal, 

spatial and modal decisions of individual-level populations (Kitamura et al., 2000).
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the combined ts and use and transport on use and 

GHG emission is of particular interest in urban planning and policy development. For 

two decades, there has been growing attention on the use of microsimulation in this 

area, including the models UrbanSim in the U.S. (Waddell, 2002) and ILUTE 

(integrated land use, transportation, environment) in Canada (Miller et al., 2004). 

ILUTE has been developed to simulate regional energy use and carbon emission from 

the transport sector through integration with TASHA (Travel/Activity Scheduler for 

Household Agents) (Hao et al., 2010), and illustrates how microsimulation of urban 

individual and household agents offers a means of predicting energy use and carbon 

emission. Recent spatial microsimulation models estimate energy use and emission at 

finer geographic resolution. For instance, Lovelace and Philips (2014) simulated the 

geographic and social distribution of the threats posed by peak oil on commuters in 

Yorkshire, UK, and found that rural areas had the highest vulnerability to oil scarcity. 

To conclude, due to data limitations, many studies adopt a ‘top-down’ approach to 

GHG emissions estimation at the aggregate national or regional scale. Research using 

a ‘bottom-up’ approach to estimate passenger transport CO2 emission from a large 

population’s daily travel behaviour at a micro scale has been scarce to date, particularly 

for developing countries, where transport and environmental issues are serious. Ma et 

al. (2014) developed the first spatial microsimulation model of passenger travel 

emission for a Chinese mega-city. Using a 2007 activity diary survey and 2000 

population census data, a spatial microsimulation model was used to estimate a realistic 

synthetic population’s daily travel behaviour and transport CO2 emission at the sub-

district scale in 2000 for urban Beijing. However, the study has some limitations in that 

only workday travel was simulated (thus neglecting important weekend leisure and 

other trips), hence the temporal variation of passenger travel emission could not be 

investigated, as residents differ in their activities and travel patterns between workday 

and weekend. Moreover, variables on spatial location that can be expected to 

significantly influence urban passenger travel were not considered, which might lead 

to biased estimation of transport CO2 emission at the disaggregate level.
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this st  s on and 

 the mi on ra into account housing 

es (e.g. age as a  ion) as the constraints in the 

microsim as housing  and age are  in 

 areas in Chinese ities ( iu et 2017). Controlling for these variables 

should generate a more accurate simulation of urban passenger travel and an improved 

estimation of transport CO2 emission at the disaggregate level. Moreover, in 

recognising differences between workday and weekend travel patterns, we simulate a 

large synthetic population’s daily travel behaviour and passenger transport CO2 

emission at the urban sub-district level at finer geographic and temporal scale than has 

previously been possible. This provides a more incisive analysis of the integration of 

urban form, transport and emission at a micro scale to inform low carbon city planning 

and transport policies in Chinese mega-cities. 

Methodology

Study area

We develop our spatial microsimulation model for Guangzhou the capital of 

Guangdong province, and China’s third largest city. Its proximity to Hong Kong, 

Shenzhen, and access to international markets via the Pearl River meant that 

Guangzhou was able to quickly benefit from Deng’s Economic reforms and openness 

policy initiated in the 1970s. Guangzhou has undergone land and housing marketisation, 

and rapid urbanisation with increasing travel and emissions, yet lacks publicly available 

spatially resolved data from which to estimate transport emission at intra-urban scale. 

We focus on urban Guangzhou (Fig.1) which comprises historical and urbanised 

districts including Liwan and Yuexiu within the inner ring road, new urban districts of 

Tianhe and Haizhu where industrial enterprises, foreign investment, hi-tech firms and 

housing development have mainly located since 2000, and the inner suburban and 

remote urban districts including Baiyun, Huadu, Panyu, and Huangpu1 (Xie & Ning, 

1 In 2014, Luogang and Huangpu districts were merged into new Huangpu district by the Guangzhou government.
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2004). These areas accounted for 80% of all registered households in 2010 (Guangzhou 

Statistical Yearbook, 2011), and include the neighbourhoods where activity travel 

survey participants were mainly drawn from (Fig.1). 

[Insert Figure 1 about here]

Data 

To overcome the lack of national travel data we draw on a 2013 travel diary survey. 

Eighteen neighbourhoods were surveyed (Fig.1) providing a representative sample 

based on location characteristics, household and individual level socio-demographic 

attributes, and a wide range of historical, institutional and spatial features of 

Guangzhou’s urban districts. This includes all the housing types in the city, comprising 

self-built housing, danwei compounds, commodity housing, affordable housing, and 

mixed residential areas. Continuous activity-travel records were collected for a Monday 

(representing a workday) and a Sunday (representing the weekend), measured by a set 

of questions on travel behaviour characteristics, such as “how many trips did you make 

last Monday or Sunday?”, “what was the start and end time for each of your trips?”, 

“which transportation mode (e.g. walking, bus, subway, private car) did you use for 

each trip?” and “what is the address of each trip destination or activity location?”. Our 

analysis addresses 1605 randomly selected individuals who returned a valid self-

administered questionnaire, which contains information on housing, household and 

individual socio-demographics, and complete activity-travel records, including activity 

type, trip frequency, mode choice, and travel distance calculated by the Euclidean 

distance between two consecutive activity locations.

A second major data set used is the 2010 sixth population census of Guangzhou, 

which comprises the short form census all people must complete, addressing household 

and individual socio-demographics, and the long form census that is a 10% stratified 

sample (comprising 927,855 residents aged >15 in the urban districts), randomly 

selected in each area, that adds data on economic attributes, housing characteristics, 

employment, occupation, housing area and tenure. We use the 10% sample, which has 
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richer demographic data as our target ation in the spat microsi m

 1 summarises data or the key socio-demographic and housing variables common 

to the travel survey and population census. These variables have previously proved to 

be important predictors of daily travel behaviour and transport emission (e.g. Ma et al., 

2014). 

[Insert Table 1 about here]

Finally, fine-grained point-of-interest (POI) data on diversified urban form 

characteristics are also employed to quantify connections between spatial location, 

urban passenger travel and transport CO2 emission. The POI data for Guangzhou in 

2014 was purchased (from Daodaotong who provide map data for Baidu, China’s most 

used search engine) and geocoded, which details the location and attributes of 15 major 

economic activities and 65 sub-categories, including factories, offices, restaurants, 

shops, hospitals, health care centres, research institutions and so on. These data were 

used to derive multi-dimensional measures, including population and employment 

densities, road density, and land use mix, to represent the diversified urban form 

features at fine (sub-district) scale (Fig.2). They enable the association of built 

environment characteristics and travel behaviour and transport emission to be explored 

(see below). 

[Insert Figure 2 about here]

CO2 emission calculation and comparison

Drawing on the travel diary data, we employ a bottom-up approach to estimate 

transport CO2 emission for each of the 1605 individuals for both workday and weekend. 

An individual’s travel CO2 emission is a function of travel distance by travel mode and 

a mode specific CO2 emission factor:

Carbonw = ∑m
i=1 Distanceiw × Factori                               (1)      



��

                                                           

Carbonw represents � emission on a t (w 

to or e Distanceiw is the distance tra in trip i during the 

or m the number and Factori the emission ctor the 

 mode in trip i (g � per person per Grazi et al (2008)). China 

has not officially published vehicle CO2 emission factors hence we acknowledge the 

uncertainty in these fleet-averaged emission factors, which take no account of travel 

speed variation or road condition (Ma et al., 2015).

We next compare travel behaviour and emission by socio-demographic group and 

housing category on the basis of the travel diary survey (Table 2). Generally, men, 

people with high educational attainment, and the employed travel further, make fewer 

non-motorised trips and emit more CO2 on a typical workday, whilst at the weekend it 

is men, older people (aged 65 and above), people with high education attainment and 

the unemployed who travel longer distances and emit more CO2 than their counterparts. 

Differences in travel behaviour and emission by socio-demographic group are more 

substantial and significant on a workday than at the weekend (Table 2).

[Insert Table 2 about here]

Considering household level attributes, we find that people with a larger home, or 

in purchased commodity housing have a longer travel distance and generate higher 

emissions than their counterparts; such differences are substantial and significant both 

on workday and at weekend. With respect to building age, people resident in housing 

built after the 1990s generally travel further, have fewer non-motorised trips and higher 

emission on both workday and weekend. This is probably because old housing, 

particularly which built before 1979, primarily has an inner city location, characterised 

by a high population density, mixed land use and proximity to various facilities (Fig.2). 

In contrast, housing built after the market reform of the 1990s is mainly located in the 

suburbs and outer urban districts with relatively low job density and accessibility to 

public transit (Zhou et al., 2015; Liu et al., 2017). Building age thus partly reflects the 
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geographic

Synthesising small area population 

estimates indi � emission are then ed to the target 

on in urban Guangzhou, according to corresponding household and individual 

level socio-demographic attributes. As observed data on the full population is 

unavailable, we use spatial microsimulation to synthesise the population, drawing on 

the long form 10% sample census. Before running the spatial microsimulation model, 

we conduct a series of correlation analyses and regression models to examine 

associations of household and individual socio-demographic attributes and travel 

behaviour, including travel distance and carbon emission. Variables in Table 2 have 

significant influences on travel behaviour and transport CO2 emission. They are 

common to the travel survey and population census which allows the use of tabulations 

at the urban sub-district (jiedao) scale to act as constraints of the microsimulation model 

which synthesises Guangzhou’s population by small area, each with all the 

characteristics of the target population. 

Established techniques used to create small area synthetic populations comprise 

deterministic reweighting, conditional probabilities (Monte Carlo sampling) and 

simulated annealing (see Harland et al (2012) for a critical review). Our population 

microsimulation used the Flexible Modelling Framework (Harland, 2013), which 

incorporates a static spatial microsimulation algorithm based on simulated annealing, a 

combinatorial optimisation approach shown to more accurately reproduce population 

microdata at various geographical scales (Voas & Williamson, 2000; Hermes &  

Poulsen, 2012). This framework incorporates the Metropolis Algorithm allowing both 

backward and forward stepping in the search for an optimal population configuration, 

selected from the travel survey data constrained by observed aggregate population 

census counts. The synthesised population is thus a realistic spatial representation of 

the target population aligning closely to the constraining tabulations while maintaining 

the rich variety of attributes contained in the travel survey samples (Ma et al., 2015).  
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As the outputs of the spatial microsimulation model are estimates of unknown data, 

the generated synthetic population is evaluated via goodness-of-fit testing. Absolute 

and relative measures include Total Error (TE), Percentage Error (PE), Cell Percentage 

Error (CPE) and Standardised Root Mean Square Error (SRMSE) (Smith et al., 2009; 

Harland et al., 2012), whilst the most frequently used statistic is the Total Absolute 

Error (TAE), which is easily calculated and understood, and subject to the total 

population sample (Voas & Williamson, 2001):

TAE = ∑i ∑j | Tij - Eij |                               (2)

where Tij and Eij are the observed and simulated counts respectively for the cell at ij. 

Table 3 presents the goodness-of-fit statistics for the Guangzhou population 

microsimulation, which reveals a very good overall fit. Most of the constraining 

tabulations at the sub-district level are reconstructed with very little or no 

misclassification, demonstrating the synthetic population very closely matches the 

observed census data.

[Insert Table 3 about here]

Finally, we link travel attributes (e.g. distance, mode choice) from the diary survey 

to the corresponding population sub-groups in the synthesised population to spatially 

simulate the population’s travel behaviour on both workday and weekend, and hence 

estimate their transport CO2 emissions at the sub-district scale for 2010. However, as 

information on modal split is not included in the population census data and thus cannot 

be used as a constraint in the microsimulation model, it is unable to provide accurate 

estimation of mode-specific CO2 emission at the fine geographic level. We focus on 

simulating the individual-level CO2 emission from urban travel based on a complete 

account of travel activities and mode choice during the workday and weekend for a 

large synthetic population at the urban sub-district scale in Guangzhou. 
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Results

Travel behaviour

The simulated travel behaviour of the synthetic population agrees well with 

observed data and additionally provides insight into geographic variability at the sub-

district scale. Our simulation shows that the average travel time is approximately 62 

minutes per person on a typical workday (56 minutes at weekend) in 2010, consistent 

with the 65 minutes per person per day reported by Jiang et al. (2014) using a 2011 

household travel survey of Guangzhou. Figs. 3-5 show (by quartile) the average travel 

distance of the population in each sub-district, and their average and total transport CO2 

emission. Significant variation in travel behaviour and carbon emission is evident 

across Guangzhou, and between workday and weekend. 

For Guangzhou as a whole, travel distance is approximately 7.6 km per person on 

a typical workday compared to 6.2 km per person at weekend, suggesting that work 

based commuting trips exceed leisure and retail based travel. Residents of the 

traditional old town city centre sub-districts (Yuexiu and Liwan) do not travel as far 

(Fig. 3) presumably as the centre has a high density of people and jobs, mixed land use, 

and good accessibility to facilities and services (Fig. 2). A higher than average 

percentage of trips are taken by public transit and non-motor modes (walk and bicycle). 

These observations are consistent with those for another of China’s mega-cities, Beijing, 

where inner city resident’s daily travel is also shorter than that of suburbanites (Qin & 

Han, 2013; Ma et al., 2014). Effects of such urban compaction, in terms of travel 

behaviour, have similarly been identified in developed countries (e.g. Ewing & Cervero, 

2010, 2017). 

[Insert Figure 3 about here]

In contrast, residents of new urban districts, such as Tianhe and northern Haizhu, 

travel further on a workday, with a slight variation at weekend from the workday. 

Residents of Tianhe, developed as Guangzhou’s new CBD are mostly white-collar 

workers highly reliant on private cars, while residents in northern Haizhu, where many 
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high priced river-view houses are located, work in the traditional city centre or Tianhe. 

Residents of these new urban districts tend to travel further than those of the inner city 

on both workday and weekend (Fig. 3). An above average share of trips are taken by 

motor vehicles. 

People living in more distant urban areas, such as Huadu, Huangpu and northern 

Panyu, travel further on a typical workday, but exhibit significant variation between 

workday and weekend. For instance, people from Huangpu do not travel as far at 

weekend, while those resident in many sub-districts of Huadu travel further on 

workdays and particularly at the weekend. This is possibly because with rapid urban 

expansion and spatial restructuring, Huangpu has developed as a new sub-centre of 

Guangzhou (Zhou et al., 2015). Thus although people resident here must travel further 

to the city centre for work during the weekdays, they can meet their non-work needs 

(shopping, leisure) nearby at weekend. This situation is quite different in the remote 

district of Huadu, which only became an urban district of Guangzhou in 2000. This area 

has low employment density, mono-functional land use (e.g. dormitory development) 

and poor access to various facilities and services (Fig.2), with residents having to travel 

further to other areas for both work and non-work activities (Fig. 3). 

Carbon emission

Modelled CO2 emission from urban travel in 2010 at the sub-district scale is shown 

in Fig. 4. On average, travel-related CO2 emission is 420 g per person on a typical 

workday and 407 g per person at weekend. Geographic variation in transport CO2 

emission is also evident. Residents of Yuexiu and Liwan in the compact central area 

have lower CO2 emission on both workday and weekend, as trips are shorter with a 

higher share of non-motorised trips. In contrast, residents of the new urban districts, 

including Tianhe and Haizhu, and the remote districts of Huadu, Baiyun, and northern 

Panyu, have higher CO2 emission on a typical workday (with slight variation at 

weekend), mainly due to their longer travel distance and greater use of motor vehicles. 

For the sub-centre of Huangpu and the southern areas of Panyu, average CO2 emission 



17

is much lower at weekend than on workday, probably as residents need to travel less 

for non-work weekend activities. 

[Insert Figure 4 about here]

Total CO2 emission from the synthetic population is calculated across the urban 

sub-districts of Guangzhou for 2010, through multiplying the total population (a 10% 

sample of all people aged 15 or above) by the average CO2 emission in each area. This 

further helps to identify areas where spatial planning or transport interventions are 

needed to encourage lower carbon city development. As shown in Fig.5, the total CO2 

emission from urban passenger travel in the compact central area of Yuexiu and Liwan 

is much lower than other districts on both workday and weekend, although the 

population density in these urban districts is relatively high (Fig.2). In contrast, total 

CO2 emission from urban travel in the south of Tianhe and west of Haizhu is very high, 

more than 3,510 kg on a typical workday, which is possibly as the population density 

and average CO2 emission are both high in these geographic zones. With respect to 

other districts, the total transport CO2 emission from the synthetic population in sub-

districts of Huadu, Baiyun, and Panyu is also very high on both workday and weekend. 

This is possibly because people living here travel further and generate more CO2 

emission both on workday and at weekend, as the population density in these remote 

urban districts is relatively low. 

[Insert Figure 5 about here]

Discussion and conclusion

China is currently experiencing a rapid increase in its motor vehicle fleet and travel 

demand, and emissions from passenger transport represents one of the fastest growing 

GHG sources in China (Wang et al., 2007). However, due to data limitations, most 

studies adopt a ‘top-down’ approach to estimate transport emission based on aggregate 

energy consumption data at a broad national or regional scale. Although using 
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disaggregate travel attributes (e.g. VMT, mode choice) to analyse GHG emission at a 

micro scale offers major advantages over the aggregate approach, little research uses 

such a ‘bottom-up’ approach, including that in China, mainly due to a lack of the 

necessary data to support such fine-grained analysis (He et al., 2013). Developing 

mitigation policies and interventions targeted at specific areas or populations in China 

is commonly constrained by data availability which limits understanding of passenger 

transport CO2 emission variation within cities.

Using an activity diary survey in 2013 and the population census data in 2010, we 

applied an improved bottom-up approach to provide an improved estimate of transport 

CO2 emission from passenger travel on both workday and weekend for urban 

Guangzhou in 2010, and at finer geographic and temporal scale than has previously 

been possible. This was achieved through a sub-district spatial microsimulation model 

of the synthetic population’s daily travel. Our microsimulation provides insight into the 

geographic variability of people’s urban travel and carbon emission on both workday 

and weekend, and the associations with sub-district level built environment 

characteristics. This approach enhances the potential for low carbon land use and 

transport planning and policy targeted at specific areas and populations. 

Given the absence of travel or energy consumption data at small area scale in China, 

our study develops a spatial microsimulation model, but uses limited data which 

introduces some constraints. The travel survey does not cover all districts, and we 

assume that travel behaviour in the remaining outlying districts (Zengcheng, Conghua, 

and Nansha) is not well represented by travel in the urban districts, hence we limit our 

microsimulation to urban Guangzhou, rather than the entire urban region. Furthermore, 

the travel distance derived from the activity diary survey is calculated for out-of-home 

activities based on Euclidean distance, which likely underestimates trip distances, and 

hence transport emissions. GPS survey data could in future be used to derive travel 

distance sensitive to the road network. 

As the spatial microsimulation outputs are estimates of unknown data, it is difficult 

to validate the simulated results at the disaggregate level, as reported in prior studies 

(e.g. Smith et al., 2009). However, we use a wide range of goodness-of-fit statistics to 
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compare the combinations of constraining variables between the synthetically 

constructed population and census count, and find that the generated synthetic 

population represents the observed target population well. Moreover, we have also 

validated the simulation results against available external information, by comparing 

the simulated travel behaviour with the independently observed travel survey of Jiang 

et al. (2014). This shows that the microsimulation results are consistent with 

observations of other studies, and hence that the insights into the geographic and 

temporal variability of the transport CO2 emission appear robust.  

Whilst urban transport is widely regarded as an important and rapidly growing 

source of GHG emissions, its growth is mainly driven by behavioural factors, such as 

increasing travel distance (often as a consequence of a desire for more living space), 

and a shift towards motorised, higher-carbon travel modes (e.g. Salonen et al., 2014). 

These changes in travel behaviour are influenced by urban form characteristics. Our 

simulation results show that people residing in the more compact city centre travel 

shorter distances, make fewer motorised trips and emit less CO2 on both workday and 

weekend. In contrast, people living in newly developed urban areas and remote districts, 

characterised by low population and employment density, and mono-functional land 

use, travel further and generate more CO2 emission than their counterparts. This 

suggests that policies to combat dispersal are needed, whether through compaction of 

the urban core or further development of mixed use connected sub-centres beyond the 

core (polycentrism).

In addition to urban planning measures, a set of transport policies to promote 

behavioural changes (e.g. adoption of fuel-efficient vehicles) have been regarded as 

important instruments to reduce carbon emission from the road transport sector (Knuth, 

2010; Graham-Rowe et al., 2011). However, the potential of these technology strategies 

has been questioned on grounds of the rebound effect, where emission reduction from 

greater fuel efficiency might be offset by increased car travel (Greene, 2012). Therefore, 

demand management policies to encourage modal shift towards low-carbon 

transportation modes, e.g. reducing car use and VMT, should be actively implemented 

to support sustainable transport (Loo & Li, 2012). For instance, parking policies such 
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as parking fees, parking space management and car-free zones, particularly in 

workplaces, are known to have significant effects on mode choice, reducing car travel 

from 5% to 30% in urban areas (Cuenot et al., 2012). Road pricing can also discourage 

car travel, reducing congestion and emissions (Cavallaro et al., 2018). Moreover, long-

term investment in public transport, particularly subway development in Chinese mega-

cities, and promotion of walking and cycling could also make a substantial contribution 

to reducing car travel in the future (Banister, 2011).

Hankey and Marshall (2010) suggest there are three main options to reduce 

transport CO2 emissions: low-carbon fuels, more-efficient vehicles, and VMT 

reduction, particularly of car travel. In China, there is not yet a comprehensive strategy 

for promoting low carbon transport (Zhang & Nian, 2013), hence government 

engagement to encourage uptake of all these measures is needed. Informed urban and 

transport policy and planning is clearly needed to effect fundamental behavioural 

changes to promote sustainable mobility and low carbon travel. However, China has an 

anticipated urban population of a billion people by 2030, including 221 cities over a 

million people each by 2025 (McKinsey, 2009), but a deficit of observed travel data. 

Microsimulation thus offers a means to better understand the travel behaviour that 

underpins the traffic flows and transport emission of China’s cities and mega-cities, and 

hence to support lower carbon transport and city development. 
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 Summary of key variables in the population census and travel survey.

Variables Categories Population 

census (%)

Travel survey 

(%)

Male 51.95 41.18 Gender

Female 48.05 58.82 

15-30 37.31 23.86 

30-45 32.84 40.50 

45-65 22.44 34.70 

Age

7.41 0.94 

Primary 48.90 29.28 

Secondary 27.29 42.37 

Education

Tertiary 23.81 28.35 

Employed 64.36 86.04 Employment

Unemployed 35.64 13.96 

Workers in service 

companies (WTP1)

39.70 59.09 

Workers in government 

and public institutions 

(WTP2)

17.26 21.65 

Occupation

Other 43.04 19.26 

<50 39.30 31.35 

50-80 23.17 36.88 

80-110 20.13 20.06 

Housing area 

(m2)

17.40 11.71 

Rent 40.85 33.83 

Self-built 19.17 16.14 

Buy commodity housing 23.44 28.35 

Housing tenure

Buy affordable or Danwei 

housing

16.54 21.68 

Before 1979 7.99 5.73 

1980-1989 16.27 32.52 

1990-1999 39.31 47.60 

Building age 

After 2000 36.43 14.15 



 Comparing travel and CO2 emission between workday and weekend.

Workday Weekend

Household and individual 

socio-demographic 

attributes

Travel 

distance

(km)

Non-

motor 

trips

CO2 

emission

(g)

Travel 

distance

(km)

Non-

motor 

trips

CO2 

emission

(g)

Male 8.77 2.27 568.50 5.59 1.81 423.18 

Female 7.36 2.69 354.89 5.27 2.28 261.52 

Gender

F 10.48+ 30.39+ 23.04+ 0.77 37.80+ 14.65+

15-30 7.99 2.44 393.98 6.22 1.72 363.91 

30-45 8.93 2.30 555.16 5.55 2.09 359.64 

45-65 6.70 2.75 350.10 4.46 2.32 251.63 

9.98 3.53 268.88 12.79 2.93 886.06 

Age

F 7.08+ 9.06+ 6.19+ 10.73+ 13.69+ 4.35+

Primary 5.27 2.84 225.60 4.82 2.29 236.84 

Secondary 8.05 2.49 413.97 4.76 2.15 243.77 

Tertiary 10.54 2.16 710.46 6.96 1.79 548.38 

Education

F 46.07+ 19.10+ 37.04+ 15.78+ 13.96+ 22.64+

Employed 8.38 2.43 487.80 5.33 2.03 326.41 

Unemployed 5.28 2.89 165.83 5.84 2.48 338.51 

Employme

nt

F 25.36+ 14.26+ 26.00+ 0.99 17.24+ 0.04

WTP1 7.73 2.58 432.05 5.12 2.10 282.85 

WTP2 8.67 2.17 507.83 5.48 1.98 405.56 

Other 10.03 2.29 636.28 5.80 1.86 371.04 

Unemployed 5.28 2.89 165.83 5.84 2.48 338.51 

Occupation

F 13.58+ 10.23+ 12.43+ 1.02 7.60+ 1.90

<50 5.79 3.03 225.67 4.15 2.47 174.19 

50-80 7.86 2.46 399.82 4.96 2.10 264.79 

80-110 10.17 2.16 615.37 6.67 1.88 481.44 

10.16 1.81 864.05 7.97 1.41 676.57 

Housing 

area (m2)

F 22.77+ 33.34+ 30.54+ 18.30+ 25.74+ 22.15+

Rent 6.35 2.82 286.25 4.70 2.26 241.26 

Self-built 6.76 1.84 367.33 5.48 1.55 310.97 

Commodity 11.11 2.32 746.11 6.60 2.14 459.18 

Affordable 7.17 2.73 346.96 4.86 2.17 304.95 

Housing 

tenure

F 31.03+ 24.91+ 26.79+ 6.89+ 13.87+ 5.86+

Before 1979 5.73 3.02 262.38 4.58 2.21 164.63 

1980-1989 6.38 2.93 288.55 4.18 2.61 191.76 

1990-1999 9.39 2.28 559.77 6.37 1.87 439.26 

After 2000 7.57 2.04 477.38 5.26 1.59 333.72 

Building 

age

F 15.49+ 25.71+ 11.38+ 10.55+ 36.22+ 10.48+

N	
�� 
�� ����cates the p value associated with the F is below 0.01 in the ANOVA analysis.



 Representation of the model constraints at the sub-district level.

Constraints SRMSE TAE PE TE CPE

Gender 0.00 0 0.00 0 0.00

Age 0.00 24 0.00 12 0.00

Education 0.00 0 0.00 0 0.00

Employment 0.00 0 0.00 0 0.00

Occupation 0.00 0 0.00 0 0.00

Housing area 0.00 0 0.00 0 0.00

Housing tenure 0.01 672 0.04 336 0.07

Building age 0.00 264 0.01 132 0.03


