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a b s t r a c t

The field of Compressive Sensing (CS) has provided algorithms to reconstruct signals from a

much lower number of measurements than specified by the Nyquist-Shannon theorem.

There are two fundamental concepts underpinning the field of CS. The first is the use of

random transformations to project high-dimensional measurements onto a much lower-

dimensional domain. The second is the use of sparse regression to reconstruct the original

signal. This assumes that a sparse representation exists for this signal in some known

domain, manifested by a dictionary. The original formulation for CS specifies the use of

an l1 penalised regression method, the Lasso. Whilst this has worked well in literature, it

suffers from two main drawbacks. First, the level of sparsity must be specified by the user,

or tuned using sub-optimal approaches. Secondly, and most importantly, the Lasso is not

probabilistic; it cannot quantify uncertainty in the signal reconstruction. This paper aims

to address these two issues; it presents a framework for performing compressive sensing

based on sparse Bayesian learning. Specifically, the proposed framework introduces the

use of the Relevance Vector Machine (RVM), an established sparse kernel regression

method, as the signal reconstruction step within the standard CS methodology. This frame-

work is developed within the context of ultrasound signal processing in mind, and so

examples and results of compression and reconstruction of ultrasound pulses are pre-

sented. The dictionary learning strategy is key to the successful application of any CS

framework and even more so in the probabilistic setting used here. Therefore, a detailed

discussion of this step is also included in the paper. The key contributions of this paper

are a framework for a Bayesian approach to compressive sensing which is computationally

efficient, alongside a discussion of uncertainty quantification in CS and different strategies

for dictionary learning. The methods are demonstrated on an example dataset from col-

lected from an aerospace composite panel. Being able to quantify uncertainty on signal

reconstruction reveals that this grows as the level of compression increases. This is key

when deciding appropriate compression levels, or whether to trust a reconstructed signal

in applications of engineering and scientific interest.

� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Nyquist-Shannon theorem is at the centre of most traditional signal processing applications. It states that the fre-

quency resolution obtainable in a signal is given by half of its time resolution, or sample rate. It is at the heart of frequency
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spectrum analysis methods based on Fourier and wavelet transforms. Compression is an important task in today’s scientific

computing. From a signal processing perspective, one of the most successful compression schemes is that of shrinkage, or

thresholding [1] in a transform domain such as Fourier or wavelet. The problem with this, and any other compression

scheme that relies on the application of a transform, is in the inherent wastefulness in the process of first acquiring a full

data set in order to then compute the transform and the compression scheme.

Compression usually leverages sparsity: the idea that a signal that is dense in one domain can be sparse in another

domain. The field of Compressive Sensing (often also called Compressive Sampling) (CS) was developed following the insight

that compression can be achieved whilst also by-passing the usual procedure of first acquiring a full signal, and then trans-

forming it into another ‘‘sparse” domain [2,3]. In the particular field of ultrasound signal processing, for example, it has

already been shown that using a wavelet transform can achieve as much as a 95% compression ratio [4,5]. However, this

requires both the acquisition of the full data set and the computation of a wavelet, or other transform. The main idea in

CS is to circumvent the wastefulness of acquiring a large number of samples if one knows that most of themwill be discarded

anyway.

The contribution of this paper is a formulation of a probabilistic CS scheme. This is brought about through the use of the

Relevance Vector Machine (RVM), a sparse Bayesian learning technique developed by Tipping [6]. The approach taken here is

to replace the Lasso with an RVM in the sparse coding step of CS. This is a simple idea with profound implications. The result

is a signal reconstruction that is fully probabilistic: it involves a mean and variance around the prediction, so that a confi-

dence interval can be established regarding the quality of the signal estimate. Being a Bayesian method, it also naturally

solves the problem of the appropriate level of sparsity with little user intervention. The estimation of uncertainty in the pre-

dictions is useful; it adds a layer to the understanding of prediction quality, which is paramount if compressing signals of

scientific interest, or in safety critical applications.

2. Ultrasound-based NDT

The motivation for developing this CS framework is as an aid in the analysis of ultrasound waveforms, commonly used for

Non-Destructive Testing (NDT). Ultrasound-based NDT has long been used in the structural integrity assessment of engineer-

ing components. The method, akin to the echo-location principle used by bats, relies on estimating the distance to an object

by emitting a sound wave and listening to the response. The time it takes to receive the sound wave back can be used as a

proxy to the location of the object, given some knowledge of the speed of sound properties of the medium. In order to use

this principle to detect flaws in materials, one has to assume that a measurable amount of energy will be reflected back at the

boundary between the medium and the flaw. Back at the source of the sound, this is measured as an echo. By mapping the

time-of-flight (TOF) of these echoes across the surface of a material, it is possible to create a ‘‘depth map” otherwise known

as a C-scan.

One of the characteristic features of ultrasound-based NDT is the acquisition of large quantities of high frequency data in

the form of sound waveforms. Due to the high frequencies involved, often in the range between one and ten MHz, high sam-

ple rates are required to capture these waveforms, and this results in large quantities of data.

There is, however, a large disparity between the information content in a given ultrasound waveform, and the number of

data points recorded in the time history of a waveform. So far, industry has solved this problem by extracting two key fea-

tures from the echoes of ultrasound pulses: their attenuation and TOF difference. These features can yield useful information

about material specimens and engineering structures if they are related to the material properties. The simplest and most

widely used being the connection between TOF and material thickness, given the speed of sound of a material [7].

TOF estimation has therefore attracted significant attention from the NDT community. The methods developed over the

years can be split into two categories: 1) those methods that use thresholds and changes in signal phase in order to separate

the main pulse from the resulting echoes and compute the time differences between these two [8], and 2) those that use

physical insight and attempt to solve a deconvolution problem to recover the impulse response function of the material

being scanned [9,10]. The idea of estimating the full impulse response function of the material under question can be more

attractive than characterising it with a few summarising features (such as a TOF) as this would capture all the information

contained through the depth of a material. One interesting thing, from the point of view of this paper, is that the blind de-

convolution problem is equivalent to the sparse coding step in compressive sensing, under an appropriate dictionary.

2.1. Features of ultrasound pulses

The Bayesian CS framework being presented will be demonstrated on ultrasound C-scan data from a carbon fibre com-

posite wing panel. Although the results for this will be presented in Section 6, some key features of ultrasound signal pro-

cessing will be introduced here, mostly as a motivation for the development of the method.

A typical ultrasound pulse is shown in Fig. 1a, with two time indices marked as ta and tb. These times correspond to reflec-

tions from the front and back wall of the composite panel respectively. A pulse of this kind effectively constitutes an A-scan.

The information extracted from this is the time difference tf ¼ tb � ta, and this is often referred to as the ultrasonic TOF. This

can be related to the thickness of the plate, if the propagation speed of bulk waves for the material is known. Another feature

of interest is the ratio xðtaÞ=xðtbÞ (where xðtÞ is the measured amplitude of the ultrasound pulse), as this contains information
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about the attenuation of the wave as it travelled through the thickness of the plate. An A-scan thus gives information about a

single physical coordinate on a surface.

A B-scan can be formed by collecting a series of A-scans along a line (illustrated in Fig. 1b), while a C-scan is formed by

collecting a series of B-scans, to give a two-dimensional grid of ultrasound pulse information (illustrated in Fig. 1c). Note that

higher times of flight in Fig. 1c imply wider plate thickness. The salient features in Fig. 1c are the stringers and the variable

thickness of the wing panel. The purpose of the stringer is to increase the flexural stiffness in the main direction of bending.

They are, therefore, characterised as thicker regions of material, typically along one direction of a plate. The stringers are

evident by a low TOF index, due to their thickness being higher than the maximum value that can be captured within the

collected data. These are evident as horizontal lines in Fig. 1c. Immediately surrounding the stiffeners, the stringer’s feet

are evident, as a reinforcement and to alleviate stress concentrations in the joint between the stringer and the main plate.

The addition of layers is evident as discrete increases in TOF (implying higher material thickness).

2.2. TOF inference as a blind de-convolution problem

One way in which a greater level of physical insight could be extracted from a pulse-echo ultrasound measurement is by

interpreting the measured response as a convolution process between the transducer impulse response function and the

reflectivity function of the medium by which the sound is propagating [11],

xðtÞ ¼ f ðtÞ � rðtÞ ð1Þ

where xðtÞ is the measured signal in the transducer, f ðtÞ is the transducer impulse response function, and rðtÞ is a reflectivity

function. This can be written down in discrete form as,

xðtÞ ¼
X

M

m¼1

f ðt � smÞrðmÞ ð2Þ

where sm is a lag term. It is common to assume an impulse response function in the form of a windowed Gaussian tone burst

[11]. This leads to a real-valued Gabor function,

f ðh; tÞ ¼ Be�at
2

cosðxt þ /Þ: ð3Þ

Fig. 1. Illustration of a) single ultrasound reflection (A-scan), b) reflections along a phased array probe (B-scan) and c) time of flight map along the two

dimensions of a composite plate (C-scan).
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The vector h ¼ ða;x;/Þ contains the parameters of this tone burst. Solving for the appropriate h that best represents the mea-

sured signal, xðtÞ, is a problem of de-convolution and it is an ill-posed one. It has been tackled successfully [9] using some of

the sparsity tools discussed later in Section 3.3. Furthermore, this model is important as it represents one way of viewing

what will shortly be referred to as a dictionary, in the context of sparse coding. Some attempt by the authors has been made

at treating this de-convolution problemwith CS tools [12], although the present paper presents a much more general view of

the problem, in which the de-convolution interpretation is just a special case. This will be more evident later in Section 5

where dictionary learning will be discussed.

3. Compressive sensing

The concept of CS is to circumvent the process of explicitly using a forward transform in order to compress a data set. The

idea being that if the compression is done by means of random sampling (which map a highly sampled signal into a much

lower-dimensional domain), the original signal can be reconstructed later on.

There are three key ingredients in CS that allow accurate signal reconstructions based on a very low number of measure-

ments. The first ingredient is the assumption that the signal in question can be represented by a very low number of coef-

ficients in some suitable transformation. In other words, it is sparse in that domain. This domain is represented by a

dictionary. The second ingredient is the use of random transformations of the signal. It can be shown that when a signal

undergoes certain random transformations, pairwise distances between measured points are preserved. This is a result of

the Johnson-Lindenstrauss Lemma [13]. However, recovering this compressed version of the signal from an over-

complete dictionary is an ill-posed regression problem. This is where the third and final ingredient comes into play: sparse

coding, or sparse regression methods. These allow the solution of these type of ill-posed problems by assuming that most of

the coefficients in the solution will be zero.

3.1. Dictionaries and the sparsity assumption

Whilst the Fourier and wavelet transforms are not the topic of this paper, they do play hidden roles in the background,

and so it is worth starting with a brief discussion of sparsity and signals, with how these fit in the context of traditional Four-

ier and wavelet analysis. The uninterested reader may safely skip this section. Sparsity (in the context of statistical inference)

is the general idea that a dataset can be explained by a compact set of variables. In a signal processing context, this is clearly

illustrated with the idea that a measurement that is dense in one domain may be sparse in another domain. A classical exam-

ple in signal processing is a single sine tone; in the time domain, the data density is dictated by Nyquist theorem, but in the

Fourier domain this could be accurately represented by a single (complex) number at the right frequency location. The Four-

ier transform is fundamentally limited to modelling stationary (and infinite) signals. Several ideas have developed since,

starting from the idea of sliding and overlapping time windows, which led to the Gabor transform, general time-

frequency representations, and eventually led to the development of the wavelet transform. The wavelet transform repre-

sents a signal as a combination of orthogonal wavelet functions, which are localised in time and scale, and so the transform

effectively fits shifted and stretched versions of a ‘‘mother” wavelet to all time points in the signal. This is the continuous

wavelet transform, and it provides the complete opposite of sparsity; it provides redundancy in the representation, as it

can be evaluated at any arbitrary time and scale. An efficient wavelet representation emerged in the form of the Discrete

Wavelet Transform (DWT), which discretises the mother wavelets into half-band filters (for both decomposition and recon-

struction), that recursively split a signal into low and high frequency components, while decimating at every step. At this

point, no sparsity is achieved in the decomposition yet, only a representation that is not redundant (the number of coeffi-

cients in the representation is equal to the original measured time points). However, sparsity is only a small step away,

and is in fact provided by the observation that in a discrete wavelet transform, some, and sometimes the majority of the coef-

ficients can be set to zero, providing a potentially high level of signal compression. When the coefficients are reconstructed

(using the reconstruction filters of the mother wavelet), the resulting signal will only contain information encoded in those

wavelet coefficients that were not switched off. This is often referred to as wavelet thresholding, and it was pioneered by

Donoho [1] who also determined a simple procedure for identifying appropriate thresholds for the wavelet coefficients.

Fourier, Gabor and wavelet transforms are somewhat strict in the representations they allow. They belong to the class of

complete bases; they do not allow a representation of greater length than the signal itself. What if the most appropriate rep-

resentation of a signal came from a combination of wavelet, Fourier or other basis? This question led to the development of

over-complete bases [14–16], which pose the signal representation problem as a linear combination of basis functions,

x ¼ Db ð4Þ

where x is the signal being represented (this notation will be used throughout), D is an N � K dictionary of K basis functions

on N observations. b is a vector containing the coefficients linking the rows of D back to x. The advantage that this simple

formulation introduces is the flexibility of introducing any functional form, and in fact any type of fundamental signal into

the columns of the dictionary D. The reader will recognise that Eq. (4) effectively presents a linear regression problem. How-

ever, in the case of an over-complete basis, this is an ill-posed problem given that there is a much greater number of basis

functions than there are observations. This is where the sparsity assumption becomes particularly useful, as it makes this ill-
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posed regression problem tractable. This problem is often referred to as sparse coding, and various different algorithms have

been suggested to solve it. Some of these are reviewed in Section 3.3.

3.2. Random matrix projection

There is particular interest in the problem of dimensionality reduction, for the purposes of algorithm design, in a wide

range of scientific disciplines; this is also central to the compression step of CS. A way of ‘‘compressing” a dataset is to project

the N-dimensional measurement vector x to a lower, M-dimensional space using a linear or nonlinear transformation. One

popular approach is to use transformations, such as Principal Component Analysis (PCA), Independent Component Analysis

(ICA) or factor analysis [17]. These particular examples project the measurements into spaces with certain constraints. For

example, PCA is designed to rotate a data set such that the resulting vectors are forced to explain as much of the variance as

possible. Such a linear transformation could be written down as,

z ¼ Ux ð5Þ

where z is now a low dimensional representation of x. An interesting projection results if the rotation matrix, U, is set to be a

randommatrix. Johnson and Lindenstrauss [13] have shown that if U is distributed according to a Gaussian, or Bernoulli dis-

tribution, this linear dimensionality reduction preserves, with low error, certain features of x, such as pairwise distances. A

Gaussian or Bernoulli random matrix projection also yields an orthogonal transformation. This is a central result within

research in metric embedding [13]. This random matrix transform is a key ingredient in the formulation of the CS problem.

In this paper, the elements of U have been drawn from a Gaussian distribution:Nð0;1Þ, and used in order to project the orig-

inal measurement vector x into a lower dimensions, thus compressing it.

3.3. Sparse coding

The last step in a CS scheme is to reconstruct the signal, based on the compressive measurements and a dictionary [2],

which is concerned with finding a sparse set of coefficients b that best describe the random matrix projection Ux (the com-

pressed signal representation). What is available to the regression problem is not the full signal, but rather a projection of it

through U. The coefficient set can be inferred if the basis dictionary is also projected through the sensing matrix to yield the

following regression problem,

UDb ¼ Ux ð6Þ

where, as before, U is a randommatrix projection, D is a basis function set, and x is the (uncompressed n-dimensional) signal

of interest.

The solution to Eq. (6), proposed in the original formulation of CS [3] is an l1 regularised linear regression scheme. This

type of regression was earlier proposed in [18], in the more general context of deriving sparse solutions to ill-posed problems

where sparsity can be assumed. It also goes under the name of Least absolute shrinkage and selector operator (Lasso). One of

the major limitations of the Lasso is that it does not give a definite answer to the appropriate level of sparsity that represents

the signal. This is due to its non-probabilistic formulation.

Common to all sparse coding schemes is the need to balance the accuracy of the solution, level of sparsity and the com-

putational complexity. An optimal solution to this problem would involve checking all possible combinations of subsets of b

set to zero, and pick the one that provides the best representation of the signal. This is effectively a linear regression problem

with a penalty term based on the l0 norm of b (number of non-zero coefficients), where the following cost function is

minimised,

minimise :
1

2N
jjx� Dbjj22 þ jjbjj0

� �

ð7Þ

However, achieving the global minimum in (7) is a non-convex, combinatorially hard optimisation problem, so an approx-

imation is required in practice. A solution to this was provided by the matching pursuit algorithm [14], which is a greedy

iterative algorithm for finding a sparse solution to b. Mallat originally developed MP in order to extend wavelet analysis

to over-complete bases; this has already been discussed above.

While using an l0 penalty would result in an optimum sparse representation, the Lasso tackles this problem by observing

that if the penalty is relaxed to an l1 norm, the optimisation problem becomes convex, and thus more tractable. This is an

acceptable step because an l1 penalty still encourages sparse solutions to the regression problem. The Lasso uses the follow-

ing formulation of the cost function,

minimise :
1

2N
jjx� Dbjj22 þ kjjbjj1

� �

ð8Þ

Note that the l1 penalty is regularised by the term k. A general lq penalty could be computed using the sum jjbjjq ¼
PN

j¼1jbj
q,

and the Lasso is the special case when q ¼ 1. The regularisation parameter, k, dictates the degree of sparsity in the solution. A
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high value of k encourages a low number of non-zero coefficients, and vice versa. Therefore, an appropriate value of k needs

to be chosen for each problem in particular.

The level of sparsity in the regression problem can have meaningful interpretation in physical and engineering applica-

tions. This, however, will largely depend on the type of dictionary being used within the sparse coding problem. Certain dic-

tionaries may force interesting solutions of b, that can have physical interpretations. For example, in the case of ultrasound

signal representation, it has been shown in [12] that the use of a Hankel dictionary built using examples of pulses, solves a

de-convolution problem and thus yields the impulse response function of the system. In this case, the sparsity level is related

to the number of echoes received back at the transducer, so it is clearly an important quantity to estimate correctly.

The approaches developed for solving the Lasso problem focus on providing solutions across an entire regularisation path:

from high to low values of k. The result is a transparent view of how the solution changes when different levels of sparsity are

assumed. Two key algorithms for finding efficient solutions across the entire regularisation path are the Least Angle Regres-

sion (LARS) [19] and one based on coordinate descent [20]. LARS solves the Lasso problem by stepping from one highly

sparse solution, to another slightly less sparse solution, until all the coefficients in b are non-zero. It is particularly suited

for large scale problems, but it is naturally greedy. Both coordinate descent and LARS offer efficient solutions over the entire

regularisation path. When it comes to actually choosing an appropriate level of sparsity, Tibshirani suggests using cross-

validation [18]. This approach works in practice, but it is computationally more expensive, and may be prohibitive in appli-

cations where estimation over large quantities of data are required.

Whilst the Lasso was the sparse coding scheme used originally in the development of CS, it generally suffers from the lack

of a systematic and efficient way of tuning k. Alternatives to this exist. Shortly before the development of CS, a series of algo-

rithms were developed to tackle the problem of over-complete bases in Fourier, wavelet and other domains. Worth mention-

ing here are basis pursuit [16] and matching pursuit [14]. The idea in matching pursuit is to start with an empty

representation, check which entry in D best matches the signal, x, add that to the active representation, and iterate over this

process. As such, it is greedy and prone to finding sub-optimal solutions. Basis pursuit provides a better alternative here,

since it directly solves the l1 regression problem of Eq. (8), but (unlike LARS and coordinate descent) uses global optimisation

techniques to achieve this.

From the point of view of this paper, the drawback of these methods is the lack of a probabilistic interpretation; there is

no quantification of uncertainty in the estimation of the parameters, and consequently in the signal reconstructions that

these yield. This is the primary motivation for turning to the sparse Bayesian learning techniques developed by Tipping

[6], based on RVMs. These are discussed in Section 4.

4. Sparse Bayesian learning

The sparse coding algorithms that have been discussed so far: matching pursuit, basis pursuit, Lasso, all have two major

drawbacks. The first is the lack of a systematic way of dealing with uncertainty both in the measurements and in the param-

eters. In other words, they are not probabilistic. The second drawback is the lack of a sound methodology for tuning the spar-

sity parameter, without resorting to cross-validation. The framework of Bayesian inference is particularly well suited to deal

with both of these problems. Its underlying idea is to derive a probability distribution over the parameters of the model, thus

giving a measure of uncertainty in these estimates.

The particular flavour of Bayesian inference that will be used, as it is applicable to the problem of sparse coding, is the

Relevance Vector Machine (RVM) [6]. This is a flexible model that can be applied to a wide range of regression and, therefore,

more general signal representation problems. Owing to its Bayesian formulation, the key difference between the regression

problem solved by the RVM and other (non-Bayesian) sparse coders is that it seeks a probabilistic solution for both b and x.

4.0.1. A brief refresher on Bayesian inference

Bayes’ theorem, applied to parameter estimation, takes the usual form,

pðhjYÞ ¼
pðYjhÞpðhÞ

pðYÞ
ð9Þ

where h are the unknown parameters to be estimated and Y is the set of (multivariate) observed data. There are three prob-

abilities on the right-hand side of Eq. (9): the prior, the likelihood and the marginal. The prior, pðhÞ, should represent a prior

belief, about the process before it is observed. In sparse signal representation, this will encode the desire for a sparse solu-

tion. The likelihood, pðYjhÞ represents the distribution of the model error, with respect to the parameters. Finally, the mar-

ginal, pðYÞ, can be expanded using the sum rule of probability to yield the following integral,

PðYÞ ¼

Z 1

�1

pðYjhÞpðhÞdh ð10Þ

which sums the product of the prior and likelihood (often called the marginal), over all possible parameter values h. This is

often an intractable integral, with no closed form solution available. The solution of the marginal integral often leads to

either of two paths: approximations, or sampling schemes. The Laplace approximation and variational inference lie in the
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approximation paths, while Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods lie in the sampling path.

Whilst sampling methods may be a feasible solution to many Bayesian problems, they are not practical in the case of CS

on large amounts of data. The Lasso and matching pursuit algorithms are both extremely fast if compared to a sampling-

based solution. One of the main reasons the authors developed an interest in the RVM for this task is not only its Bayesian

formulation, but due to the existence of a practical, fast computation for the parameters [21].

4.0.2. Formulation of the RVM

The presentation of the RVM in this paper essentially follows that of Tipping [6]. The RVM solves the following regression

model,

y ¼
X

N

i¼1

diðxÞbi: ð11Þ

The reader will recognise this as a standard regression model, where as before, the weight vector is represented by

b ¼ b1; . . . ; bN½ �. The basis function set is represented by DðxÞ ¼ d1; . . . ;dN½ �. An important point to note here is that in the

RVM, the basis function set is assumed to be a function of some training data x. The RVM was originally derived as a more

optimal and most importantly, sparse, alternative to the Support Vector Machines (SVM) model, which solves the same prob-

lem as Eq. (11), but defines the basis set as a kernel function,

di ¼ jðx; x0Þ ð12Þ

where x and x0 represent two distinct points on the input space. The RVM addresses two key drawbacks of the SVM. The first

is that the basis function set, DðxÞ does not have to satisfy Mercer’s condition. Also, unlike the SVMwhich selects a number of

columns from DðxÞ that scales with the number of available training data points, the RVM is designed to only select a suf-

ficient and appropriate number of relevant vectors in DðxÞ that explain the observed data well, using sparsity ideas. These

two key-points, underpinning the design of the RVM, are exactly what is needed in a Bayesian compressive sensing scheme:

sparsity, and the ability to use arbitrary basis functions DðxÞ as long as they are both redundant and representative of the

data. Note that the second requirement, of DðxÞ being representative of the data, is a key point here and hence why the dic-

tionary has been written down as a function of x. This is to highlight the need to somehow train the dictionary against a

representative set. Whilst this notation will be dropped in the rest of the discussion, the reader should remember this point.

For the benefit of the reader, a condensed summary of the RVM model is provided below, which simply follows the

requirements of Bayesian regression set out in Section 4.0.1 above. A more complete version can be found in [6].

The observations of the model are assumed to be corrupted with noise, and this is modelled by a target vector, t,

t ¼ y þ e ð13Þ

where e is the noise term and y is the representation of the signal, as defined by Eq. (11). If the noise term is assumed to be

Gaussian distributed e � Nð0;r2Þ, the likelihood function, pðtjb;r2Þ, can be written down as,

pðtjb;r2Þ ¼ ð2pÞ�N=2r�N exp �
jjt� yjj22
2r2

( )

ð14Þ

The key ingredient, however, is the form of the prior distribution of the parameter vector, pðbjaÞ (where a is a hyperparam-

eter), as it encodes one’s prior belief about the form of the coefficients. Most importantly, it is through the form of this prior

that a sparse solution to the regression problem can be enforced. The RVM enforces sparsity through the use of a hierarchical

Gaussian prior. This is a conjugate prior to a Gaussian distribution and thus yields algebraic forms that are tractable when

multiplied by the likelihood function of Eq. (14). The form of the prior is,

pðbjaÞ ¼
Y

M

i¼1

Nðbij0;a
�1
i Þ: ð15Þ

The term a is a hyperparameter vector, that defines the variance of the prior distribution of the parameters. It is formally

defined as a ¼ fa1; . . . ;ang (where n is the number of coefficients in b). This prior is hierarchical since a hyper-prior over

the hyperparameters also needs to be defined. This includes both the variance terms for the prior, a, as well as the signal

noise variance r2. Instead of setting a prior over the variance directly, a prior is set over its inverse q ¼ r�2:

pðaÞ ¼
Y

M

i¼1

CðaÞ�1b
aaa�1e�ba ð16Þ
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pðqÞ ¼ CðcÞ�1d
cac�1e�dq ð17Þ

where C is the Gamma function and a; b and c; d are hyperparameters of the prior and noise variance respectively (Section 4.3

provides a small discussion on these). With the likelihood function of (14) and the prior of (15), the posterior distribution

over the parameters can be written using Bayes’ theorem as,

pðbjt;a;r2Þ ¼
pðtjb;r2ÞpðbjaÞ

pðtja;r2Þ
: ð18Þ

Using standard Gaussian identities, this yields a Gaussian distribution,

pðbjt;a;r2Þ ¼ N ðl;RÞ ð19Þ

where the mean and variance are given by,

R ¼ ðAþ r�2D>DÞ
�1

ð20Þ

l ¼ r�2
RD>t ð21Þ

A is a diagonal matrix with the elements of a along its diagonal. Eqs. (21) and (20) define the mean and covariance of the

coefficient vector b.

In order to make predictions with this model, one would wish to evaluate the distribution pðtIjt;a;r2Þ(where tI is a set of

testing data points), which can be shown to be a multivariate Gaussian with mean and covariance [6],

y
I
¼ Dl ð22Þ

VI ¼ r2 þ D>
RD ð23Þ

The predictive mean, defined by Eq. (22), is an intuitive application of the linear transformation that defines the sparse

coding problem through dictionary representation, defined earlier in Eq. (4). The predictive variance in Eq. (23) is the sum of

two terms: the signal noise, r2 and the predictive uncertainty, arising from the term D>
RD. It is clearly important to derive

an accurate estimate of the signal noise term as it can effectively dictate how much of the uncertainty in the prediction is

governed by measurement noise, and how much of it is explained by actual predictive uncertainty against the given dic-

tionary. This is effectively a problem of optimising the hyperparameters. For example, a trivial case would be to assume a

very high level of measurement noise, r2. In this setting, the error term, given by the likelihood function of Eq. (14) would

render bad predictions as being within the acceptable range.

So far, the key equations of the RVM have been laid out, leading to Eqs. (22) and (23) which allow one to make a predic-

tion over the mean and variance of a sparse coding problem. This leads directly to their application within a CS scheme. In

the sparse coding step, two aspects are missing so far, and are given in the following two subsections: the optimisation of the

hyperparameter terms r2 and a, and the formulation of the CS problem in terms of the RVM.

4.1. Hyperparameter optimisation

There are two hyperparameters that have a strong influence over the predictive distribution: a and r2. A completely

Bayesian approach would be to derive full posterior distributions over these, but this is not practical given that the integral

resulting in the formulation of pðb;a;r2jtÞ is intractable. The approach taken in [6] to solve this is to relax the requirement of

solving for a full distribution over fa;r2g, and instead optimise a point estimate. This approach is often called type-II max-

imum likelihood estimation, as one optimises the likelihood of the hyperparameters with respect to the data.

The problem is formulated as the maximisation of a (log) likelihood with respect to the parameters, and is given as

LðaÞ ¼ log pðtja;r2Þ ¼ log

Z 1

�1

pðtjb;r2ÞpðbjaÞdb ð24Þ

¼ �
1

2
½N log 2pþ jCj þ t>C�1t� ð25Þ

The C matrix in Eq. (24) represents the covariance function of the conditional distribution pðtja;r2Þ, and is defined as

C ¼ r2Iþ DA�1D> ð26Þ

The original RVM paper presents a procedure for finding the optimal a using this log likelihood based on the Expectation

Maximisation (EM) algorithm. EM is an iterative algorithm that maximises the likelihood of the parameters in the presence

of missing or latent variables. The algorithm (in [22]) is rather general and allows for formulation of a large class of optimi-

sation problems as iterative steps between evaluations of the expectation over the hidden variables, and updates to the

model parameters that guarantee an increase in the likelihood function at every step. While EM suffers from the lack of a

guarantee of a global optimum solution, this can be often alleviated in practice through a good, or informed, choice of initial

parameters. In the case of the RVM, however, the major drawback of the approach is that the matrix inversion required for C

in Eq. (25) has a computational complexity of OðN3Þ (where recall N is the number of measurement points). Because the
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application of CS effectively reduces the value of N, this implies a significant improvement in the computational complexity

during hyperparameter optimisation (as compared to a sparse coding without compression), where repeated inversion of C

is required. On the other hand, evaluation of the parameter covariance matrix, in Eq. (20) involves an inversion where the

computational complexity scales with OðK3Þ, where K is the number of basis functions, or columns of D. Usually, optimisa-

tion of the hyperparameters will involve evaluation of both of these quantities.

The requirement that CS places on the over-completeness of Dmakes this computational burden even worse, as it implies

that the better the dictionary gets at representing a broad class of signals, the computational burden will increase in a cubic

fashion. This places a limit on the number of basis vectors that are practical to use in D, in the case of sparse Bayesian learn-

ing, and this goes against the requirement for over-completeness.

The EM algorithm described in [6], includes a pruning step on every iteration, where any vector di in D that is deemed to

be ‘‘irrelevant” is removed from the set, so the effective number of columns of C is reduced. This pruning technique works

well, but it is still a top-down approach, where the first few iterations of the algorithm will still be computationally expen-

sive. Tipping himself devised a bottom-up approach in [21] where an iterative ‘‘fast” maximum likelihood estimation is pro-

vided for this class of sparse Bayesian models.

A fast approach to this marginal likelihood optimisation was developed in [21], and this is the approach adopted here for

the hyperparameter optimisation. The idea is to start with a single basis (column) vector, di from D and to iteratively add

and/or remove basis functions from the set of columns of D. Some relevant criteria are required to do so in a principled sense,

and in particular one that maximisesLðaÞ. Tipping achieves this by decomposing C (since this is the quantity of interest) into

two parts, so that,

C ¼ C�i þ a�1
i d

>
i di: ð27Þ

Here, C�i denotes the covariance matrix C without the contribution of the ith basis vector, di. In this form, the inverse and

determinant of the covariance can be written in the following convenient form,

jCj ¼ jC�1
�i jj1þ a�1

i d
>
i C

�1
�i dij ð28Þ

C�1 ¼ C�1
�i �

C�1
�i d

>
i diC

�1
�i

ai þ d
>
i C

�1
�i di

ð29Þ

This is helpful because it allows writing the likelihood function as the sum of the contribution of di and the set D�i that

excludes di as [21],

LðaÞ ¼ Lða�iÞ þ lðaiÞ ð30Þ

¼ Lða�iÞ þ
1

2
logai � logðai þ siÞ þ

q2
i

ai þ si

� �

ð31Þ

where for simplification of the above expression

si ¼ d
>
i C

�1
�i di ð32Þ

qi ¼ d
>
i C

�1
�i t: ð33Þ

These two terms are referred to in [21] as sparsity and quality factors respectively. The sparsity factor can be seen as a mea-

sure of how much di overlaps with the basis vectors already in the current model. The quality factor, qi, can be interpreted as

a measure of the discrepancy that di introduces to the error of the model exclusive of di.

It is shown in [23] based on an analysis of lðaiÞ that LðaÞ can be maximised with respect to ai, based on the following

conditions,

ai ¼
s2i

q2
i � si

if q2
i > si; ð34Þ

ai ¼ 1 if q2
i 6 si ð35Þ

This is an incredibly useful observation, from the point of view of sparsity and optimisation. Recall that ai represents the

inverse variance of the prior distribution over the model weights pðbjaÞ. A value of ai ¼ 1 implies that the weight for basis

di is infinitely peaked around zero, thus deeming it irrelevant. The iterative procedure for fast optimisation of LðaÞ described
in [21] therefore uses these observations in order to derive two important learning rules. For this, an ‘‘active set” R is defined,

which contains the set of vector deemed relevant. The two basic rules are:

� If di not in active set R, and q2
i > si, add di to R.

� If di already in R and q2
i 6 si, remove di from R.

The procedure is slightly more complicated than this, but based around these two learning rules. More details can be found

in [21]. Note that unlike other pursuit methods such as matching or basis pursuit [14,16], the ability of not only adding but

deleting basis vectors makes the greediness of the search for relevant vectors somewhat more optimal. In practice one could
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prioritise the deletion of basis vectors, yielding a more greedy algorithm that is computationally faster. On the other hand,

favouring the addition of basis vectors would yield an algorithm that is not greedy at all in the limit of the number of func-

tion evaluations, though this may not be computationally practical. In practice, the authors have found that accepting some

level of greediness by adopting an algorithm that favours subtraction works well in practice, provided one has a reasonably

good dictionary; this is further discussed in Section 5.

4.2. CS formulation with the RVM

The key ingredients in the formulation of a Bayesian CS scheme have been laid out and discussed, namely random trans-

formations and sparse coding, together with an efficient Bayesian formulation for sparse coding based on the RVM. This sec-

tion formally defines the procedure required for reconstructing a randomly compressed signal with an RVM and provides

some discussion over the issues one may encounter while applying this in practice.

So far, the RVM has been discussed in the general case of regression. Eq. (11) describes an input-output relationship

between x and y. In the CS case, one wishes to recover the underlying true signal based on an incomplete, or compressed

measurement which has been acquired through a random transformation of the original ‘‘true” signal, as described by Eq.

(5). With this in mind, the output of the basic RVM model, y in Eq. (11), can be set to the randomly transformed signal

y ¼ Ux, to give

Ux ¼
X

N

i¼1

/idiðxÞbi ð36Þ

where as before, the random transformation is given by U ¼ /1; . . . ;/M½ �. Using the productUD as a dictionary, a solution for

pðbjt;a;r2Þ can be found using the fast marginal likelihood optimisation procedure described in Section 4.1. Eqs. (21) and

(20) can be used to derive the mean and variance over the weights b, while Eqs. (22) and (23) can be used to reconstruct

the new signal.

There is an interesting point to be made regarding the evaluation of the resulting uncertainty over b and ultimately over

the predictions. When reconstructing a signal based on the compressed or incomplete measurements Ux, it is the product

UD that is passed as a dictionary to the sparse coder. In the RVM, the form of the covariance for the model weights b

becomes, from Eq. (20),

R ¼ ðAþ r�2ðUDÞ>ðUDÞÞ
�1

ð37Þ

Considering that A and r2 are hyperparameters, it can be safe to say a priori, that the uncertainty in b depends entirely on

UD. The random transformation U maps D from an N-dimensional ‘‘complete” space to an M-dimensional ‘‘compressed”

space. Based on the Johnson-Lindenstrauss lemma, the transformation U preserves pair-wise distances as long as M and

N stay within certain bounds. In other words, as long as M is not too low (not too much compression), then the information

in D will be well preserved in UD.

This process is visualised in Fig. 2, where the map from D toUD toUR is illustrated. The particular dictionary used for that

visualisation is a (truncated) k-means dictionary of ultrasound pulses, and U is a Gaussian random matrix. The visualisation

shows that the random transform effectively shrinks the rows of D. Because UD is not square any more, it is its pseudo-

D ΦD

R

r1 ri rp
N

K K

M

Fig. 2. Illustration of application of random transform to a dictionary and the selection of relevant vectors resulting from that transformation.
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inverse that needs to be invertible: exactly the product in Eq. (37). As the compression level grows (low M) so does the

‘‘aspect ratio” of UD. If all the columns of D were to be kept, this matrix would be ill-conditioned at relatively high M. This

is where keeping an active set, R, becomes useful. By choosing an active set of columns from the (transformed) dictionary,

UR, the RVM is basically keeping the problem invertible.

There will be a dimension below which Eq. (37) will not be suitable for inversion. However, the number of columns of R

will depend on the level of sparsity of the problem; on how many relevant vectors are chosen during the hyperparameter

optimisation step. Therefore, the effective level of compression will be limited by inherent level of sparsity in the signal,

and how well this is represented in the dictionary. If the specific signal reconstruction problem requires a high number of

columns of UD, but there are very few rows (high compression), then only the most relevant columns will be chosen that

keep UR well-conditioned (close to square). In general, if D represents the data well, choosing more columns will lead to

reconstructions with lower error, and vice versa. Therefore, this act of choosing an active set that keeps the problem well

conditioned can be seen as adjusting the accuracy of the solution to the level of compression. It will be shown in Section 6,

and in particular in Fig. 8 that higher levels of compression results in the selection of fewer relevant vectors.

Under very high levels of compression, the inversion in (37) will not be well defined and Rwill collapse. This will be illus-

trated in the poor predictions of the confidence interval on the top row of Fig. 7.

4.3. Relationship between Lasso and RVM

The RVM and the Lasso could be seen as different solutions to the same underlying Bayesian linear regression problem.

The RVM can be summarised as a Bayesian linear regression model that uses a hierarchical Gaussian prior in order to enforce

sparsity. It is not entirely obvious how this is the case and so this will be discussed here in more detail. Sparsity is induced

through the choice of a prior distribution that has most of its probability mass centred around zero. This implies that in the

absence of strong evidence to the contrary (in the form of a likelihood), the weight bi will be zero, and so the corresponding

column in D would be deemed ‘‘irrelevant”.

The prior for the RVM is defined by Eq. (15). On its own this prior, conditioned on the hyperparameters pðbjaÞ, is Gaussian
and does not, as such, encourage any sparsity. To see how sparsity is introduced, one has to marginalise out the weights pðbiÞ,

which leads to,

pðbiÞ ¼

Z

pðbijaiÞpðaiÞdai ð38Þ

where pðaiÞ is defined from Eq. (16) as a Gamma distribution. It is a fairly standard result that this integral over the product

of a Gaussian and a Gamma distribution yields a Student’s t distribution. This is a key point here, because a Student’s t dis-

tribution with low degrees of freedom places most of its probability mass around the centre and is thus a useful sparsity-

inducing prior. Recall the two sets of parameters of the Gamma distributions that describe the priors pðaÞ and pðqÞ in

Eqs. (16) and (17) respectively (a; b; c and d). These control the degrees of freedom of the Student’s t distribution resulting

from the integral in Eq. (38). In the case of pðaiÞ, setting a ¼ b ¼ 0 results in pðaiÞ / 1=jbij, which is a prior that is sharply

peaked around zero. With low values of a and b the resulting Student’s t distribution will still be sharply peaked around zero,

but increasing this significantly beyond one will result in the Student’s t loosing its concentration of mass around the centre.

In the limit of infinite values of the parameters, the Student’s t becomes a Gaussian distribution, and thus looses its sparsity-

inducing characteristics. For sparsity to be induced, a and b should be kept to as close to zero as machine precision allows.

In the case of c and dwhich control the (inverse) variance prior pðqÞ, their values should be kept to a small number so that

its posterior is dominated by the data rather than the prior. This is common practice when doing Bayesian modelling of

Gaussian distribution parameters [24].

On the other hand, the Lasso is the result of a Bayesian linear regression formulation with a Laplace prior [25]. The mode

of this formulation yields the l1-penalised linear regression optimisation given in (8). The issue with the Laplace prior is that

the resulting marginal likelihood is still intractable and so sampling or other approximation methods are required in order to

derive the full posterior. In contrast with the Student’s t prior, the Laplace distribution sets a prior pðbiÞ / expð�jbijÞ. Some

papers have been published concerning the problem of the Bayesian Lasso [26], or even Bayesian compressive sensing [27],

which take the Laplace prior approach, and normally involve some form of sampling in order to get the full posterior over b.

Fundamentally, the difference between the original compressive sensing formulation in terms of Lasso regression, and the

one given by the RVM is the choice of prior distributions. Fig. 3 illustrates this difference, comparing a Laplace, a Student’s t

and a Gaussian distribution. All three distributions in this comparison were generated so as to have the same variance. It is

clear that, compared with a Gaussian, both the Laplace and Student’s t place most of their probability mass around the cen-

tre. The Student’s t distribution is, however, much smoother than the Laplace distribution.

The application of the RVM as a sparse coding step in a CS setting has previously been carried out in [28], in an image

processing context, although no application or discussion over the benefits or issues of the probabilistic interpretation is

given.

The contribution the authors attempt to make with this paper is a thorough treatment of the probabilistic interpretation

of this CS framework, which involves a discussion of the signal reconstruction uncertainty estimates given by the RVM. The

reader will have by now noticed that the quantification of uncertainty depends on the given dictionary, so a discussion of

how different dictionary choices affect the signal reconstruction is imperative.
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5. Dictionary learning

It should be clear by now that the choice of dictionary used in any CS scheme predicates the quality of the signal esti-

mates. Broadly speaking, there are two strategies for dictionaries: data-based and model-based1. The field of sparse signal

representation started, in fact, from the idea of extending traditional model-based dictionaries (such as Fourier and wavelets),

to non-orthogonal, over-complete versions of these [14,16]. The idea of a model-based dictionary, however, is not restricted to

signal models and can be generalised to physical models as well. In the context of ultrasound signal representation, for example,

Lamb wave propagation models have been used to assemble dictionaries in a CS setting [29]. The advantage of defining a dic-

tionary based on a physical, or signal model is that it only requires some broad prior assumptions about the what the signal will

‘‘look like”, without the need for measurements to be taken a priori. This does mean that for the signal reconstruction to be

successful, the assumed functional forms present in D must be roughly correct, and this is where model-based dictionaries

may perform poorly.

The relevant model-based dictionary for the ultrasound examples given here is the windowed tone burst already dis-

cussed in Section 2.2.

If the measured signals are complex and their functional form cannot be easily summarised by simplistic mathematical

formulae, creating dictionaries based on available examples of what the data might look like may be a much better strategy.

This led to the development of dictionary learning strategies shortly after the ideas of sparse coding became available [30,31].

The use of dictionaries has already been discussed at length in the context of sparse coding for compressive sensing. How-

ever, this section focusses on the specific issue of the impact that the dictionary has on the Bayesian interpretation of CS. The

dictionary lies at the centre of the probability computations. In fact, it could be interpreted as defining the covariance struc-

ture of the data. Recall that the covariance of a data set X can computed using the matrix product,2

covðXÞ ¼
1

N
XX> ð39Þ

where N is the number of observations. From this, it is easy to see that in order to make reasonable predictions of the uncer-

tainty of the recovered signals, the structure of the product DD> should resemble that of XtX
>
t (where the subscript t denotes

the training set). A trivial way to assemble a dictionary would be to simply set D ¼ Xt as this would perfectly capture the

covariance of the training data set. It is trivial because it does not summarise or decompose the structure of the data in

any way. Using the training data matrix as a dictionary is also not a scalable solution since, as has already been discussed

in Section 4, even though the RVM scales well with low-dimensional representation, the inversion required in Eq. (20), to

compute the posterior covariance, scales with order OðN3Þ.

Fig. 4 illustrates this trivial dictionary for a training set assembled taking 2500 ultrasound pulses at random from the

C-scan data (representing a small subset of the entire data-set in this case). This will be used as an illustrative point of

comparison against other dictionary types. The reader can refer back to Section 1 in order to read Fig. 1 for an example of

a single ultrasound pulse, noting that (typically) there are two main reflections, from the front and a back wall. The front
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Fig. 3. Illustration of Student’s t and Laplace sparsity-inducing priors, against a Gaussian distribution. All three distributions are shown with a variance of

three.

1 The term ‘‘model-based” is used here to denote a dictionary assembled using either a mathematical or physical model
2 Assuming X has been centred, so that it has zero-mean
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wall reflection arrives almost always at the same time, and with high energy, whilst the back wall reflection changes its

arrival time depending on the local material characteristics, and is significantly attenuated. The dictionary entries (columns)

in Fig. 4 have been sorted in ascending order of their time-of-flight (TOF) index. This is to make the visualisation of the data

matrix interpretable; the columns on the left represent low TOF pulses, whilst the columns on the right represent higher TOF

indices. The result is a subtle shift of the second (back-wall) pulse as the index increases. On the right, Fig. 4 shows a

visualisation of the covariance structure of the dictionary. This simply shows the correlation structure between the different

sample indices of the signal.

Back to the dictionary learning discussion, there are two general ways in which one can force non-trivial summaries of

the data: through projection or clustering. The following two sections provide an overview of dictionary learning under these

two interpretations. However, the discussion will be focused around the problem of estimating good uncertainty bounds, so

the respective discussions will not go into a great amount of detail.

5.1. Projection interpretation

The early developments of dictionary learning [30–32] built on the idea of using projections of the data, inspired by mod-

els such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA). The projection interpretation to

dictionary learning uses the following generative model formulation,

x ¼ Dbþ g: ð40Þ

In this interpretation, D is the projection matrix, b is a latent, generative variable and g is the noise process. PCA learns an

interpretation of the model in Eq. (40) that forces the dictionary to be the set of eigenvectors of the data covariance matrix.

PCA achieves this through the assumption of a Gaussian, isotropic noise process, g, which in turn results in D being orthog-

onal. ICA overcomes this problem by effectively allowing the modelling of non-Gaussian noise, and a non-orthogonal repre-

sentation of D. However, both PCA and ICA are in breach of the condition of over-completeness required in CS.

The solution is then clearly to formulate a model that allows D to be over-complete. To the author’s knowledge, this was

first done in [30,31], by formulating the projection learning as a maximum likelihood problem with a key ingredient: enforc-

ing sparsity in b by placing a Laplace prior pðbÞ inside an iterative EM algorithm. This effectively adds sparse coding to the

learning step, thus forcing over-complete solutions to D. Other projection-based dictionary learning strategies follow similar

directions. A recent and fairly complete review of dictionary learning that covers the relevant developments up to 2011 can

be found in [33].

One of the most general and complete views of dictionary learning formulated so far is the online matrix factorisation

algorithm presented in [34]. A wide variety of projection algorithms can be cast as a matrix factorisation problem. A popular

example would be the formulation of PCA through a Singular Value Decomposition (SVD). The ideas presented in [34] are

shown to be general in the sense that minor modifications of the baseline online dictionary learning algorithm can lead

to other well-knownmodels such as sparse PCA and Non-negative Matrix Factorisation (NMF). However, the most important

point in [34] is that learning is formulated as an online, or mini-batch problem. This is an important computational aspect; if

the learning is sequential, only small batches of data need to be loaded into computer memory at any given time. This in turn
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Fig. 4. Left: Training data set, Xt , sorted by increasing time-of-flight index. Right: Data covariance, (square rooted and scaled by diagonal variance).
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means that learning scales gracefully to arbitrarily large quantities of data, which is crucial in applications where loading the

relevant training data into memory would not only be slow, but infeasible.

The following is a summary outline of the dictionary learning algorithm of Mairal et al. [34]. Dictionary learning algo-

rithms use the idea of optimising D against some empirical cost function that depends on both the data and the dictionary,

lðx;DÞ [31,30],

f ðDÞ ¼
X

N

i¼1

lðxi;DÞ: ð41Þ

Here, it makes sense to define lðx;DÞ as the l1 regularised cost function to the sparse coding problem [35], which has already

been discussed in 3.3,

lðx;DÞ , jjx� Dbjj22 þ kjjbjj1: ð42Þ

Doing this allows D to be over-complete, but it also means that the columns di, of D can grow to arbitrarily large values,

leading to very small values of b. To alleviate this, the optimisation of the cost function is defined with an extra constraint,

C, on the l2 norm of each di. This allows writing down the dictionary learning as a matrix factorisation problem,

minimise :
1

2
jjX� Dbjj22 þ kjjbjj1 s:tD 2 C: ð43Þ

Mairal et al. arrive at an efficient iterative sequential algorithm for this optimisation using several techniques. One is the

observation that minimising the expected cost, Ex lðx;DÞ½ �, provides computationally more efficient solutions, as stochastic

gradient optimisation schemes have high convergence rates against this expected cost [36].

The actual optimisation used is a sequential stochastic approximation that minimises a quadratic local surrogate of the

expected cost. The algorithm thus splits into two steps:

1. Estimate b using Dt�1 and sparse coding (where Dt�1 is the previous estimate of D during the sequential updates).

2. Update Dt using b.

In this case, one assumes that observations of xt are given sequentially at discrete time indices t. Also, D0 can be initialised in

a number of ways. However, if one assumes that there truly is no prior information about the process and the data will in fact

be presented to the algorithm in an online fashion, initialisation via a random matrix is a good choice for two reasons:

1. No prior information needs to be assumed.

2. Columns that remain as random vectors effectively absorb no information and can be pruned from the final dictionary.

Some readers may also notice that this update scheme is akin to the Expectation–Maximisation updates in an EM algo-

rithm. In fact, there is an online generalisation of the EM algorithms that presents an alternative, but similar formulation to

the same problem [37]. The key difference though is that these updates explicitly enforce a sparse solution in the ‘‘expecta-

tion” step.

This algorithm can be enhanced to represent other classes of models, but for the purposes of this paper, which is to dis-

cuss its applicability within a Bayesian CS framework, only the basic online dictionary algorithm has been used. Section 5.3

discusses some practical aspects and results of applying this within a CS framework.

5.2. Clustering interpretation

Clustering is a particular form of unsupervised learning that seeks to summarise the density of a multivariate data-set by

finding groups with certain similarities within a training set. One of the most popular clustering algorithms is k-means clus-

tering, owing to its simplicity, yet sound theoretical foundations; k-means can be seen as a special case of Gaussian mixture

modelling, which in turn means that there is an efficient EM formulation for a learning algorithmwith certain guarantees (an

increase in the likelihood of the parameters at every iteration of the algorithm).

The classical, text-book formulation of k-means clustering [38] seeks to find groups within a multivariate data set X that

minimise the Euclidean distance between every cluster centre lk and the (multivariate) data point xi that belongs to K. Clus-

tering is referred to as the task of finding an appropriate set of cluster centres that minimise an objective function. The task of

assigning a cluster class to a data point is often referred to as vector quantisation, and is defined as,

minj : jjxi � ljjj
2
2 ð44Þ

Vector quantisation seeks to represent an observation x using the closest cluster available to it. In this sense, it is clearly a

sparse coder, albeit an extreme one. The problem can even be formulated in the (now) familiar form,

x ¼ Dbþ g ð45Þ
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where now the columns of D contain the cluster centres, so that for notational convenience these are redefined here as

dj ¼ lj for j ¼ 1; . . . ;K½ �. The coefficient vector b is only allowed one non-zero entry, which is found using Eq. (44).

It is always interesting to relate two seemingly dissimilar models as special cases of a single general model. Such is the

case between projection and clustering, as pointed out by Roweis and Ghahramani [39], who explain a wide range of pro-

jection, clustering, filtering and smoothing problems under the general framework of linear Gaussian models. Based on this,

the obvious similarity between the projection and cluster models should not come as a strong surprise.

Similar observations have also been made regarding the similarity between the clustering and sparse coding problems

[32,40]. The specific value of k-means clustering as a dictionary learning strategy was recognised some years after the devel-

opment of the projection interpretations [41,42]. In particular, Aharon [42] formulated an iterative scheme that alternates

between a sparse coding step to solve for b (such as matching pursuit or l1 regularised regression) and an update step of

D based on SVD. The method is thus called k-SVD.

For the purposes of this paper, the authors have found that the text-book k-means implementation works perfectly well

in practice, and can be significantly more efficient than the k-SVD method, since efficient mini-batch and online implemen-

tations exist, which are also fairly straightforward to implement.

In classical clustering analysis, one seeks to find a set of clusters that represent the data density well; that split the data

into as many segments as possible, but without over-fitting. This is a crucial aspect of cluster learning. In the case of dic-

tionary learning, one wishes to learn a representation that is as over-complete as possible, and over-fitting is not a real risk

because the dictionary needs to be redundant. The key here is the redundancy in D required for a sparse solver to provide a

good approximation.

What this means in practice is that if two dictionary columns, dj and di provide equally good representations for the data,

a sparse coder will not weight equally between them, but will pick one and attempt to shrink the other as much as possible

towards zero.

Even though projection and clustering can have the same formulations, the constraints applied to D are still different and

thus yield different solutions. In clustering, there is no specific requirement for a decomposition of the data, whereas this

may be enforced in a projection setting. In certain cases, some projections have been found to be equivalent to clustering

models. For example, there is an equivalence between k-means and non-negative matrix factorisation [43].
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Fig. 5. Comparison of three different dictionaries for the ultrasound data-set a) model-based tone-burst, b) k-means clustering and c) online matrix

factorisation. The first column shows D while the second column shows DD> .
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5.3. Effect of dictionary choice on predictive uncertainty

As already discussed, a major feature of any Bayesian formulation of a statistical model is that the predictive distribution

encodes information about the uncertainty of the predictions. This section discusses the effects that the choice of dictionary

form can have on the predictive distribution.

The role that the dictionary plays in quantifying the uncertainty of the predictions is evident by revisiting Eqs. (22) and

(23), which define the predictive mean and covariance over the signal reconstruction, respectively. Note that the predictive

variance is a sum of two terms: VI ¼ r2 þ DRD>
;r2 encodes the measurement uncertainty while DRD> encodes the uncer-

tainty in the process (how well the data relates to the dictionary).

Fig. 5 illustrates three different dictionaries, derived for the ultrasound pulses discussed in Section 1:

1. Model based dictionary, consisting of shifted tone-bursts. As discussed in Section 2.2 this leads to a deconvolution prob-

lem for this specific application.

2. Clustering-based dictionary, assembled using a simple k-means algorithm.

3. Online matrix factorisation-based dictionary, derived using the algorithm in [34], and summarised above.

As in Fig. 4, on the left is the matrix D, sorted by increasing TOF index, while on the right the product DD> is shown to illus-

trate the covariance structure.3 Fig. 6 illustrates the difference in predictions using three different types of dictionaries. The

greyed-out area in Fig. 6 shows the process uncertainty, while the dashed line denotes the confidence intervals due to full terms

in Eq. (23) including measurement noise. The model-based dictionary is fairly bad at estimating the uncertainty both in terms of

measurement and process noise, but has a tendency to explain most of the uncertainty as measurement noise. The simple k-

means dictionary performs best in this particular example, having a tight confidence interval relating to the process noise

and a small additive measurement noise term. One reason for this is that the EM algorithm, used to train EM, runs with the

Fig. 6. Comparison of predictions on ultrasound data using three different dictionaries: a) model-based tone-burst, b) k-means clustering and c) online

matrix factorisation. Two different uncertainty bounds are shown: r1 shows predictive variance without the noise term, whilst r2 shows the result of the

additive noise term.

3 For visualisation purposes, the covariances have been scaled according to their diagonal variance and square-rooted. This better highlights the cross-

variance terms of each individual dimension and the square root removes the effect of the original squaring that happens in XX>
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full batch of data. The number of iterations over which the algorithm can ‘‘improve” is given by a tolerance on an increase in its

objective function. On the other hand, the number of iterations of the online matrix factorisation is given by the number of

training points, and it cannot improve beyond that. There is, however, nothing stopping one from iterating several times over

a training set, in order to achieve a better estimate.

One more point to highlight is that the online matrix factorisation algorithm has a tendency to leave unused columns as

they are found during initialisation. Therefore, if it is initialised with a random matrix with a low variance (relative to the

data, which should be scaled anyway), then it is easy to identify them and remove them in order to enhance signal recon-

struction performance with the RVM. In this example, these unused columns are evident on the right-hand side of the dic-

tionary in Fig. 5c. Note that this is advantageous given the computational burden of having unnecessary columns in a

dictionary.

6. Performance on ultrasound C-scan data

In this section, the performance of the Bayesian Compressive Sensing framework presented above is evaluated for the

particular application of estimating ultrasound waveforms on the type of C-scan data that was introduced in Section 1.

The interest here is focused on the reconstruction performance of the algorithm. Classically, this can be assessed simply

by analysing the reconstruction errors, using a measure such as a Mean Squared Error (MSE). However, because this is a

Bayesian CS scheme, reconstruction performance has to involve an assessment of the prediction uncertainty (confidence

intervals).

6.1. Experimental set-up and data acquisition on composite wing panel

A 1:2 m � 3 m composite panel was scanned using a six-axis robotic head, with a water coupled ultrasound probe. The

probe consists of 64 transducers, each of which fire a 5 MHz tone burst, and also act as receivers. The resolution of the scan

can be adjusted, but for these results, the speed of the probe was adjusted to yield a spatial resolution of 0.8 mm in the direc-

tion of the probe travel. The C-scan shown in Fig. 1c was generated using this data set, using a maximum autocorrelation to

estimate the TOF. Further details of this experimental technique have been published in [44], where the interested reader is

referred to for further details.

Fig. 7. Effect of compressed signal size and dictionary size on confidence intervals of an illustrative ultrasound pulse. This prediction uses a k-means

dictionary. m denotes the compressed dimension while K denotes the dictionary size. The original dimension was 1232 data points.
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From a signal processing point of view, the important points are that all of these signals contain information at a narrow

band around centred around 5 MHz, and the Nyquist frequency lies at just 25 MHz, so the problem is not oversampled. This

is an important point to make, given the problem of compression. It would be trivial to demonstrate a CS algorithm on a

problem that is significantly over-sampled, where the same (or a better) level of compression could be achieved by a simple

decimation without any loss of information. Sadly, this has been the case in some recent applications, for example [45].

In order to capture the range of different depths of this composite sample, an acquisition time of 24.64ls was used. This

equates to 1232 samples at a sample rate of 50 MHz. The original ultrasound pulses collected through the water-coupled

probe are susceptible to misalignment with respect to the arrival time of the first burst (the front wall reflection). This is

evident, for example, in the illustrative B-scan shown in 1b.

It would help both the dictionary learning and signal reconstruction steps if this misalignment could be removed as a pre-

processing step. This could be done with a simple threshold or via a more accurate and advanced onset estimation method

such as those presented in [8]. However, the results presented here have been derived without this correction, as it makes

matters a little bit more interesting given the variability in the alignment of the pulses.

Although this particular data-set is fairly large (32 million ultrasound pulses), it has been truncated for the purposes of

analysing the performance of the Bayesian CS scheme. More specifically, 5000 of these pulses have been selected at random

from the entire plate. From this set, half was used for training of dictionaries and half for testing. This yields two independent

training and testing data sets, consisting of 2500 ultrasound pulses each.

6.2. Results

It has already been illustrated through the examples in Section 5 that a signal can be reconstructed fairly accurately with

tight confidence intervals if one uses an appropriate data-driven dictionary learning strategy. It has been shown through

illustration how lower compression ratios lead to wider uncertainty bounds, as well as how a dictionary with more columns

will lead to a reduction of both reconstruction error and uncertainty. This was shown in Fig. 6.

This point is generalised in here, using the 2500 training and testing pulses as discussed above. Several metrics can be

extracted to show the overall reconstruction performance. Four different metrics are examined here:

1. Number of relevant vectors: this shows the level of sparsity selected by the algorithm.

Fig. 8. Compressed dimension, M against a) number of selected relevant vectors, b) ratio of measurement noise to process variance, c) normalised mean

squared error and d) log-likelihood. These metrics come from 500 randomly selected ultrasound pulses from the C-scan data of Fig. 1. The red line denotes

the median, while the colour-map represents the density for the 500 draws.
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2. Ratio of measurement noise to process variance: this outlines how much of the uncertainty is explained as simple mea-

surement noise relative to process noise.

3. Normalised mean squared error (NMSE): the NMSE gives an indication of the performance of the mean estimate, against

the true signal.

4. Compressed data log-likelihood, logL: this gives a measure of the predicted uncertainty.

Dictionary training was carried out using k-means clustering with 200 cluster centres on the training set of pulses. Fig. 8

shows a summary of the four different metrics evaluated on the testing set, for varying levels of compression, M. The plots

show a contour of the normalised density of that metric, with four levels, so that each colour represents a different quantile.

The red line that goes through the centre of the density represents the median of the metric. Note that values ofMwere used

in the range between 50 and 900.

There are many interesting points to observe from Fig. 8. The number of relevant vectors is a good place to start, as these

largely explain the rest of the results. As discussed in Section 4.2, high compression ratios (low M) lead to solutions in terms

of fewer relevant vectors, in order for the product UR (which defines the randomly projected set of active dictionary col-

umns) to be invertible. Using fewer dictionary columns to explain the signal leads to higher error and this is evident by

examination of the NMSE metric. The high error rates at high compression levels are a direct result of the low number of

relevant vectors. The average number of relevant vectors, using a solution without applying compression, is 150. Clearly,

Fig. 8a shows that the number of relevant vectors gets asymptotically closer to this value as M increases, which is a fairly

intuitive result.

The ratio of measurement noise to process variance, shown in Fig. 8b, tells an interesting story. The ratio is very high at

low values ofM. In fact, under aroundM ¼ 100, it says that most of the uncertainty in signals are explained as noise. This is a

direct result of the collapsing of the posterior covariance, R at low compression levels, which leads to a very small process

variance.

Finally, the data likelihood, shown in Fig. 8d shows very clearly how the problem becomes ill-posed under approximately

M ¼ 100, as it becomes unstable and multi-modal; otherwise it is nicely asymptotic as M increases.

7. Conclusions

This paper has presented a framework for performing Bayesian compressive sensing. The key point is that the sparse cod-

ing step can be solved as a Bayesian linear regression problem with a sparse prior, and the Relevance Vector Machine is well

suited to solve this problem efficiently. The main advantage of going through the trouble of the Bayesian formulation is that

unlike the traditional methods used in the sparse coding step of compressive sensing, a Bayesian approach offers automatic

tuning of the sparsity level, as well as an estimate of the uncertainty bounds of the signal reconstruction. It has been empha-

sised and demonstrated that using data-driven dictionaries, which capture the original variability in the data, is key to the

successful application of this method. The Bayesian CS scheme has been demonstrated in ultrasound signal processing appli-

cations, where data compression is a key to widespread application, but an appropriate understanding of the quality of the

reconstructed signals is also important, and this is given by the uncertainty quantification.
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