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Abstract We investigate popular trajectory-based algorithms inspired by biology and

physics to answer a question of general significance: when is it beneficial to reject

improvements? A distinguishing factor of SSWM (strong selection weak mutation), a

popular model from population genetics, compared to the Metropolis algorithm (MA),

is that the former can reject improvements, while the latter always accepts them. We

investigate when one strategy outperforms the other. Since we prove that both algo-

rithms converge to the same stationary distribution, we concentrate on identifying a

class of functions inducing large mixing times, where the algorithms will outperform

each other over a long period of time. The outcome of the analysis is the definition

of a function where SSWM is efficient, while Metropolis requires at least exponential

time. The identified function favours algorithms that prefer high quality improvements

over smaller ones, revealing similarities in the optimisation strategies of SSWM and

Metropolis respectively with best-improvement (BILS) and first-improvement (FILS)

local search. We conclude the paper with a comparison of the performance of these

algorithms and a (1,λ) RLS on the identified function. The algorithm favours the steep-

est gradient with a probability that increases with the size of its offspring population.

The results confirm that BILS excels and that the (1,λ) RLS is efficient only for large

enough population sizes.
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1 Introduction

The Strong Selection Weak Mutation (SSWM) algorithm is a recent randomised search

heuristic inspired by the popular model of biological evolution in the ‘strong selection,

weak mutation regime’ [14,15]. The regime applies when mutations are rare and

selection is strong enough such that new genotypes either replace the parent population

or are lost completely before further mutations occur [5,7].

The SSWM algorithm belongs to the class of trajectory-based search heuristics that

evolve a single trajectory of search points rather than using a population. Amongst

single trajectory algorithms, well-known ones are (randomised) local search, sim-

ulated annealing, the Metropolis algorithm (MA)—simulated annealing with fixed

temperature—and simple classes of evolutionary algorithms such as the well-studied

(1+1) EA and the (1+λ) EA. The main differences between SSWM and the (1+1) EA

is that the latter only accepts new solutions if they are at least as good as the previous

ones (a property called elitism), while SSWM can reject improvements and it may

also accept non-improving solutions with some probability (known as non-elitism).

This characteristic may allow SSWM to escape local optima by gradually descending

the slope leading to the optimum rather than relying on large, but rare, mutations to a

point of high fitness far away.

A recent study has rigorously analysed the performance of SSWM in comparison

with the (1 + 1) EA for escaping local optima [11]. The study only allowed SSWM to

use local mutations such that the algorithm had to rely exclusively on its non-elitism to

escape local optima, hence to highlight the differences between elitist and non-elitist

strategies. A vast class of fitness functions, called fitness valleys, was considered.

These valleys consist of paths between consecutive local optima where the mutation

probability of going forward on the path is the same as going backwards. However, the

valleys may have arbitrary length and arbitrary depth, where the length is measured

by the hamming distance while the depth is the maximal fitness difference that has to

be overcome.

The analysis revealed that the expected time of the (1 + 1) EA to cross the valley

(i.e. escape the local optimum) is exponential in the length of the valley while the

expected time for SSWM can be exponential in the depth of the valley.

However, other non-elitist trajectory-based algorithms such as the well-known

Metropolis algorithm have the same asymptotic runtime as SSWM on fitness val-

leys, independent of lengths and depths. While both algorithms rely on non-elitism

to descend the valleys, it is not necessarily obvious that the algorithms should have

the same runtime on the valleys, because they differ significantly in the probability of

accepting improving solutions. In particular, Metropolis always accepts improvements

while SSWM may reject an improving solution with a probability that depends on the

difference between the quality of the new and the previous solution.

In this paper we investigate SSWM and Metropolis with the goal of identifying

function characteristics for which the two algorithms perform differently. Given that

the main difference between the two is that SSWM may reject improvements, we aim

to identify a class of functions where it is beneficial to do so and, as a result, identify

an example where SSWM outperforms Metropolis.
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The roadmap is as follows. After introducing the algorithms precisely in the Pre-

liminaries section, we show in Sect. 3 that our task is not trivial by proving that both

algorithms converge to the same stationary distribution for equivalent parameters.

While this result seems to have been known in evolutionary biology [17] we are not

aware of a previous proof in the literature. In Sect. 4 we define a simple fitness function

(called 3 state model) where two possible choices may be made from the initial point;

one leading to a much larger fitness than the other. The idea is that, while Metropolis

should be indifferent to the choice, SSWM should pick one choice more often than

the other. Although this intuition is true, it turns out that, due to Metropolis’ ability of

escaping local optima, the mixing time for the 3 state model is small and afterwards

the two algorithms behave equivalently as proven in the previous section. In Sect. 5 we

extend the fitness function (leading to a 5 state model) by adding two more states of

extremely high fitness such that, once the algorithms have made their choice, the prob-

ability of escaping the local optima is very low. By tuning these high fitness points we

can either reward or penalise a strategy that rejects small improvements. We capitalise

on this by concatenating several 5 state models together (each of which we refer to as

a component) and by defining a composite function that requires that a high number of

correct choices are made by the algorithm. Then we show that for appropriate fitness

values of the different states, SSWM achieves the target of the function and Metropolis

does not with overwhelming probability. We complement our theoretical findings with

experiments which help to understand the complete picture.

In Sect. 6 we consider other common single trajectory based search algorithms to

compare their performance on the identified function class with SSWM and Metropo-

lis. The reason that SSWM outperforms Metropolis for the identified composite

function is that the former algorithm tends to favour the acceptance of search points on

the slope of largest uphill gradient while the latter algorithm accepts any improvement

independent of its quality. Hence, we expect that also other algorithms that prefer

improvements of higher quality over smaller ones (i.e., a characteristic often referred

to as exploitation) perform well on the composite function. To this end we consider the

well known Best-Improvement Local Search (BILS) algorithm that always selects the

neighbouring point of highest fitness and compare it with a less exploitational local

search strategy which accepts the first found improvement (FILS). Finally, we also

consider a classical single trajectory evolutionary algorithm that favours exploitation.

In order to achieve a fair performance comparison with SSWM and Metropolis we

consider the (1,λ) RLS algorithm which, like the former algorithms, uses non-elitism

and local mutations. The results show that BILS excels on the composite function

while the (1,λ) RLS only works for large enough population sizes.

This article extends a previous conference paper [10] that only focussed on the

comparison of SSWM and the Metropolis algorithm.

2 Preliminaries

As mentioned in the introduction, we will be considering trajectory-based heuristics.

The pseudo-code of Algorithm 1 considers algorithms with local mutations, i.e., only

search points that differ in one bit can be sampled. However, the new individual will
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be accepted or rejected according to a probability function known as the acceptance

probability pacc : R → [0, 1].

Algorithm 1 General trajectory-based Algorithm

Initialise x ∈ {0, 1}n

repeat

y ← flip uniformly at random one bit from x

∆ f = f (y) − f (x)

Choose r ∈ [0, 1] uniformly at random

if r ≤ pacc(∆ f ) then

x ← y

end if

until stop

Two important characteristics of the acceptance probability are how detrimental and

beneficial moves are dealt with. Elitist algorithms such as RLS will directly reject any

worsening move and accept any improving search point. Hence, an elitist trajectory-

based algorithm will not be able to escape local optima.

To avoid this weakness, the algorithm must relax its selection strength. This is the

case in the Metropolis [9] algorithm where detrimental moves are allowed with some

probability, depending on the temperature 1/α. However, improvements will always

be accepted regardless of their magnitude:

pMA
acc (∆ f ) =

{

1 if ∆ f ≥ 0

eα∆ f if ∆ f < 0
(1)

To investigate the other main characteristic of non-elitism, allowing the rejection of

improvements, we will study a recently introduced algorithm [11,15,16] based on

the so called SSWM evolutionary regime from Population Genetics (PG). Within this

regime a new genotype will eventually take over of a population of size N ∈ N
+

or become extinct according to the following expression. This formula depends on

the fitness difference ∆ f and a scaling factor β ∈ R
+ [7]. To cast this regime as an

algorithm we simply use the following acceptance probability in Algorithm 1. For

∆ f �= 0 we define

pSSWM
acc (∆ f ) = pfix(∆ f ) =

1 − e−2β∆ f

1 − e−2Nβ∆ f
(2)

and pSSWM
acc (0) := lim∆ f →0 pSSWM

acc (∆ f ) = 1/N . Figure 1 presents an example of

these two acceptance probabilities. We observe how both algorithms treat worsen-

ing moves similarly. The main difference arises when dealing with improvements.

Unlike Metropolis, SSWM will prefer to keep the current search point against a small

improvement (until values of ∆ f that make pfix ≥ 1/2). However when the fitness

difference is large enough the algorithm will be satisfied to move to the new solution.

This is the crucial feature that we will be exploiting in the following sections.
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∆f

−1−2−3

1

0

pacc

1 2 3

(1+1) EA

1/N

SSWMMetropolis

Fig. 1 Acceptance probability for the (1+1) EA (blue solid line), Metropolis (red dotted line) and SSWM

(green dashed line) (Color figure online)

3 A Common Stationary Distribution

We first show that SSWM and Metropolis have the same stationary distribution, starting

by briefly recapping the foundations of Markov chain theory and mixing times (see,

e. g. [1,6,8]). A Markov chain is called irreducible if every state can be reached from

every other state. It is called periodic if certain states can only be visited at certain

times; otherwise the chain is aperiodic. Markov chains that are both irreducible and

aperiodic are called ergodic and they converge to a unique stationary distribution π .

Theorem 1 Consider SSWM and Metropolis with local mutations over a Markov

chain with states x ∈ {0, 1}n and a fitness function f : {0, 1}n → R. Then the

stationary distribution of such process will be

π(x) =
eγ f (x)

Z

where Z =
∑

x∈{0,1}n eγ f (x) and γ = 2(N − 1)β in the case of SSWM and γ = α for

Metropolis.

Proof First note that the acceptance probability of Metropolis has the following

property: pacc(∆ f )/pacc(−∆ f ) = eγ∆ f . This relation is also true for SSWM with

γ = 2β(N − 1) (Lemma 2 in [15]). The stationary condition for a distribution π(x)

can be written as (cf. Proposition 1.19 in [8])

π(x) · p(x → y) = π(y) · p(y → x), for all x, y ∈ {0, 1}n

where p(x → y) is the probability of moving to state y given that the current state

is x . Therefore

π(x) · p(x → y)

=
eγ f (x)

Z
·

1

n
· pacc( f (y) − f (x))
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=
eγ f (x)

Z
·

1

n
·

pacc( f (y) − f (x))

pacc( f (x) − f (y))
· pacc( f (x) − f (y)),

since pacc(∆ f )/pacc(−∆ f ) = eγ∆ f we obtain

π(x) · p(x → y) =
eγ f (x)

Z
·

1

n
· eγ ( f (y)− f (x)) · pacc( f (x) − f (y))

=
eγ f (y)

Z
·

1

n
· pacc( f (x) − f (y))

= π(y) · p(y → x).

⊓⊔

The distance between the current distribution and the stationary distribution is

measured as follows by the total variation distance. For two distributions µ and ν on

a state space Ω it is defined as

||µ − ν|| =
1

2

∑

x∈Ω

|µ(x) − ν(x)| = max
A⊆Ω

|µ(A) − ν(A)|

where the last equality is well known (see, e. g. Proposition 4.2 in [8]). Now the mixing

time is defined as the first point in time where the total variation distance decreases

below 1/(2e) (the constant 1/(2e) being a somewhat arbitrary choice in [20]).

Definition 1 (Mixing time [20]) Consider an ergodic Markov chain starting in x

with stationary distribution π . Let p
(t)
x denote the distribution of the Markov chain

after t steps. Let tx (ε) be the time until the total variation distance between the

current distribution and the stationary distribution has decreased to

ε: tx (ε)= min{t : ||p
(t)
x − π || ≤ ε}. Let t (ε) := maxx∈Ω tx (ε) be the worst-case time

until this happens.

The mixing time tmix of the Markov chain is then defined as tmix := t (1/(2e)).

After the mixing time, both algorithms will be close to the stationary distribution,

hence any differing behaviour can only be shown before the mixing time. In the

following, we aim to construct problems where the mixing time is large, such that

SSWM and Metropolis show different performance over a long period of time. In

particular, we seek to identify a problem where the expected first hitting time of

SSWM is less than the mixing time.

4 A 3 State Model

We first introduce a fitness function defined on 2 bits. We will analyse the behaviour of

SSWM and Metropolis on this function, before proceeding (in Sect. 5.1) to concatenate

n copies of the fitness function to create a new function where SSWM drastically

outperforms Metropolis.

The idea is simple: we start in a search point of low fitness, and are faced with two

improving moves, one with a higher fitness than the other. This construction requires
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3

(x1x2)

01 00 10

Fig. 2 Diagrams of the relevant nodes of f
a,b
3 (x1x2) at the genotype and phenotype level

3 search points, which are embedded in a 2-dimensional hypercube as shown in Fig. 2.

The 4th possible bitstring will have a fitness of −∞, making it inaccessible for both

Metropolis and SSWM. As common in evolutionary computation, we sometimes refer

to the model states as phenotypes and their bitstring encoding as genotypes.

Considering the 3 relevant nodes of the Markov Chain, they form a valley structure

tunable through two parameters a and b representing the fitness difference between

the minimum and the local and global optimum respectively.

Definition 2 (3 state model) For any b > a > 0 and a bit-pair {0, 1}2 the 3 state

model f
a,b
3 assigns fitness as follows:

f
a,b
3 (01) = a, (state 1)

f
a,b
3 (00) = 0, (state 2)

f
a,b
3 (10) = b, (state 3)

and f
a,b
3 (11) = −∞.

This model is loosely inspired by a two-locus (two bit) Dobzhansky–Muller incom-

patibility model [13,21] in population genetics, where starting from an initial genotype

(00 with fitness 0) there are two beneficial mutations (genotypes 01 with fitness a > 0

and 10 with fitness b > 0), but both mutations together are incompatible (genotype

11 with fitness −∞).

This model is well suited for our purposes as Metropolis is indifferent to the choice

of the local optimum (fitness a > 0) and the global optimum (fitness b > a), hence it

will make either choice from state 00 with probability 1/2. SSWM, on the other hand,

when parameterised accordingly, may reject a small improvement of fitness a more

often than it would reject a larger improvement of b > a. Hence we expect SSWM to

reach the global optimum with a probability larger than 1/2 in just a relevant step (an

iteration excluding self-loops). We make this rigorous in the following.

Since the analysis has similarities with the classical Gambler’s Ruin problem (see

e.g. [3]) we introduce similar concepts to the ruin probability and the expected duration

of the game.
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Definition 3 (Notation) Consider a Markov Chain with only local probabilities

P(X t+1 = j | X t = i) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

qi if j = i − 1

si = 1 − qi − pi if j = i

pi if j = i + 1

0 if j /∈ {i − 1, i, i + 1}.

Then, we define absorbing probabilities ρi as the probabilities of hitting state k before

state 1 starting from i . Equivalently, we define expected absorbing times E (Tk∨1 | i)

as the expected hitting times for either state 1 or k starting from i .

Note that this definition may differ from the standard use of absorbing within

Markovian processes. In our case the state k has an absorbing probability, but the state

itself is not absorbing since the process may keep moving to other states.

The following lemma derives a closed form for the just defined absorbing proba-

bility, both for the general scheme, Algorithm 1, and for two specific algorithms. The

obtained expression of ρ2 = p2/(p2 + q2) is simply the conditional probability of

moving to the global optimum p2 given that the process has moved, hence the factor

p2 + q2 = 1 − s2 in the denominator.

Theorem 2 Consider any trajectory-based algorithm that fits in Algorithm 1 on f
a,b
3

starting from state 2. Then the absorbing probability of state 3 is

ρ2 =
p2

p2 + q2
.

And for Metropolis and SSWM (N ≥ 2) it is

ρMA
2 =

1

2
ρSSWM

2 =
pfix(b)

pfix(b) + pfix(a)
>

1

2
.

Proof Let us start expressing the absorbing probability with a recurrence relation:

ρ2 = p2ρ3 + q2ρ1 + (1 − p2 − q2)ρ2. Using the boundary conditions ρ3 = 1 and

ρ1 = 0 we can solve the previous equation yielding ρ2 = p2/(p2 + q2).

The result for Metropolis follows from introducing p2 = q2 since both probabilities

lead to a fitness improvement. For SSWM the mutational component of p2 and q2

cancels out, yielding only the acceptance probabilities. Finally the lower bound of 1/2

is due to state 3 having a fitness b > a. ⊓⊔

Note that SSWM’s ability to reject improvements resembles a strategy of best improve-

ment or steepest ascent [18]: since the probability of accepting a large improvement is

larger than the probability of accepting a small improvement, SSWM tends to favour

the largest uphill gradient. Metropolis, on the other hand, follows the first slope it

finds, resembling a first ascent strategy.

However, despite these different behaviours, we know from Theorem 1 that both

algorithms will eventually reach the same state. This seems surprising in the light of
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Theorem 2 where the probabilities of reaching the local versus global optimum from

the minimum are potentially very different.

This seeming contradiction can be explained by the fact that Metropolis is able to

undo bad decisions by leaving the local optimum and going back to the starting point.

Furthermore, leaving the local optimum has a much higher probability than leaving the

global optimum. In the light of the previous discussion, Metropolis’ strategy in local

optima resembles that of a shallowest descent: it tends to favour the smallest downhill

gradient. This allows Metropolis to also converge to the stationary distribution by

leaving locally optimal states.

We show that the mixing time is asymptotically equal to the probability of accepting

a move leaving the local optimum, state 1. Note that asymptotic notation is used with

respect to said probability, as the problem size is fixed to 2 bits. To be able to bound

the mixing time using Theorem 1.1 in [2], we consider lazy versions of SSWM and

Metropolis: algorithms that with probability 1/2 execute a step of SSWM or MA,

respectively, and otherwise produce an idle step. This behaviour can also be achieved

for the original algorithms by appending two irrelevant bits to the encoding of f
a,b
3 .

Another assumption is that the algorithm parameters are chosen such that π(3) ≥

1/2. This is a natural assumption as state 3 has the highest fitness, and it is only violated

in case the temperature is extremely high.

Theorem 3 The mixing time of lazy SSWM and lazy Metropolis on f
a,b
3 is

Θ(1/pacc(−a)), provided b > a > 0 are chosen such that π(3) ≥ 1/2.

Proof We use the transition probabilities from Fig. 2. According to Theorem 1.1 in [2],

if π(3) ≥ 1/2 then the mixing time of the lazy algorithms is of order Θ(t) where

t =
1

p1
+

π(1) + π(2)

π(2)p2

As p1 = 1/2 · pacc(−a) this proves a lower bound Ω(1/pacc(−a)). For the upper

bound, we bound t from above as follows, using π(1)p1 = π(2)q2 (the stationary

distribution is reversible):

t =
1

p1
+

π(1) + π(2)

π(2)p2

=
1

p1
+

π(1)

π(2)p2
+

1

p2

=
1

p1
+

q2

p2
·

1

p1
+

1

p2

≤
3

p1

as q2/p2 = pacc(a)/pacc(b) ≤ 1 and p2 ≥ p1. Recalling that p1 = 1/2 · pacc(−a)

completes the proof. ⊓⊔
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4.1 Experiments

We performed experiments to see the analysed dynamics more clearly. To this end,

we considered a concatenated function

f (X) =

n
∑

i=1

f
a,b
3 (xi )

consisting of n copies of the 3 state model (i.e. n components) xi with 1 ≤ i ≤ n, such

that the concatenated function f (X) returns the sum of the fitnesses of the individual

components. Note that 2n bits are used in total. In our experiments, we chose n = 100

components.

In the case of SSWM we considered different population sizes N = (10, 100) and

scaling parameter values β = (0.01, 0.1). For Metropolis we choose a temperature of

1/α, such that α = 2(N − 1)β. This choice was made according to Theorem 1 such

that both algorithms have the same stationary distribution. The algorithms are run for

10,000 iterations. The fitness values for states representing local and global optimum

are chosen as a = 1 and b = 10 respectively. We record the average and standard

deviations of the number of components in the local and global optimum for 50 runs.

Figure 3 shows the number of components optimised (at both state 1 or state 3)

for SSWM and MA. As suggested by Lemma 2, we observe on the left graph how

SSWM (green curve) outperforms MA which only optimises correctly half of the

components (purple curve). However, we know from Theorem 1 that both algorithms

will eventually reach the same state. This is shown on the right plot of Fig. 3 where the

temperature was increased to facilitate the acceptance of worsening moves by MA.

Fig. 3 Performance of SSWM with N = 100 and β = 0.1 (left) and N = 10 and β = 0.01 (right) on

100 concatenated components of the 3 state model. For Metropolis the temperature was chosen such that

α = 2(N − 1)β in both cases. The average number of components (± one standard deviation) in the global

and local optimum are plotted for SSWM and for Metropolis with colours red, green, purple and cyan

respectively (Color figure online)
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The reason why the limit behaviour is only achieved on the right hand plot of Fig. 3

is that the mixing time is inversely proportional to pacc(−a) (Theorem 3), which in

turn depends on a and the parameters of SSWM and MA. If the temperature is low

(large α), the algorithms show a different behaviour before the mixing time, whereas

if the temperature is high (small α), the algorithms quickly reach the same stationary

distribution within the time budget given.

5 A 5 State Model

We saw in the previous section how two algorithms with different selection operators

displayed the same limit behaviour. Moreover the mixing time was small for both

algorithms despite the asymmetric valley structure of the function. This asymmetry

favoured moving towards the steepest slope, a landscape feature from which SSWM

benefits and Metropolis is indifferent. However this feature also implied that it was

easier climbing down from the shallowest slope, and Metropolis successfully exploits

this feature to recover from wrong decisions.

Making use of these results we build a new function where the previous local

optimum will now be a transition point between the valley and the new local optimum.

We will assign an extremely large fitness to this new search point. In this this way

we lock in bad decisions made by any of the two algorithms. In the same way, if the

algorithm moves to the previous global optimum we offer a new search point with the

highest fitness.

This new 5 state model is shown in Fig. 4, along with its encoding of genotypes in

a 3-dimensional hypercube.

Definition 4 (5 state model) For any M ′ > M ≫ b > a > 0, with M ′ − b > M − a

and a search point x ∈ {0, 1}3 the 5 state model f
M,a,b,M ′

5 assigns fitness as follows

f
M,a,b,M ′

5 (011) = M, (state 1)

f
M,a,b,M ′

5 (001) = a, (state 2)

f
M,a,b,M ′

5 (000) = 0, (state 3)

f
M,a,b,M ′

5 (100) = b, (state 4)

f
M,a,b,M ′

5 (110) = M ′ (state 5)

and f
M,a,b,M ′

5 (010) = f
M,a,b,M ′

5 (101) = f
M,a,b,M ′

5 (111) = −∞.

Let us consider the Markov chain with respect to the above model. For simplicity

we refer to states with the numbers 1–5 as in the above description.

Again, we will compute the absorbing probability for the global optimum (state 5

or 110 of the Markov Chain). Note that by choosing very large values of M and M ′, we

can make the mixing time arbitrarily large, as then the expected time to leave state 1

or state 5 becomes very large, and so does the mixing time.
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Fig. 4 Diagrams of the relevant nodes of f
M,a,b,M ′

5
at the genotype and phenotype level

For simplicity we introduce the following conditional transition probabilities Qi

and Pi for each state i as

Pi :=
pi

pi + qi

Qi :=
qi

pi + qi

. (3)

By using this notation the following lemma derives a neat expression for the absorption

probability ρ3 = P3 P4/(Q2 Q3 + P3 P4). This formula can be understood in terms

of events that can occur in 2 iterations starting from state 3. Since Q and P are

conditioning on the absence of self-loops there will be only 4 events after 2 iterations,

whose probabilities will be {Q3 Q2, Q3 P2, P3 Q4, P3 P4}. Therefore the expression

ρ3 = P3 P4/(Q2 Q3 + P3 P4) is just the success probability over the probability space.

Lemma 4 Consider any trajectory-based algorithm that fits in Algorithm 1 on

f
M,a,b,M ′

5 starting from the node 3. Then the absorbing probability for state 5 is

ρ3 =
P3 P4

Q2 Q3 + P3 P4
.

Proof Firstly we compute the absorbing probabilities,

ρ1 = 0

ρ2 = p2ρ3 + q2ρ1 + (1 − p2 − q2)ρ2

ρ3 = p3ρ4 + q3ρ2 + (1 − p3 − q3)ρ3

ρ4 = p4ρ5 + q4ρ3 + (1 − p4 − q4)ρ4

ρ5 = 1
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which can be rewritten using Pi and Qi from Eq. (3) and the two boundary conditions

as

ρ2 = P2ρ3

ρ3 = P3ρ4 + Q3ρ2

ρ4 = P4 + Q4ρ3.

Solving the previous system for ρ3 yields ρ3 = P3 · (P4 + Q4ρ3) + Q3 P2ρ3 which

leads to

ρ3 =
P3 P4

1 − Q3 P2 − P3 Q4
.

Introducing Q3 = 1 − P3, P2 = 1 − Q2 and Q4 = 1 − P4 in the denominator yields

the claimed statement. ⊓⊔

Now we apply the previous general result for the two studied heuristics. First, for

Metropolis one would expect the absorbing probability to be 1/2 since it does not

distinguish between improving moves of different magnitudes. However, it comes as

a surprise that this probability will always be > 1/2. The reason is again due to the

fitness dependent acceptance probability of detrimental moves.

Theorem 5 Consider MA starting from state 3 on f
M,a,b,M ′

5 . Then the absorbing

probability for state 5 is

ρMA
3 =

1 + e−αa

2 + e−αa + e−αb
>

1

2
.

Proof First let us compute the two conditional probabilities

Q2 =
1

1 + e−αa
, P4 =

1

1 + e−αb
.

Now we invoke Lemma 4 but with P3 = Q3 = 1/2 since Metropolis does not

distinguish slope gradients. Hence,

ρ3 =
P4

Q2 + P4
=

1/
(

1 + e−αb
)

1/
(

1 + e−αa
)

+ 1/
(

1 + e−αb
) =

1 + e−αa

2 + e−αa + e−αb
.

Finally, using a < b, it follows that ρMA
3 > 1/2. ⊓⊔

Finally, for SSWM we were able to reduce the complexity of the absorbing proba-

bility to just the two intermediate points (states 2 and 4) between the valley (state 3)

and the two optima (states 1 and 5). The obtained expression is reminiscent of the

absorbing probability on the 3 State Model (Theorem 2). However, it is important to

note that a and b were the fitness of the optima in f
a,b
3 and now they refer to the

transition nodes between the valley and the optima.
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Theorem 6 Consider SSWM (N ≥ 2) starting from state 3 on f
M,a,b,M ′

5 . Then the

absorbing probability of state 5 is

ρSSWM
3 ≥

pfix(b)

pfix(b) + pfix(a)
>

1

2
.

Proof Let us start by computing the probabilities required by Lemma 4.

P4 =
1

1 + pfix(−b)/pfix(M ′ − b)
Q2 =

1

1 + pfix(−a)/pfix(M − a)

P3 =
1

1 + pfix(a)/pfix(b)
Q3 =

1

1 + pfix(b)/pfix(a)

Let us now focus on the term Q2 Q3/(P3 P4):

Q2 Q3

P3 P4
=

(

1 +
pfix(−b)

pfix(M ′−b)

)

(

1 +
pfix(−a)

pfix(M−a)

) ·

(

1 +
pfix(a)
pfix(b)

)

(

1 +
pfix(b)
pfix(a)

)

the last term is of the form (1 + x)/(1 + 1/x) = x , hence it can be highly simplified

to just pfix(a)/pfix(b), yielding

Q2 Q3

P3 P4
=

(

1 +
pfix(−b)

pfix(M ′−b)

)

(

1 +
pfix(−a)

pfix(M−a)

) ·
pfix(a)

pfix(b)

since 0 < pfix(−b) < pfix(−a) < pfix(M − a) < pfix(M ′ − b) < 1, we can bound

pfix(−b)/pfix(M ′ − b) ≤ pfix(−a)/pfix(M − a) to obtain

Q2 Q3

P3 P4
≤

(

1 +
pfix(−a)

pfix(M−a)

)

(

1 +
pfix(−a)

pfix(M−a)

) ·
pfix(a)

pfix(b)
=

pfix(a)

pfix(b)
.

Substituting this in Lemma 4 leads to

ρ3 =
1

1 + Q2 Q3/(P3 P4)
≥

1

1 + pfix(a)/pfix(b)
=

pfix(b)

pfix(b) + pfix(a)
.

Finally, using b > a we obtain the lower bound of 1/2. ⊓⊔

5.1 An Example Where SSWM Outperforms Metropolis

We now consider a smaller family of problems f
M,1,10,M ′

5 and create an example

where SSWM outperforms Metropolis. In this simpler yet general scenario we can
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compute the optimal temperature for Metropolis that will maximise the absorbing

probability ρMA
3 .

Lemma 7 Consider Metropolis on f
M,1,10,M ′

5 starting from state 3. Then for any

parameter α ∈ R
+ the absorbing probability ρMA

3 of state 5 can be bounded as

ρMA
3 (α) ≤ ρMA

3 (α∗) < 0.63

where α∗ = 0.312 . . . is the optimal value of α.

Proof Introducing the problem settings (a = 1 and b = 10) in the absorbing proba-

bility from Theorem 5 yields

ρMA
3 (α) =

1 + e−α

2 + e−α + e−10α

whose derivative is

dρMA
3 (α)

dα
=

e9α
(

10eα − e10α + 9
)

(

e9α + 2e10α + 1
)2

.

By solving numerically this equation for d(ρMA
3 (α))/dα = 0 with α > 0 we obtain an

optimal value of α∗ = 0.312071 . . . which yields the maximum value of ρMA
3 (α∗) =

0.623881 . . . (see Fig. 5). ⊓⊔

Now that we have shown the optimal parameter for Metropolis, we will find param-

eters such that SSWM outperforms Metropolis. To obtain this we must make use of

SSWM’s ability of rejecting improvements. We wish to identify a parameter setting

such that small improvements (∆ f = a = 1) are accepted with small probabilities,

while large improvements (∆ f = b = 10) are accepted with a considerably higher

probability. The following graph shows pfix for different values of β. While for large β,

pfix(1) and pfix(10) are similar, for smaller values of β there is a significant difference.

ρMA
3

α

0.63

0.5

0.312 1 2

Fig. 5 Absorbing probability of Metropolis on the 5-state model
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pfix

∆f
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0.5

0 a = 1 2.5 5 7.5 b = 10

Fig. 6 Acceptance probability of SSWM with N = 20 and β = (0.2 , 2 , 4) for the (green, blue, red)

curves (Color figure online)

Furthermore we can see that pfix(1) ≤ 1/2 i.e. the algorithm will prefer to stay in the

current point, rather than moving to the local optimum.

In the following lemma we identify a range of parameters for which the desired

effect occurs. The results hold for arbitrary population size, apart from the limit case

N = 1 where SSWM becomes a pure random walk. The scaling factor β is the crucial

parameter; only small values up to 0.33 will give a better performance than Metropolis.

Lemma 8 Consider SSWM on f
M,1,10,M ′

5 starting from state 3. Then for β ∈ (0, 0.33]

and N ≥ 2 the absorbing probability ρSSWM
3 of state 5 is at least 0.64.

Proof Using the bound on ρSSWM
3 from Theorem 6 with a = 1 and b = 10 we obtain

ρSSWM
3 ≥

pfix(10)

pfix(1) + pfix(10)
=

1

1 + pfix(1)/pfix(10)
.

We want to show that ρSSWM
3 ≥ 0.64, which is equivalent to pfix(1)/pfix(10) ≤

1/0.64 − 1 = 9/16. For that, we use the following bounds from Lemma 1 in [15]: for

all ∆ f > 0,

2β∆ f

1 + 2β∆ f
≤ pfix(∆ f ) ≤

2β∆ f

1 − e−2Nβ∆ f
.

Using these two inequalities for ∆ f = 1 and ∆ f = 10 respectively, we obtain

pfix(1)

pfix(10)
≤

2β

1 − e−2Nβ
·

1 + 20β

20β
=

1 + 20β

10
(

1 − e−2Nβ
) ≤

1 + 20β

10
(

1 − e−4β
) ,

where in the last step we have used N ≥ 2. The obtained expression is always increas-

ing with β > 0, hence we just need to find the value β∗ for when it crosses our threshold

value of 9/16. Solving this numerically we found that the value is β∗ = 0.332423 . . .,

and the statement will be true for β values up to this cut off point (see Fig. 6). ⊓⊔

Now that we have derived parameter values for which SSWM has a higher absorb-

ing probability on the 5 state model than Metropolis for any temperature setting 1/α

(Lemma 7), we are ready to construct a function where SSWM considerably outper-

forms Metropolis. We first define a concatenated function

f (X) =

n
∑

i=1

f
M,a,b,M ′

5 (xi )
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consisting of n copies of the 5 state model (i.e. n components) xi with 1 ≤ i ≤ n, such

that the concatenated function f (x) returns the sum of the fitnesses of the individual

components. Note that 3n bits are used in total. To ensure that the algorithms take long

expected times to escape from each local optimum we set M = n and M ′ = 2n for

each component xi , apart from keeping a = 1 and b = 10, for which the absorbing

probabilities from Lemmas 7 and 8 hold. Furthermore, we assume 2β(N −1) = Ω(1)

to ensure that SSWM remains in states 1 or 5 for a long time.

Theorem 9 The expected time for SSWM and Metropolis to reach either the local or

global optimum of all the components of f
n,1,10,2n
5 is O(n log n). With overwhelming

probability 1 − e−Ω(n), SSWM with positive constant β < 0.33 and N ≥ 2 has

optimised correctly at least (639/1000)n components while Metropolis with optimal

parameter α = 0.312 . . . has optimised correctly at most (631/1000)n components.

The expected time for either algorithm to increase (or decrease) further the number

of correctly optimised components by one is at least eΩ(n).

Proof The expected time to reach either of the states 5 or 1 on the single-component

5 state model is a constant c for both algorithms. Hence, the first statement follows

from an application of the coupon collector where each coupon has to be collected c

times [12]. The second statement follows by straightforward applications of Chernoff

bounds using that each component is independent and, pessimistically, that SSWM

optimises each one correctly with probability 640/1000 (i.e., Lemma 8) and Metropo-

lis with probability 630/1000 (i.e., Lemma 7). The final statement follows because

both algorithms with parameters Ω(1) accept a new solution, that is Ω(n) worse, only

with exponentially small probability. ⊓⊔

As the absorbing probabilities of SSWM and Metropolis are both constants, with

that of SSWM being higher than that of MA, we expect SSWM to achieve a higher

fitness. We can amplify these potentially small differences by defining an indicator

function returning 1 if at least a certain number of components are optimised correctly

(i.e. state 110 is found) and 0 otherwise:

g(X) :=

{

1 if at least 0.635n components are in the global optimum state

0 otherwise.

We use this to compose a function h where with overwhelming probability SSWM is

efficient while Metropolis is not:

h(X) = f (X) · (1 − g(X)) + 2nM ′ · g(X)

Note that h(X) = f (X) while the indicator function g(X) returns 0, and h attains a

global optimum if and only if g(X) = 1. Our analysis transfers to the former case.

Corollary 10 In the setting described in Theorem 9, with probability 1 − e−Ω(n)

SSWM finds an optimum on h(X) after reaching either the local or global optimum

on every component (which happens in expected time O(n log n)), while Metropolis

requires eΩ(n) steps with probability 1 − e−Ω(n).
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Obviously, by swapping the values of M and M ′ in f , the function would change into

one where preferring improvements of higher fitness is deceiving. As a result, SSWM

would, with overwhelming probability, optimise at least 63.9% of the components

incorrectly. Although Metropolis would optimise more components correctly than

SSWM, it would still be inefficient on h.

5.2 Experiments

We performed experiments to study the performance of SSWM and MA on the 5 state

model under several parameter settings. The experimental setting is similar to that

of the 3 state model. We can see in Fig. 7 how: while SSWM is able to reach the

performance threshold imposed by g(X), MA is not. As expected, both algorithms

start with a g-value of 0 and hence they are optimising f (X). However, for SSWM,

once the dashed line on Fig. 7 is reached, g(X) suddenly changes to 1 and h(X) is

optimised, hence the flat effect on SSWM’s curves.

We also plot the indicator function g(X) as this is the most crucial term in h(X).

Again the results from Fig. 8 are in concordance with the theory showing that SSWM

outperforms MA. However, we observe that when choosing effective values of the

temperature (α = 0.18 in the figure) we can see that a small fraction of runs of MA

manage to optimise g(X) yielding a non-zero expected value. The opposite effect can

be seen for SSWM on the green curve, although its average g-value is much better

than MA’s, not all the runs made it to g(X) = 1. We believe that this is because

the chosen problem size is not large enough. If we recall Theorem 9, MA will in

expectation optimise up to (631/100)n components and SSWM at least (639/1000)n.

This means that the gap for our chosen value of n = 500 is just 4 components, which

can be achieved by some runs deviating from the expected behaviour. Due to limited

computational resources we were unable to consider larger values of n.

6 When is it Beneficial to Exploit?

We further analyse the performance of other common single-trajectory-based search

algorithms on the function classes we identified in the previous sections. The reason

that SSWM outperforms Metropolis for the identified composite function is that the

former algorithm tends to favour the acceptance of search points on the slope of largest

uphill gradient while the latter algorithm accepts any improvement independent of its

quality. Hence, we expect that also other algorithms that prefer improvements of

higher quality over smaller ones (i.e., a characteristic often referred to as exploitation)

to also perform well on the composite function. A well known algorithm that prefers

exploitation is the traditional local search strategy that selects the best improvement in

the neighbourhood of the current search point, that is, Best-Improvement Local Search

(BILS). In particular, since a similar distinction between the behaviours of SSWM and

Metropolis is also present between BILS and the local search strategy which selects

the first found improvement, that is, First Improvement Local Search (FILS) in the

current neighbourhood, we will analyse the performance of these two algorithms. This

also relates to previous work where the choice of the pivot rule was investigated in
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Fig. 7 Average number of components at state 5 over time by SSWM and MA when optimising h(X) with

500 components of the 5 state model. For Metropolis the temperature was chosen such that α = 2(N − 1)β.

Results are averaged over 50 independent runs and the shadowed zones include ± one standard deviation.

A logarithmic scale with base 10 is used for the x-axis. The dashed line (y = 500 ∗ 0.635) indicates the

threshold established in the definition of the step function g(X)
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Fig. 8 Average g(X) values over time for SSWM and MA when optimising h(X) with 500 components

of the 5 state model. For Metropolis the temperature was chosen such that α = 2(N − 1)β. Results are

averaged over 50 independent runs and a logarithmic scale with base 10 is used for the x-axis
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local search and memetic algorithms that combine evolutionary algorithms with local

search [4,19,22].

The pseudo-code for FILS and BILS are respectively given in Algorithms 2 and 3

(see e.g. [22]). These two optimisers, like any Algorithm 1 with local mutations, can

only explore the Hamming neighbourhood in one iteration. FILS will keep producing

distinct Hamming neighbours until it finds an improvement, whilst BILS computes the

set of all neighbours and chooses one of those with the highest fitness. Both algorithms

stop when there is no improving neighbour.

Algorithm 2 FILS (Adapted from Algorithm 4 in [22])

Initialise x ∈ {0, 1}n

i ← 0

repeat

Generate a random permutation Per of length n

for i = 1 to n do

y ← flip the Per[i]-th bit of x

if f (y) > f (x) then

x ← y

go to line 4

end if

end for

stop

until stop

Algorithm 3 BILS (Adapted from Algorithm 3 in [22])

Initialise x ∈ {0, 1}n

repeat

BestNeighbourSet = ∅

for i = 1 to n do

y ← flip the i-th bit of x

if f (y) > f (x) then

BestNeighbourSet = BestNeighbourSet ∪ y

end if

end for

if BestNeighbourSet = ∅ then

stop

end if

x is uniform randomly chosen from arg max (BestNeighbourSet)

until stop

We will also consider a classical single trajectory evolutionary algorithm that

favours exploitation. In order to achieve a fair performance comparison with SSWM

and Metropolis we consider the (1,λ) RLS algorithm which, like the former algorithms,

uses non-elitism and local mutations. The algorithm creates λ new solutions, called

offspring, at each step by mutating the current search point, and then it selects the best

offspring, independent of whether it is an improvement. If the number of offspring λ
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is sufficiently large, then with high probability the slope with steepest gradient will be

identified on one component.

The pseudo-code of the (1,λ) RLS is given in Algorithm 4. This optimiser produces

λ offspring by flipping one bit chosen uniformly at random independently for each

offspring, and then choosing a best one to survive to the next generation. Although

the selection mechanism picks the best offspring for survival, the (1,λ) RLS is not an

elitist algorithm. Since the parent genotype is left out of the fitness comparison, if the

λ children have a lower fitness than the current solution, then the algorithm will move

to a search point of lower fitness.

Algorithm 4 (1,λ) RLS

Initialise x ∈ {0, 1}n

repeat

for i = 1 to λ do

yi ← flip uniformly at random one bit from x

end for

x ← uniform randomly chosen from arg max( f (y1), f (y2), . . . , f (yλ))

until stop

6.1 Analysis for the 3 State Model

We first derive the absorbing probabilities of the three algorithms introduced in Sect. 6

on the 3 state model. Theorem 11 confirms that BILS optimises the 2-bit function

with probability 1 while FILS only does so with probability 1/2. On the other hand,

Theorem 12 reveals that the (1,λ) RLS always outperforms FILS for any λ > 1 and

converges to the performance of BILS as the offspring population size λ increases.

Theorem 11 Consider FILS and BILS on f
a,b
3 starting from state 2. Then the absorb-

ing probabilities of state 3, respectively, are

ρFILS
2 =

1

2
and ρBILS

2 = 1.

Proof FILS will produce either state 1 or state 3 (both with probability 1/2) and accept

the fitness change. Hence, like Metropolis, FILS has transition probabilities p2 = q2

which, after a direct application of Theorem 2, yields the claimed result.

On the other hand, BILS will produce both state 1 and state 3, and move to the latter

since it has higher fitness. Hence, q2 = 0 and p2 = 1 which leads to an absorbing

probability of 1 by Theorem 2. ⊓⊔

Theorem 12 Consider the (1,λ) RLS on f
a,b
3 starting from state 2. Then, the absorbing

probability of state 3 is

ρ
(1,λ) RLS
2 = 1 − 2−λ.
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Proof In order for the (1,λ) RLS to move to state 3 from state 2 it suffices to create

just one offspring at state 3 (the global optimum). The probability of creating such a

search point is just the probability of choosing the first bit to be flipped, which is 1/2.

Then, with probability (1 − 1/2)λ = 2−λ none of the λ offspring will be at state 3.

And, the probability of at least one child being at the global optimum is 1 − 2−λ.

Hence, p2 = 1 − 2−λ and since every mutation of state 2 leads to either state 1 or

state 3, q2 = 1 − p2 = 2−λ. Introducing this in Theorem 2 we obtain ρ2 = p2. ⊓⊔

6.2 Analysis for the 5 State Model

We now derive the absorbing probabilities of the three algorithms for the 5 state model.

The absorbing probabilities for BILS and FILS as stated in the theorem below are the

same as for the 3 state model.

Theorem 13 Consider FILS and BILS on f
M,a,b,M ′

5 starting from state 3. Then the

absorbing probabilities of state 5, respectively, are

ρFILS
3 =

1

2
and ρBILS

3 = 1.

Proof For FILS, a direct application of Lemma 4 with P4 = 1, P3 = 1/2, Q2 = 1

and Q3 = 1/2 yields an absorbing probability of 1/2.

For BILS, Lemma 4 with P4 = 1, P3 = 1, Q2 = 1 and Q3 = 0 yields an absorbing

probability of 1. ⊓⊔

Interestingly, the analysis of (1,λ) RLS on the 5 state model turns out to be more

complex than that of SSWM, Metropolis, and (1,λ) RLS on the 3 state model as for

the 5 state model it is possible for the algorithm to reach search points of fitness −∞.

This is because the non-absorbing states have Hamming neighbours of fitness −∞,

and such a search point is reached in case all λ offspring happen to have this fitness.

While the genotypic encoding was irrelevant in all previous settings, it does become

relevant in the following analysis.

Theorem 14 shows that the absorbing probability of the (1,λ) RLS converges to 1

slightly more slowly as λ increases than the one derived for the 3 state model.

Theorem 14 Consider the (1,λ) RLS starting from state 3 on f
M,a,b,M ′

5 . Then the

absorbing probability of state 5 is

ρ
(1,λ) RLS
3 =

1 − (2/3)λ

1 − (1/3)λ
.

Proof Since the (1,λ) RLS can move to states with a fitness of −∞, the diagram from

Fig. 4 is incomplete. However, let us focus now on the Hamming neighbours of each

state. Recall that our genotype encoding of the 5 state model is based on 3 bits. We

observe that, apart from the two maximal states (states 1 and 5), the three neighbours

of each state have mutually different fitness values. Hence, we denote by p, q and

r the transition probabilities towards the neighbour with the highest, intermediate
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and lowest fitness, respectively. Using this notation, we can express the absorbing

probabilities as

ρ1 = 0

ρ2 = qρ3 + rρ7

ρ3 = qρ2 + pρ4 + rρ6

ρ4 = qρ3 + p + rρ7

ρ5 = 1

ρ6 = rρ3 + p

ρ7 = qρ2 + pρ4 + rρ8

ρ8 = p + rρ7.

We now move to a matrix formulation of the form Aρ = b. But first, we plug in

ρ8 in ρ7 and we no longer consider the trivial ρ1 = 0 and ρ5 = 1, hence ρ =

(ρ2, ρ3, ρ4, ρ6, ρ7)
⊤, leading to

⎛

⎜

⎜

⎜

⎜

⎝

1 −q 0 0 −r

−q 1 −p −r 0

0 −q 1 0 −r

0 −r 0 1 0

−q 0 −p 0 1 − r2

⎞

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

ρ2

ρ3

ρ4

ρ6

ρ7

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0

0

p

p

r p

⎞

⎟

⎟

⎟

⎟

⎠

.

The solution will be ρ = A−1
b, but we are just interested in ρ3. Then, taking the

second row of A−1 (here denoted as A
−1
2 ) we can express the absorbing probability

as ρ3 = A
−1
2 b. By standard matrix calculations, we obtain

A
−1
2 =

1

(p + r)(1 − r)
·
(

q, 1
1+r

, p, r
1+r

, r
1+r

)

,

which can be verified with the expression A⊤
(

A
−1
2

)⊤

= (0, 1, 0, 0, 0). Finally, we

compute ρ3 = A
−1
2 b as follows:

ρ3 =
1

(p + r)(1 − r)
·
(

1 − p − r, 1
1+r

, p, r
1+r

, r
1+r

)

·

⎛

⎜

⎜

⎜

⎜

⎝

0

0

p

p

r p

⎞

⎟

⎟

⎟

⎟

⎠

=
p2 + pr/(1 + r) + r2 p/(1 + r)

(p + r)(1 − r)

=
p2(1 + r) + pr + r2 p

(p + r)(1 − r)(1 + r)
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=
p2(1 + r) + pr(1 + r)

(p + r)(1 − r)(1 + r)

=
p2 + pr

(p + r)(1 − r)

=
p(p + r)

(p + r)(1 − r)

=
p

1 − r
. (4)

Finally, we just have to introduce the values of p and r . First, to move to the neighbour

with the highest fitness, it is sufficient to produce one offspring at the desired search

point. Noticing that (1 − 1/3)λ is the probability that none of the offspring are at the

best neighbour, it follows that p = 1 − (1 − 1/3)λ = 1 − (2/3)λ. In order to move to

the neighbour with the lowest fitness, all λ offspring must be equal to said neighbour,

which happens with probability r = (1/3)λ. Introducing these values in Eq. (4) leads

to the claimed statement. ⊓⊔

Introducing λ ≥ 3 in the expression obtained in Theorem 14, which is monotoni-

cally non-decreasing with λ, leads to

ρ
(1,λ) RLS
3 ≥

1 − (2/3)3

1 − (1/3)3
=

1 − 8/27

1 − 1/27
=

19

26
= 0.7307 · · · ≥ 0.64.

Hence already an offspring population size of λ = 3 is sufficient to raise the success

probability above that of the Metropolis algorithm with optimal parameters.

However, it is not straightforward to translate our results from one component

f
M,a,b,M ′

5 to n components. Unlike for SSWM and Metropolis, on n ≫ 1 components

the (1,λ) RLS is likely to perform mutations in different components. Our analysis

from Theorem 14 breaks down as all transition probabilities rely on the fact that all λ

mutations concern the same component.

The dynamics on n ≫ 1 components seem very different to the dynamics on one

component, and quite complex. We therefore resort to experiments to shed light on

the performance of (1,λ) RLS on n components and our composite function h.

6.3 Experiments

We present experimental results to understand the dynamics of the (1,λ) RLS on

concatenated components of the 5 state model. Figure 9 shows the behaviour of the

(1,λ) RLS when optimising f (X) with 100 components. It is important to note that

this setting does not exactly match the one from Fig. 7, as there the algorithms were

optimising the function h(X). The only difference is that in Fig. 9 the algorithms can

keep optimising components once the dashed line (g(X) = 1) is reached.

We observe an interesting effect for small values of λ. The algorithm starts accu-

mulating components at state 5, however, at some point in time, the fitness decreases

to that of a random configuration. This is due to the fact that states 6, 7 and 8 have
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Fig. 9 Average number of components correctly optimised over time by the (1,λ) RLS on 100 concatenated

components of the 5 state model. Results are averaged over 50 independent runs and the shadowed zones

include ± one standard deviation. A logarithmic scale with base 10 is used for the x-axis. The dashed line

(y = 63.5) indicates the threshold established on the definition of the step function g(X)

a value of −∞ for f
M,a,b,M ′

5 . If at some point in time, the algorithm sets just one

component to either of these states, the total fitness f (X) will be −∞, no matter the

fitness of the remaining components. Then, all that the (1,λ) RLS sees are points of

equal fitness and it just chooses one uniformly at random. Obviously, the larger the

λ, the smaller the probability of sampling a point with f (X) = −∞ in the first place

and therefore, as seen in the figure, large values of λ manage to reach the threshold

imposed by g(X).

We now move to the study of the (1,λ) RLS when optimising h(X). This is shown

in Fig. 10 by plotting the step function g(X) as this is the most crucial term in h(X).

As suggested by Fig. 9, a sufficiently large value of λ is needed to ensure that all runs

optimise g(x) and thus h(X).

We conclude the subsection by presenting in Fig. 11 a comparison graph that plots

the performance of all the algorithms considered in this chapter. While BILS optimises

all the components, the performance of SSWM and the (1,λ) RLS is comparable and

outperform the other algorithms. In particular, they both identify correctly a sufficient

number of components such that they find the optimum of the composite function h.

7 Conclusions and Future Work

We have presented a rigorous comparison of the non-elitist SSWM and Metropo-

lis algorithms. Their main difference is that SSWM may reject improving solutions

while Metropolis always accepts them. Nevertheless, we prove that both algorithms
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Fig. 10 Average g(X) values over time for the (1,λ) RLS when optimising h(X) for 100 components of

the 5 state model. Results are averaged over 50 independent runs and a logarithmic scale with base 10 is

used for the x-axis. Note that the (1,λ) RLS with λ ≤ 5 always has a value of 0 and the (1, 100) RLS is

covered by the results of the (1, 1000) RLS
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Fig. 11 Average number of components correctly optimised over time by all the algorithms when optimising

h(X) with 100 concatenated components of the 5 state model. Results are averaged over 50 independent

runs and the shadowed zone includes ± one standard deviation. A logarithmic scale with base 10 is used

for the x-axis. The dashed line (y = 63.5) indicates the threshold established on the definition of the step

function g(X). Note that the curve for BILS is mainly covered by the curve for the (1100) RLS. Recall that

BILS and FILS stop in local optima, hence the respective curves may finish early
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have the same stationary distribution, and they may only have considerably different

performance on optimisation functions where the mixing time is large.

Our analysis on a 3 state model highlights that a simple function with a local

optimum of low fitness and a global optimum of high fitness does not allow the required

large mixing times. The reason is that, although Metropolis initially chooses the local

optimum more often than SSWM, it still escapes quickly. As a result we designed a

5 state model which “locks” the algorithms to their initial choices. By amplifying the

function to contain several copies of the 5 state model we achieve our goal of defining

a composite function where SSWM is efficient while Metropolis requires exponential

time with overwhelming probability, independent from its temperature parameter.

Given the similarities between SSWM and other particularly selective strategies

such as steepest ascent and single-trajectory algorithms using offspring populations,

we compared the performance of SSWM and Metropolis with BILS, FILS and a

(1,λ) RLS. We rigorously showed that BILS excels on the composite function and

experiments have shown that the (1,λ) RLS performs comparable to SSWM for large

enough λ.

Our theoretical and experimental analyses indicate that SSWM and Metropolis dif-

fer in performance in the ’non-elitist world’ in a similar way to how Best-Improvement

and First Improvement local search (resp. BILS and FILS) differ in the ’elitist world’.

In particular, BILS should be preferred if greedy choices (i.e., choosing the locally

more promising slope with steepest gradient) are going to be beneficial in the long

term compared to taking any improvement (i.e., not necessarily the slope with steepest

gradient). If this is not the case, then FILS should be preferred. Our analysis indicates

that on problems where BILS outperforms FILS, SSWM will outperform Metropolis

(and vice versa). Obviously, for problems where the greedy choice is always the best

one throughout the run, then BILS should be preferred to SSWM. However, for prob-

lems where the greedy choice is often the best move, but not always, then our analysis

suggests that SSWM may perform better than BILS, FILS and Metropolis. We leave

to future work an extensive analysis of these conclusions for a wide range of problems

including more realistic ones from combinatorial optimisation.
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