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Inequality of opportunity in health: 
a decomposition-based approach 

 

  
  

Abstract 

This paper presents new decomposition-based approaches to measure inequality of opportunity in health that 
capture Roemer’s distinction between circumstances and effort and are consistent with both compensation and 
reward principles. Our approach is fully nonparametric in the way that it handles differences in circumstances 
and provides decompositions of both a rank-dependent relative (the Gini coefficient) and a rank-independent 
absolute inequality index (the variance). The decompositions distinguish the contribution of effort from the 
direct and indirect (through effort) contribution of circumstances to the total inequality. Our approach is 
illustrated by an empirical application which uses objectively measured biomarkers as health outcomes and as 
proxies for relevant effort variables. Using data from the Health Survey for England from 2003 to 2012, we find 
that circumstances are the leading determinant of inequality in cholesterol, glycated haemoglobin and in a 
combined ill-health index while effort plays a substantial role in explaining inequality in fibrinogen only.  
 
Keywords: biomarkers; decomposition analysis; health inequalities; equality of opportunity. 

JEL codes: C1, C5, D63, I14. 
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1. Introduction 
 
Evidence suggests that, at least in contemporary Western liberal societies, inequalities associated with individual 
effort are generally considered as fair, while inequalities due to inherited factors, such as bequests or family socio-
economic background, are perceived as more objectionable (Alesina and Angeletos, 2005). This evidence on 
social attitudes toward inequalities has a correspondence with a literature that has emerged in social choice theory 
and normative economics on equality of opportunity (EOp). Following Roemer’s framework (Roemer, 1998, 
2002; Roemer and Trannoy, 2016), this literature separates the factors associated with an outcome of interest 
into two components: ‘circumstances’, which are not under individual responsibility, and ‘efforts’, for which to 
some extent they are held responsible.  
 
Based on this framework, a number of empirical applications have dealt with the assessment of inequality of 
opportunity in a variety of outcomes such as income (see Ferreira and Peragine (2015) for a review) and 
education (Ferreira and Gignoux, 2014). The equality of opportunity principle has been advocated for the 
evaluation of a wide range of policies: from educational policies and their impact on health (Jones, et al., 2011; 
Jones, et al., 2014) to policies related to the allocation of the international aid to countries for the reduction of 
poverty (Cogneau and Naudet, 2007). The theoretical relevance of equality of opportunity in health has been 
advocated by many authors (e.g., Sen, 2002; Rosa Dias and Jones, 2007; Fleurbaey and Schokkaert, 2009, 2012) 
and the relevance of equality of opportunity has been placed at the top of the ‘inequality of what’ debate by 
relevant institutions (e.g. World Bank, 2005). A growing literature has addressed the measurement of inequality 
of opportunity (IOp) in health (e.g., Rosa Dias, 2009; Rosa Dias, 2010; Trannoy et al., 2010; Jusot, et al., 2013; Li 
Donni, et al., 2014; García-Gómez et al., 2015; Kim, 2016).  
 
In this paper we propose decomposition-based approaches to measure inequality in objective health that capture 
Roemer’s distinction between circumstances and effort. We fully condition on circumstances by splitting our 
sample according to ‘types’, who share the same circumstances, and then estimating separate regressions of 
health outcomes on effort for each sub-sample. This approach allows the model to be fully nonparametric in the 
way that it handles the circumstances. Using linear regression within the sub-samples generates a heterogeneous 
set of regression coefficients that we use in a regression-based decomposition of total inequality in the health 
outcomes. A valuable feature of this method is that it is able to consider simultaneously the two main views 
existing in the literature on inequality of opportunity: the compensation principle and the reward principle. Interestingly, 
this does not require additive separability but only linearity in effort of our health production function. The fact 
that our approach allows the possibility of interaction between circumstances and effort (through heterogeneous 
slopes) is also relevant for the assessment of direct unfairness and the fairness gap in the spirit of Fleurbaey and 
Schokkaert (2009, 2012).  
 
To retrieve the relative contribution of circumstances and effort to total inequality, we first exploit a 
decomposition of the Gini coefficient with heterogeneous responses proposed by Jones and Lopez-Nicolas 
(2006). Moreover, we also propose an alternative derivation of our decomposition terms based on the variance 
decomposition formula, proposed by Shorrocks (1982) and adapted to the measurement of inequality of 
opportunity by Jusot, et al. (2013) 1 . Our decomposition methods identify four normatively-relevant 
decomposition terms: a direct and an indirect (through effort) contribution of circumstances to the total 
inequality, the contributions of effort to total inequality, and the contribution of residual variation within types.  
 
We illustrate our methods with an empirical application and a second contribution is the use of biomarkers as 
outcome variables and as proxies of relevant effort variables. 2 As health outcomes, we consider four biomarkers 
that are associated with some of the most prevalent diseases in all Western countries: cholesterol, glycated 
haemoglobin, fibrinogen and a combined ill-health index (the first component of a principal component analysis 

                                                           
1
 Rank dependent inequality indices, such as the Gini coefficient and the concentration index, have been the workhorse in the health economics literature 

on socioeconomic inequalities in health (e.g., Wagstaff et al., 2003; Fleurbaey and Schokkaert, 2009). The Gini and its variants are also used in analyses of 
inequality of opportunity (e.g., Aaberge et al., 2011; Abatemarco, 2015; Rosa Dias, 2009; Trannoy et al., 2010; Turk and Östh, 2017). The variance has been 
advocated as an appropriate measure of inequality in health outcomes by Fleurbaey and Schokkaert (2009) and applied in Jusot, et al. (2013), García-Gómez 
et al. (2015) and Kim (2016). Other indices that have been used to measure inequality of opportunity for monetary or health outcomes include the Theil 
index (e.g., Bourguignon et al., 2007), Atkinson index (e.g., Li Donni et al., 2014), and mean logarithmic deviation (e.g., Turk and Östh, 2017). 
2
 Biomarkers are characteristics that are ‘objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention’ (Atkinson et al., 2001). They are measured on a continuous scale associated with an increasing or 
decreasing risk (depending on the biomarker) of a disease state and they are often highly correlated with mortality (Rosero-Bixby and Dow, 2012; Sattar et 
al., 2009; Gruenewald et al., 2006). 
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on the three biomarkers). As effort variables, we use saliva cotinine, a major metabolite of nicotine, to objectively 
quantify individual smoking, along with detailed self-reported data on intensity and frequency of drinking 
behaviour and the portions of fruits and vegetables consumed as a proxy for a healthy diet. A key advantage of 
using biomarker data is having a measure of health which is free of reporting bias. This is particularly relevant 
given the possible presence of systematic differences in reporting behaviour across individuals. Indeed, previous 
empirical investigations show systematic variation in reporting across socio-economic groups which may bias the 
estimates of the inequality of opportunity in health in a significant way (e.g., Sen, 2002).  
 
The paper is organized as follows. The next section presents our method and presents its empirical 
implementation. Section 3 introduces the data and descriptive statistics. Section 4 presents the results of our 
empirical application. The final section summarizes and concludes. 
 
 
 

2. Methods 
 
2.1 A Normative Framework 
 
To model inequality of opportunity in health we adopt the framework of Roemer (2002). Roemer partitions all 
factors influencing individual attainment between a category of effort factors, for which individuals should be held 
partly responsible, and a category of circumstance factors, which, being judged to be beyond individual 
responsibility, are regarded as a source of unfair differences in outcomes.  
 
A general health production function can be defined along the lines of Roemer (2002) as H(C, E(C)) where C 
denotes individual circumstances and E denotes effort, which is itself a function of circumstances. To reflect the 
fact that observed realisations of health outcomes are inherently random and that the equality of opportunity 
ethic can be expressed in terms of factors associated with the distribution of health, this is written in terms of the 
distribution function of the realised individual outcomes conditional on observed circumstances and effort:  
  𝐻𝑖~𝐻(𝐶𝑖, 𝐸𝑖(𝐶𝑖))                             (1) 
 
where 𝐻𝑖  denotes the health outcome for the ith individual, and 𝐶𝑖 , 𝐸𝑖  their circumstances and effort, 
respectively.  
 
Roemer (2002) defines social types consisting of individuals who share exposure to the same set of 
circumstances. The set of observed individual circumstances allows the specification of these social types in the 
data. 3 A fundamental feature of this approach is the fact that the distribution of effort within each type is itself a 
characteristic of that type and, since this is assumed to be beyond individual responsibility, it constitutes a 
circumstance in itself. 4 This implies that, in addition to assuming a partitioning between C and E, our model 
assumes that effort is a function of circumstances. It also assumes that circumstances are pre-determined and 
should not be a function of effort. 
 
The key to our method is that we condition on circumstances by splitting our sample according to type, 𝜏, and 
then estimate separate regressions of health outcomes on effort for each sub-sample. Conditioning on 
circumstances gives the following distribution functions, within each type: 
 𝐻𝑖~𝐻(𝐶𝑖, 𝐸𝑖(𝐶𝑖)) = 𝐹𝜏(𝐸𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 = 1, … , 𝑇                       (2) 
 
 

                                                           
3
 We follow the traditional approach in the IOp literature based on the a priori selection of the types according to the circumstances variables.  Recently, Li 

Donni, et al. (2015) proposed a more data-oriented approach for the definition of social types based on the estimation of latent class models.  
4
 This ethical stance is open to dispute. For example Jusot et al. (2013) propose empirical methods to compare the Roemer view with two more libertarian 

perspectives: first, that individual efforts should be fully respected whatever the influence of circumstances on those efforts; second, that regards the efforts 
of earlier generations, especially parents, to improve outcomes for their offspring as legitimate. So circumstances should only include factors that do not 
shape effort.  
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Now assume that, within each type, the realised health outcome generated by the distributions specified in (2) is 
a linear function of efforts and a random error term: 
 𝐻𝑖 = 𝛼𝜏 + 𝛽𝜏𝐸𝑖 + 𝑢𝑖𝜏                                                          (3) 
 
Equation (3) gives a set of heterogeneous regression coefficients reflecting the different level of biomarkers 
across types (𝛼𝜏) and the different association between biomarkers and effort variables across types (𝛽𝜏). 5 It is 
important to note that equation (3) does not require additive separability of circumstances and effort and allows 
interactions between them (through the heterogeneous slopes that vary with circumstances 𝛽𝜏 ).  
 
The 𝑢𝑖𝜏  are the type-specific error terms, capturing the unexplained variation, within-types, due to the 
contribution of unobserved factors that are not captured by the observed 𝐶 and 𝐸 variables. Note that the mean 
of the unobservables within-types will be subsumed into the intercept terms, 𝛼𝜏 and any correlation with effort 
within type will be subsumed in 𝛽𝜏.6 Also the variance and other higher moments of the error term are allowed 
to vary across observed types.  
 
So, to recap, our approach relies on three normative assumptions:  
 
(i) the partitioning of circumstances and effort;  
 
(ii) that effort is a function of circumstances and not vice versa and;  
 
(iii) that, conditional on circumstances (type), there is a linear relationship between effort and outcomes. 
 
Assumptions (i) and (ii) are standard for the Roemer model (Roemer, 1998, 2002; Roemer and Trannoy, 2016) 
and widely adopted in empirical applications. Assumption (i) requires a complete and non-overlapping partition 
of observed factors between circumstances and effort, sometimes referred to as a dichotomic outcome function 
(Lefranc et al., 2009; Abatemarco, 2015). 7  Here we apply assumption (i) to factors associated with the 
distribution of effort, allowing the actual realisations of health to be random (due to the addition of error terms 𝑢𝑖𝜏  that are type-specific). As discussed above, systematic differences in the mean of the error term across 
observed types are absorbed into 𝛼𝜏 and in the empirical application we investigate whether there is systematic 
variation in the higher moments – such as the variance – that is correlated with observed circumstances or 
effort8.  
 
Assumption (ii) allows effort to be shaped by circumstances but not vice versa. This can be interpreted in terms of 
the direction of causality and also in terms of the control view of inequality of opportunity: that circumstances 
are factors which are not the individual’s responsibility while, to some extent, efforts are. In practice, the 
partitioning of variables between 𝐶 and 𝐸 should respect this assumption.  
 
Assumption (iii) relaxes the common assumption that outcomes (or the latent variables in models for binary 
outcomes) are linear in both effort and circumstances that has been used widely in applied work on measurement 
of inequality of opportunity (e.g., Bourguignon et al., 2007; Trannoy et al., 2010; Jusot et al., 2013; Garcia-
Gomez et al., 2015). Our approach is therefore semiparametric in the spirit of Li Donni et al. (2015) although 
our statistical approach differs from theirs. 

                                                           
5
 In order to keep the notation simple, equation (3) is written in terms of a scalar effort variable. The extension to a vector of effort variables is 

straightforward and is used in our empirical application (see Jones and Lopez-Nicolas, 2006). 
6
 Garcia-Gómez et al. (2015, p.1354) share this view on the omitted variable issue: “However, from the point of view of inequity measurement, this is a not 

a problem. On the contrary, it is better that the estimated association between C and the dependent variable of interest reflects to some extent the effect of 
equity-relevant but unobservable variables”. They express doubt about omitted effort variables but recall that under the Roemer perspective the 
distribution of effort that is correlated with circumstances is regarded as a circumstance itself. 
7
 In contrast, some studies in this literature take a non-dichotomic approach and distinguish a further set of factors, such as demographic characteristics, 

that are treated as controls but are not given a normative significance as either legitimate or illegitimate sources of inequality (eg., Jusot et al., 2013; Roemer 
and Trannoy, 2016). Others have emphasised the role of random factors, or ‘luck’ (e.g., Lefranc et al., 2009). Lefranc et al. (2009) argue that luck may be a 
legitimate source if it is ‘even-handed’ in the sense of being uncorrelated with circumstances. The Lefranc et al. (2009) approach justifies the use of 
stochastic dominance criterion to test for IOp, especially when it is combined with Roemer’s approach of defining tranches of effort in terms of an 
individual’s  relative rank in the distribution within types. 
8
 In our empirical application we find very little correlation between higher moments of the type-specific residuals and both observed circumstances and 

effort variables. 
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2.2 Decomposition by Factor Components 
 
To retrieve the contribution of circumstances and efforts to total inequality we first exploit the method proposed 
by Jones and Lopez-Nicolas (2006) who show how regression-based decomposition methods for the 
decomposition of health inequality, for example as measured by the Gini index, can be extended to incorporate 
heterogeneity in the responses of health to the explanatory variables (as in equation (3)). 9 Moreover, we propose 
an extension of this method to complement the standard Gini with an Inequality of Opportunity Gini that 
measures inequality relative to the most disadvantaged type.10 Then, we show that our decomposition method 
applies to the variance decomposition of Shorrocks (1982). 
 
The Gini index (G) for a measure of health is given by:  
 𝐺 = 2�̅�   𝐶𝑜𝑣(𝐻𝑖, 𝑅𝑖)                                                                    (4) 

Or: 𝐺 = ( 2𝑁�̅�) ∑ (𝐻𝑖 − �̅�) (𝑅𝑖 − 12)𝑖                                                           (5) 

 
 
where �̅� = 𝐸(𝐻𝑖) , 𝐻𝑖  denotes the measure of health for the ith individual, i =1, ....N, and 𝑅𝑖  denotes the 
cumulative proportion of the population ranked by 𝐻𝑖 up to the ith individual (their ‘relative rank’). 
 
To provide a benchmark for our decomposition analysis, first define the effort of individual i as the product of the 
effort variable and the associated slope parameter: 
 𝐵𝑖 = 𝛽𝜏𝐸𝑖     (𝑖 ∈ 𝜏)                                                                (6) 
 
Then as a benchmark use the weighted averages across types, where 𝜋𝜏denotes the share of each type: 
 �̅� = ∑ 𝜋𝜏�̅�𝜏𝜏  ,   �̅� = ∑ 𝜋𝜏�̅�𝜏𝜏  , �̅� = ∑ 𝜋𝜏𝛼𝜏𝜏  , �̅� = ∑ 𝜋𝜏𝛽𝜏𝜏                            (7) 
 
Now, consider that: (𝐻𝑖 − �̅�) = (𝐻𝑖 − 𝐻𝜏̅̅ ̅) + (𝐻𝜏̅̅ ̅ − �̅�) 
 
where, given our linear specification of Equation (3): 
 

(𝐻𝑖 − 𝐻𝜏̅̅ ̅)= (𝐵𝑖 − �̅�𝜏) + 𝑢𝑖𝜏                                                      (8) 
 
and: 
 (𝐻𝜏̅̅ ̅ − �̅�) = (𝛼𝜏 − �̅�) + (𝐵𝜏̅̅ ̅ − �̅�)     (9) 
 
Following  Jones and Lopez-Nicolas (2006), we can substitute (3) into (5). Then, by substituting (8) and (9)  and 
changing the order of summations, the decomposition of the Gini index can be expressed as follows: 

                                                           
9
 This approach is based on decomposing inequality indices for an outcome that can be expressed as a (weighted) sum of a set of factor components (e.g., 

Rao, 1969; Shorrocks, 1982). This was extended to the decomposition of outcomes that can be expressed in terms of a linear regression model in Wagstaff 
et al,. (2003) and applied to health concentration indices. Jones and Lopez (2006) extend their approach to allow for heterogeneous regression coefficient. 
The Wagstaff et al. (2003) regression-based decomposition approach for concentration indices has been criticised on various grounds. First, rank 
ignorability, that it treats the ranks, R, as fixed and does not allow for the influence of covariates on the ranking variable (Erreygers and Kessels, 2013; 
Heckley et al., 2016). Second, weighting function ignorability which, for the Gini coefficient, implies treating the mean of the outcome as fixed and not 
allowing for the influence of covariates on the mean (van Ourti et al., 2009; Heckley et al., 2016). Third, Heckley et al. (2016) are critical that the regression-
based approach does not explicitly define counterfactual values of the covariates. They propose a method that uses recentred influence functions (RIF) to 
estimate the partial effect of covariates on a general class of concentration indices but that does not provide a complete percentagewise decomposition of 
the indices.  
10

 It is worth noting that our method consists of a by-factors decomposition of the Gini Index. A by-group decomposition of the Gini Index for the 
measurement of inequality of opportunity in income has been recently adopted by Abatemarco (2015). While Li Donni et al. (2014) work with a by-group 
decomposition of the Atkinson index. 
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 𝐺 = ( 2𝑁�̅�) ∑ ∑(𝛼𝜏 − �̅�)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + 

 ( 2𝑁�̅�) ∑ ∑ (�̅�𝜏 − �̅�)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + ( 2𝑁�̅�) ∑ ∑  (𝐵𝑖 − �̅�𝜏)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 +                               (10) ( 2𝑁�̅�) ∑ ∑ 𝑢𝑖𝜏(𝑅𝑖 − 12)𝑖∈𝜏𝜏  

 
The first term in equation (10) is the contribution of the variation of the intercepts of the OLS regression across 
types (centred at the pooled mean)11. In normative terms, this measures the direct contribution of circumstances to the 
overall inequality. The second term relates to variation in the average level of effort within each type around the 
pooled mean of effort, it therefore measures the indirect contribution of circumstances to overall inequality, through 
differences in the association between efforts and outcomes across the types12. The third term measures the 
contribution of within-type variation in effort to overall inequality. In normative terms, this represents the 
contribution of effort to the overall inequality.  The final term is the contribution of the within-type error term 
and it measures the contribution of residual factors to overall inequality. 13 
 
Another interesting benchmark scenario is represented by the health situation of the worst-off type, i.e. the 
group of individuals sharing exposure to the worst circumstances available in a given society (Roemer, 1998, 
2002). The resulting inequality index – which we call an Inequality of Opportunity Gini - is thus expressed in 
terms of inequality relative the most disadvantaged type. The resulting decomposition terms follow the same 
logic of those in equation (10) but they are expressed with reference to the situation of the worst-off type. The 
detailed derivation of this decomposition is provided in the Appendix.  
 
A potential limitation of the regression-based decomposition methods illustrated so far is that they both rely on 
the rank ignorability and weighting function ignorability assumptions which have been criticised for being rather 
restrictive in the analysis of health inequalities (Heckley et al., 2016). In the Appendix we present an alternative 
decomposition using the absolute Gini and we show that as long as the percentagewise decomposition is the 
main focus of attention – as it is here - weighting function ignorability is not a concern.14 We do not therefore present 
separate results for the decomposition of the absolute Gini. 
 
Some recent contributions to the literature on inequality of opportunity in health have favoured the variance as 
an absolute (rank-independent) measure of health inequality (see e.g., Fleurbaey and Schokkaert, 2009, 2012; 
Jusot, et al., 2013; García-Gómez et al., 2015; Kim, 2016). To reflect this, we follow Jusot et al. (2013) and 
propose a derivation of our method based on the variance decomposition of Shorrocks (1982) which is 
illustrated in detail in the Appendix. The resulting decomposition terms follow the same logic described for the 

                                                           
11

 Note that the overall Gini coefficient can be expressed as a scaled covariance and that, in the decomposition, each of the contributions is an expression 
that is analogous to a covariance: given by the sample mean of the product of deviations of a quantity around a mean value and the deviation of the relative 
rank variable around its mean.  
12

 One point to note is that the separation of direct and indirect components may depend on  the scaling of the effort variables,𝐸. The intercept terms in 
the direct contribution correspond to the reference point where 𝐸 = 0 so shifting the location of 𝐸 would affect the relative size of direct and indirect 
contributions. So long as effort is measured on a ratio scale the relative sizes do not change as a result of a rescaling. In our empirical application we set the 
reference level of effort, where 𝐸 = 0, to correspond to the highest level of effort that can be achieved. This follows the spirit of Fleurbaey and Schokkaert 
(2009) and applications in García-Gómez et al. (2015) and Kim (2016) that use the best levels of 𝐶 and 𝐸 as reference points reflecting the implicit norm of 
vertical equity that this implies. 
13

 To check for any higher-order residual correlation we conduct an auxiliary regression where we regress �̂�𝑖𝜏 ∗ 𝑅𝑖 on the observed types and the effort 
variables. 
14

 The invariance of the percentage decomposition also applies to the numerous variants of rank dependent indices that have been proposed in the recent 
literature such as the Erreygers, Wagstaff, Attainment Relative and Shortfall Relative indices (Erreygers, 2009; Heckley et al., 2016). In addition, a nice 
feature of our empirical application arises from the cardinality of our measures of health, i.e. the biomarkers. For example, Van Doorslaer and Jones (2003) 
note that in such a situation, the percentage factor contributions in the Gini decomposition remain unchanged under different cardinal transformations of 
the outcome variable and the decomposition is invariant to linear transformations of the outcome. This is a desirable property of a factor decomposition of 
any rank-dependent inequality index (see, van Doorslaer and Jones, 2003; Erreygers, 2009). 
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Gini decomposition and have the same normative interpretation with direct and indirect contributions of 
circumstances, effort and the residual component.15 
 
Our approach decomposes explained inequality into terms that relate to both compensation and reward 
principles16. The sum of all sources of explained inequality deserving compensation (direct and indirect circumstances) 
corresponds to the inequality which remains when legitimate sources of inequality (the effort term) are deducted 
from total explained inequality under the reward principle. The compatibility of our approach with both the 
compensation and the reward principles relies on the assumption of linearity in circumstances and effort of our 
health outcome function (see equation 3). It has been demonstrated that in general inequality of opportunity 
measures can be either fully consistent with the reward or with the compensation principle but not necessarily 
both (see for instance Fleurbaey, 2008). Our approach represents an appealing compromise to this trade-off, 
because despite our linearity assumption, we allow for interaction effects between circumstances and effort, 
through the heterogeneous slopes on the effort factors across types.  

 

2.3 Empirical Implementation 
 
The choice of circumstances and effort variables in our empirical application is largely based on the literature 
dealing with the measurement of inequality of opportunity in health (i.e., Rosa Dias, 2009, 2010; Jusot, et al., 
2013; García-Gomez et al., 2015) and the normative literature on the measurement of health equity (see the 
discussion in Rosa Dias and Jones (2007) for more details). Thus, we treat as circumstances the cohort of birth, 
gender, educational level, and neighbourhood (more vs less deprived areas) based on the index of multiple 
deprivation scores.17 In the case of education, we assume that the level of secondary schooling achieved by age 
18 is beyond their individual responsibility and therefore constitutes a circumstance. This is an assumption 
shared by other papers (e.g. Rosa Dias, 2010). Moreover, we also assume that the residential status in more vs less 
deprived areas is beyond the individual responsibility. This point has been nicely discussed by Burchardt and Le 
Grand (2002) who place residential area among circumstances virtually modifiable by individuals but “with very 
high social, psychological and financial costs”. Given the relevance of neighbourhood conditions for health 
status (e.g., Bilger and Carrieri, 2013) we opted to include it among circumstances factors in our analysis. 
Moreover, its inclusion among circumstances is useful in our application to take into account also the social 
background of individuals. 
 
Following this strand of literature, the choice of effort variables is guided by work on the relationship between 
health and lifestyles (e.g., Contoyannis and Jones, 2004; Balia and Jones, 2008; García-Gómez et al., 2015). 
Lifestyles are determined by individual decisions to invest in health capital, and, therefore, they are, at least partly, 
within individual control. Thus, we treat cigarette smoking (saliva cotinine), alcohol frequency and intensity of 
consumption and dietary choices (consumption of fruit and vegetables) as effort factors.  
 
 

3. Data  
 
We use ten waves (2003-2012) of the Health Survey for England (HSE).18 In the HSE, the interview includes a 
set of core questions, asked each year, on general health and psycho-social indicators, smoking, alcohol, 

                                                           
15

 To check for any higher-order residual correlation we conduct an auxiliary regression where we regress   �̂�𝑖𝜏 ∗ 𝐻𝑖 on the observed types and the effort 
variables. 
16

 A careful discussion around the compensation and rewards principles in the IOp framework can be found in Fleurbaey, 2008; Aaberge, et al., 2011 and 
Li Donni, et al., 2014. These two approaches have a clear parallel with the fairness gap and the direct unfairness approaches proposed by Fleurbaey and 

Schokkaert (2009) for the specific case of health inequalities. Comprehensive discussions on the different approaches to measure IOp can be found in 
Checchi and Peragine (2005; 2010) while a careful review of the different approaches and measurement issues of IOp can be found in Ferreira and Peragine 
(2015).  
17

 García-Gómez et al. (2015, p.1364) argue that age and gender “should be considered explicitly in any analysis of inequality of opportunity”. 
18

 HSE is a repeated cross-sectional health interview survey of around 15,000 to 20,000 respondents conducted in England by the National Centre for 
Social Research (separate surveys are available for Scotland and Wales). The survey started in 1991 and has been carried out annually since then. HSE 
includes adults aged 16 and over, and since 1995 has also included children aged 2-15. From 2001 onwards, the survey covers all ages, but certain age 
groups are asked questions on selected topics only. An interview with each eligible person in the household is followed by a nurse visit for those who agree 
to take part. The average agreement rate is quite high (close to 60%) and does not show a systematic pattern across the social types defined in our analysis. 
This mitigates potential sample-selection concerns. 
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demographic and socio-economic indicators, questions about use of health services and prescribed medicines. 
Biomarkers and health assessments are collected during nurse visits and include blood samples, anthropometric 
measurements, blood pressure measurements, and saliva samples.  
 
We use the valid (i.e. blood sample properly collected and successfully processed) biomarker measurements in 
each wave. Thus, we can use 11,096 non-missing observations for the analysis of cholesterol over the period 
2003-2012 and 12,516 for the analysis of glycated haemoglobin over the period 2003-2012. The sample size for 
fibrinogen is much smaller yielding 2,795 observations from 2003 to 2006 and in 2009. Similarly, the sample size 
for our combined ill-health index is 2,724 observations from 2003 to 2006 and in 2009. For almost all the waves, 
blood samples are collected from individuals aged 16 and over. In a few waves a different age restriction is 
employed. In 2004 individuals aged 11 and over are included, while in 2005 only individuals aged 65 and over are 
analysed. Given that we stratify by types (including birth cohorts), different age restrictions across waves are 
taken into account in our estimates. 
 
 
3.1 Variables and Descriptive Statistics 
 
In what follows, we provide a description of the variables used in our analysis and some descriptive statistics. A 
glossary of all biomarkers used in our empirical investigation along with their clinical cut-points is reported in the 
Appendix. 
 
Circumstances (C) 
We use four variables to define circumstances: cohort of birth, gender, individual education and area of 
residence. Cohort of birth is split in three categories: born before 1959; born from 1960 and 1979; born after 
1979. Educational level refers to the highest academic qualification awarded and it is used to split the sample in 
three categories according to the level of secondary schooling attained: completing only compulsory secondary 
schooling (qualification below nvq3/GCE A level); completed secondary schooling (nvq 3/GCE A level); 
continued to further/higher education (nvq4/nvq5/degree or equivalent). As a short-hand we refer to these as 
low (LE), moderate (ME) and high (HE) levels of education in the tables of results. Area of residence refers to 
the deprivation of the area of residence based on the scores of the index of multiple deprivation (IMD).19 We 
split the sample in two categories: higher-deprived (HD as a short-hand in the table of results) and lower-
deprived (LD) based on whether individuals live in an area belonging to the top two quintiles of the IMD score. 
 
A summary of these variables is presented in Table 1. This shows that around 51% of the sample were born 
before 1959, around 32% were born between 1960 and 1979 and around 16% were born in 1980 or later. The 
figures are indicative of the ageing population common to many European countries. Table 1 also shows that 
around 54% of our sample completed only compulsory secondary education, while around the 45% of the 
sample are men and the share of individuals living in more deprived areas is around 36%.  
 

On the basis of the combination of the circumstances discussed above, we can define 36 types. These are 
described in Table A.1 in the Appendix along with their distribution in our sample. Type 1 is the type for which 
we might expect a priori to have the greatest disadvantage in terms of health outcomes: born before 1959, with 
lower education, female and living in a more deprived area. Conversely, type 36 is the type for which we might 
expect the greatest advantage: born in 1980 or later, highly educated, male living in a less deprived area. In 
practice we use an ex post approach, following Roemer (2002), to define the most disadvantaged type for each 
health outcome based on the empirical distribution function of biomarkers across types. 
 
As Table A.1 shows, on average, we have a reasonable sample size within each type for cholesterol, and glycated 
haemoglobin and, importantly, we have a relatively large sample size for most types. Both aspects are relevant for 
our empirical analysis which is based on estimating separate regression of health outcomes on effort for each 
sub-sample. For fibrinogen and the ill health index, we have a much smaller average sample size (2,795 and 2,724 

                                                           
19

 The index of multiple deprivation is a measure of relative deprivation for small areas (Lower Super Output Areas (LSOAs) of about 1,500 inhabitants) 
and it is a combined measure of deprivation based on a total of 37 separate indicators that have been grouped into seven domains (income, employment, 
health deprivation and disability, education, barriers to housing and services, crime and living environment) each of which reflects a different aspect of 
deprivation experienced by a given area. 
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observations respectively) and some sub-samples have few observations. For these reasons, the results related to 
fibrinogen and the ill health index should be interpreted with more caution. 
 

 

Table 1. Descriptive Statistics – Circumstances 

 

Variables Percent 

Birth Cohorts  
<1959 51.22 
1960-1979 32.61 
1980+ 16.17 
Educational Level  
Low (LE) 54.13 
Moderate (ME) 25.30 
High (HE) 20.57 
Gender  
Females 54.17 
Males 45.83 
Deprivation score  
High (HD) 36.08 
Low (HD) 63.92 
 
 
Efforts (E) 

 
As effort variables, we consider health-related behaviours: smoking, diet, and drinking. As a proxy of smoking, 
we use saliva cotinine (more details are provided in the Appendix). As a second effort factor, we use the portions 
of fruits and vegetables consumed in the day before the interview as a proxy for a healthy diet. To be consistent 
with the other effort variables we re-scale fruit and vegetable consumption so that zero corresponds to a 
maximum effort of 10 portions per day and the variable is labelled as “bad diet” in the tables of results. 20 As a 
proxy of drinking behaviour, we use self-reported information on the frequency of drinking during a normal 
week and the units of alcohol consumption on the heaviest day of the week. We take the product of these 
variables to take into account both the frequency and intensity of drinking of the peak of alcohol consumption. 
 
In Table A.2 in the Appendix, we report the mean of our effort variables by type. Average cotinine values are 
very heterogeneous across types. Not surprisingly, smoking behaviour is more concentrated among the most 
disadvantaged types. Similarly, Diet changes quite substantially across types. On the contrary, drinking follows a 
less sharp pattern across types. 
 
 
Health outcomes (H) 
 
Table 2 shows the descriptive statistics of the biomarkers. We find that average biomarker values in our sample 
fall mostly within normal ranges, but with some exceptions. In particular, average cholesterol values are a little 
higher than the cut-point of 5 while fibrinogen average scores are a little lower than the normal cut-point of 3. 
Moreover, Table 2 shows higher dispersion around cholesterol and ill health index scores, while other 
biomarkers values are less dispersed around the mean.  Poorer health outcomes tend to be more concentrated 
among disadvantaged types (see Table A.3 in the Appendix). In particular, average biomarker levels of type 1 are 
substantially above the clinical threshold in the case of cholesterol and fibrinogen. Conversely, biomarker levels 
of type 36 all fall within the normal ranges. In between, we observe a higher concentration of bad health 
outcomes especially among types made up of older individuals.  
 

 

 

                                                           
20

 The reference point of 10 portions reflects evidence from a recent meta-analysis of the benefits of fruit and vegetables  (Aune et al., 2017). 
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Table 2. Descriptive Statistics – Biomarkers 

 

Variables Mean Std Dev. Wavesa Observations 

Cholesterol 5.52 1.10 1,2,3,4,5,6,7,8,9,10 11096 
Glycated haemoglobin 5.56 0.63 1,2,3,4,5,6,7,8,9,10 12516 
Fibrinogen 2.93 0.65 1,2,3,4,7 2795 
Ill Health Index* 3.81 1.19 1,2,3,4,7 2724 
a 2003=wave 1; 2012=wave10 *First component of a PCA on Cholesterol, Glycated Haemoglobin and Fibrinogen. 

 
On the basis of the empirical distribution functions we can identify the worst-off type for each biomarker and 
we use this type as a benchmark (in equation 13) for the Inequality of Opportunity Gini decomposition. These 
are types 25, 8, 13 and 31 for cholesterol, glycated haemoglobin, fibrinogen and the ill health index, respectively. 
All these types are composed by older individuals (born before 1959) and by people living in more deprived 
areas (with the only exception of type 8). This suggests that age remains the most relevant risk factor for health 
and also that deprivation of the area plays an important role in shaping health outcomes.  

 
 
4. Empirical Application 
 
In Tables A.4-A.7 in the Appendix, we report the complete set of regressions for all 36 types and for all 
biomarkers analysed. The main results of these regressions are that effort variables generally have significant 
slope coefficients but display a large degree of heterogeneity across biomarkers and across types. Importantly, we 
found a large heterogeneity across types with respect to the constant (direct) terms and this anticipates that 
circumstances play a large direct role in influencing health outcomes. With respect to the heterogeneity across 
slopes, we found that the worse-off types generally exhibit significantly higher slope coefficients, especially for 
the effect of unhealthy diet. 
 
 
The results of our decomposition analysis are reported in Tables 3-6 for cholesterol, glycated haemoglobin, 
fibrinogen and the ill health index, respectively. In each table, we report the decomposition of the Gini index (in 
the top panel) and of the Variance (bottom panel) into the four contributions. Results of the IOp-Gini 
decomposition are not reported since they are very similar to the results of the standard Gini decomposition. All 
terms are expressed in units and as a percentage of the explained inequality indices. As the sign and the 
magnitude of the contributions are very similar across the three inequality measures, we also illustrate in Figure 1 
the contribution of the decomposition terms for the Gini index decomposition only. A number of robustness 
checks considering additional circumstances variables (ethnicity and parental smoking status) and effort variables 
(use of prescribed medications) leave our results substantially unchanged and are discussed in detail in the 
Section IV in the Appendix. 

 
[Insert Tables 3-6 around here] 

 
Tables 3-6 and Figure 1 show that the largest contribution to explained inequality in the outcomes is attributable 
to a direct effect of circumstances for all of the biomarkers. Indeed, the direct contribution of circumstances 
ranges from around 56% of explained inequality in fibrinogen to around 95% of explained inequality in glycated 
haemoglobin.  
 
The second contribution to inequality is attributed to effort. For cholesterol and glycated haemoglobin its 
contribution is however only marginal (i.e. around 6% and 9% of the explained inequality, respectively) while for 
the other biomarkers, the contribution of effort terms is much more important and it reaches around 18% of the 
explained inequality in Ill-Health Index and around 40% of the explained inequality in the case of fibrinogen.  
 
The contributions of the indirect circumstance terms is less important and ranges from around 3.5% for 
cholesterol to around 6% for Ill-Health index. Its contribution is positive for all biomarkers with the exception 
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of glycated haemoglobin. This implies that the interaction between circumstances and effort, through the slope 
coefficients, generally increases the overall level of inequality. As discussed before, this reflects the fact that the 
types that, on average, have higher biomarker scores (i.e. worse health) often have higher slope coefficients on 
the measures of effort. In the case of glycated haemoglobin, the negative terms indicated that types in poorer 
health have lower slope coefficients.  
 

Figure 1.  Decomposition Results- Gini Index 

 

 
 
The patterns described above are essentially common to all biomarkers. Only fibrinogen is an exception with 
respect to the role of effort terms which is significantly larger than for the other biomarkers, and glycated 
haemoglobin with respect to the indirect circumstance terms which is negative (while it is positive for all the 
other biomarkers). Despite these minor exceptions, the ranking of the contributions is the same for all 
biomarkers analysed and this indicates that there is a general pattern of the contributions to inequality which is 
common to all of the health outcomes.  
 
For overall inequality, we find that their levels are heterogeneous across biomarkers. Overall inequality is 
generally low for glycated haemoglobin while it is higher for cholesterol and fibrinogen and significantly higher 
for the ill-health index . This is consistent with the fact the latter reflects variations in a broader range general 
health conditions, i.e. it takes into account all biomarkers considered. A direct comparison between the estimated 
Gini measures and the variance is not appropriate but also in the case of variance, higher dispersion is found for 
the ill-health index and cholesterol (in order of magnitude) while lower dispersion is found for fibrinogen and 
glycated haemoglobin. Importantly, both the magnitude, the sign and ranking of the contributions are very 
similar under all the indices used and for all biomarkers analysed.  
 
Furthermore, we observe a very large contribution of the unexplained component for all of the biomarkers. This 
is largest in the case of fibrinogen, amounting to around 80% of the overall inequality. For the other biomarkers, 
the contribution is a little lower, ranging from around 71% to 79%. As expected, this demonstrates that observed 
circumstances and efforts offer only a partial explanation of the overall observed variation in the realised 
outcomes for the biomarkers. This is a common feature of studies dealing with the measurement and 
decomposition of inequality in health. However we find very little correlation between higher moments of the 
type-specific residuals and both observed circumstances and effort variables 21 . This supports the idea that 
unexplained component can be mostly regarded as a random noise in our empirical application.  

                                                           
21

 F-tests of the joint significance of observed circumstances and effort variables are 0.71 and 0.16 for Gini, and variance decomposition residuals, 
respectively, in the cholesterol regression; 1.09 and 0.58 in glycated haemoglobin regression; 0.47 and 0.18 in fibrinogen regression; 0.39 and 0.24 in ill-

health index regression. 
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Lastly, Tables 3-6 show the detailed contribution of each effort variable to the overall inequality. We find that, in 
terms of effort terms, all the effort variables plays a roughly equal role in the overall inequality across the majority 
of biomarkers analysed. Drinking is a little more important for glycated haemoglobin while cotinine dominates 
for fibrinogen  and the ill-health Index. For what concerns the detailed decomposition of the indirect circumstances 
we find that unhealthy diet and drinking represent the most important effort variables. The contribution of 
unhealthy diet is generally positive for all biomarkers. This implies that the slope coefficient for unhealthy diet is 
larger for types that have higher rankings for the biomarkers and hence worse health (typically the worst-off 
types). In the case of glycated haemoglobin only, the contribution is negative, meaning that slope coefficient for 
this variable is larger for types with a less diabetes risk. The contribution of drinking behaviour is positive for 
cholesterol and glycated haemoglobin and it is negative for the other biomarkers. The contribution of smoking is 
more negligible for all biomarkers.  
 
 

5. Conclusions 
 
In this paper, we propose a new and relatively easy to-implement decomposition method to assess inequality of 
opportunity in health. The method is grounded on the theoretical framework proposed by Roemer (2002) which 
sorts all factors associated with individual attainment between a category of effort factors , for which individuals 
should be held partly responsible, and a category of circumstance factors, which are a source of unfair differences in 
outcomes. Our method builds on the decomposition of the Gini index with heterogeneous responses proposed 
by Jones and Lopez-Nicolas (2006) and it is extended to complement the standard Gini with an Inequality of 
Opportunity Gini that measures inequality relative to the most disadvantaged type. Moreover, we have also 
shown that our decomposition method applies to the variance decomposition of Shorrocks (1982). 
 
We illustrate our method with an application to the analysis of inequality of opportunity in three biomarkers that 
are associated with some of the most prevalent non-communicable diseases: cholesterol, glycated haemoglobin, 
fibrinogen along with a general ill-health index built on the combination of the all three biomarkers. Moreover, 
we use a biomarker to measure smoking. The use of biomarkers is new in the analysis of health equity and it is 
useful to have measures of inequality of opportunity that are not biased by reporting heterogeneity.  
 
Using ten waves of the Health Survey for England (2003-2012), we find that the target of equality of opportunity 
in health is still far from being reached in England. Our investigation shows that circumstances are still a key 
source of health inequalities for all health outcomes analysed explaining from 56% to 95% of the total inequality. 
In some cases, i.e. for diabetes risk, we find, in addition, a significant interaction between circumstances and 
efforts. In the case of glycated haemoglobin, this interaction has the effect of dampening overall inequality. This 
is an aspect that should be carefully considered in inequality of opportunity analyses which often rely on the 
hypothesis of the separability of circumstances and effort. Moreover, this result has potential policy implications 
as it suggests that the possibility of decreasing inequalities through higher individual efforts may be limited in the 
case of more disadvantaged individuals and for specific diseases such as diabetes.  
 
At the same time, we find that individuals are still empowered to reduce the risks for some specific diseases. 
Individual effort, and in particular smoking and drinking behaviours are found to be very important for the risk 
of inflammatory diseases, associated with higher fibrinogen levels. For the latter, we find a contribution of effort 
which is almost equal to the direct role of circumstances. Similarly, people in worse circumstances are 
empowered to reduce the risk of some diseases through healthier eating behaviour due to a steeper association 
between unhealthy diet and health among people in worse circumstances. All in all, our results suggest that 
health policy interventions designed to encourage the adoption of healthy lifestyles may have limited 
effectiveness or be effective only for the prevention of specific diseases, while a wider strategy aimed at 
equalising opportunities would be needed to substantially reduce inequalities in health.  
 
Our decomposition method offers the possibility of extensions and further applications. First, it would be 
interesting to apply our decomposition method to the analysis of inequality of opportunity in other important 
dimensions of well-being such as income or education. Our method should be fit for these kinds of analysis 
based on continuous outcomes. Second, further research might strongly benefit of a combination of different 

                                                                                                                                                                                                 

 



13 

 

kinds of data. Because of some data limitations, our empirical illustration is not able to address the role of 
parental background, other than parental smoking, on the intergenerational transmission of health which is 
generally analysed in inequality of opportunity studies. Similarly, there is a wide literature (see Goodman et al, 
2005; Swerdlow et al. 2015) showing the hereditary nature of many biomarkers. Although the contribution of 
unobservable factors is captured in our decomposition method, we are clearly not able to measure the 
contribution of these factors to the overall inequality. More generally, the set of circumstances available in our 
empirical application are much closer to the ones employed in the normative literature on health equity (eg., Rosa 
Dias and Jones, 2007). Yet, the partial observability of the circumstances is a common feature of all inequality of 
opportunity analyses (Ferreira and Peragine, 2015) which is hard to solve with the datasets usually available to 
scholars. This may lead to an underestimation of the share of illegitimate inequality and may bias the relationship 
between efforts and health by influencing the sorting of individuals in bad habits. On the other hand, our 
empirical application uses biomarker data. Although this complicates the use of additional variables (since 
biomarker measurements are available only for a random sub-sample of the full sample), it is a rare feature of 
health equity studies and is important to solve reporting bias issues. Moreover, our empirical application includes 
deprivation of the area of residence among circumstances and this partly helps to take into account also the 
social background of individuals. The availability of new data-sets combining a larger set of circumstances – 
including genetic data - and biomarkers data may contribute to relax this trade-off and add significantly to our 
understanding of how social and economic circumstances impact on health outcomes (Benzeval, et al. 2016).  
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TABLES 

Table 3. Decomposition Results – Cholesterol 

 

 

 

 

 

 

 

 
 

 

 

 

 

a In percentage of explained inequality 

 

 

 

 

GINI DECOMPOSITION   

Variables 
Effort 

% a  
Direct  

% a 
Indirect 

% a 
Total   

%  
circumstances circumstances  

Cotinine 0.000441 1.90 0.000193 0.83   

Drinking 0.000451 1.95 0.000311 1.34   

Bad diet 0.000441 1.90 0.000392 1.69   

Total contribution  
0.001333 5.76 0.020908 90.36 0.000896 3.49   0.0231 20.72 

of variables 

Residuals         0.0880 79.28 

Gini         0.1116  

VARIANCE DECOMPOSITION   

Cotinine 0.005063 2.12 0.002118 0.88   

Drinking 0.004658 1.95 0.002945 1.23   

Bad diet 0.004693 1.96 0.004368 1.82   

Total contribution  
0.014414 6.03 0.215305 90.03 0.009431 3.94 0.2391 19.74 

of variables 

Residuals       0.9721 80.25 

Variance       1.2112  
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Table 4. Decomposition Results – Glycated Haemoglobin 

 

GINI DECOMPOSITION   

Variables 
Effort 

% a  
Direct  

% a 
Indirect 

% a 
Total   

%  
circumstances circumstances  

Cotinine 0.000363 3.31 -0.000462 -4.17   

Drinking 0.000548 4.95 -0.000941 -8.51   

Bad diet 0.000142 1.28 0.000938 8.47   

Total contribution  
0.001057 9.56 0.010469 94.65 -0.000465 -4.21    0.0110 21.73 

of variables 

Residuals           0.0398 78.27 

Gini           0.0509  

VARIANCE DECOMPOSITION   

Cotinine 0.002762 5.02 -0.002229 -4.05   

Drinking 0.003654 6.64 -0.004502 -8.18   

Bad diet 0.000918 1.67 0.004254 7.73   

Total contribution  
0.007334 13.33 0.050177 91.17 -0.0026935 -4.50 0.0550 13.50 

of variables 

Residuals         0.3524 86.49 

Variance         0.4075  
a In percentage of explained inequality 
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Table 5. Decomposition Results – Fibrinogen 
 
 

GINI DECOMPOSITION   

Variables 
Effort 

% a  
Direct  

% a 
Indirect 

% a 
Total 

%  
circumstances circumstances 

Cotinine 0.004675 19.24 -0.000795 -3.27   

Drinking 0.003029 12.47 -0.001883 -7.75   

Bad diet 0.001951 8.03 0.003727 15.35   

Total contribution  
0.009655 39.75 0.013582 55.92 0.001049 4.31     0.0242 19.84 

of variables 

Residuals           0.0981 80.16 

Gini           0.1224  

VARIANCE DECOMPOSITION   

Cotinine 0.016266 20.09 -0.002392 -2.95   

Drinking 0.011262 13.91 -0.005299 -6.54   

Bad diet 0.006518 8.05 0.006518 12.14   

Total contribution  
0.034046 42.05 0.044779 55.31 0.002140 2.64  0.0809 18.96 

of variables 

Residuals          0.3461 81.04 

Variance          0.4271  
a In percentage of explained inequality 
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Table 6. Decomposition Results – Ill Health Index 
 

GINI DECOMPOSITION   

Variables 
Effort 

% a  
Direct  

% a 
Indirect 

% a 
Total   

%  
circumstances circumstances  

Cotinine 0.004032 8.06 0.0000780 0.15   

Drinking 0.003205 6.41 -0.002964 -5.92   

Bad diet 0.001940 3.88 0.005925 11.84   

Total contribution  
0.009177 18.34 0.037822 75.58 0.0025475 6.07 0.0500  28.94 

of variables 

Residuals          0.1228 71.06 

Gini          0.1729  

VARIANCE DECOMPOSITION   

Cotinine 0.031801 8.19 0.000110 0.03   

Drinking 0.026599 6.85 -0.023501 -5.99   

Bad diet 0.017322 4.46 0.0415266 10.70   

Total contribution  
0.07572 19.51 0.293951 75.75 0.018387 4.73 0.3880  27.39 

of variables 

Residuals         1.0286 72.61 

Variance         1.4167  
a In percentage of explained inequality 
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ONLINE APPENDIX 
 

I. OTHER DECOMPOSITIONS 
 
The Inequality of Opportunity Gini 

 
The decomposition of 𝐺𝐼𝑂𝑝 follows the same logic described in equations (5)-(10). The benchmark uses the 
average health of the worst-off type (𝐻𝑤̅̅ ̅̅ ). Considering that (𝐻𝑖 − 𝐻𝑤̅̅ ̅̅ ) = (𝐻𝑖 − 𝐻𝜏̅̅ ̅) + (𝐻𝜏̅̅ ̅ − 𝐻𝑤̅̅ ̅̅ ) and after 
manipulations similar to the ones shown in equations (8) and (9), the decomposition of 𝐺𝐼𝑂𝑝  can be expressed 
as follows : 
 𝐺𝐼𝑂𝑝 = ( 2𝑁𝐻𝑤̅̅ ̅̅ ) ∑ ∑(𝛼𝜏 − 𝛼𝑤̅̅ ̅̅ )(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + 

 ( 2𝑁𝐻𝑤̅̅ ̅̅ ̅) ∑ ∑ (�̅�𝜏 − 𝐵𝑤̅̅ ̅̅ )(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + ( 2𝑁𝐻𝑤̅̅ ̅̅ ̅) ∑ ∑   (𝐵𝑖 − 𝐵𝜏̅̅ ̅)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 +                               (11)  ( 2𝑁𝐻𝑤̅̅ ̅̅ ) ∑ ∑ 𝑢𝑖𝜏(𝑅𝑖 − 12)𝑖∈𝜏𝜏  

 
The terms in equation (11) follow the same logic of those in equation (10) but they are expressed with reference 
to the situation of the worst-off type. Thus, the first term gives the direct contribution of circumstances to the overall 
Inequality of Opportunity-Gini, the second term gives the indirect contribution of circumstances through effort, the 
third term gives the contribution of effort, while the final term measures the contribution of residual factors.  

 

Absolute Gini  
 
The absolute Gini is given by: 𝐴𝐺 = 2𝐶𝑜𝑣(𝐻𝑖, 𝑅𝑖)                                                                     (12) 
                                                
Regression-based decomposition of this index does not require an assumption of weighting function ignorability 
(as the weighting function is a constant). The decomposition becomes: 
 𝐴𝐺 = (2𝑁) ∑ ∑(𝛼𝜏 − �̅�)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + 

 (2𝑁) ∑ ∑ (�̅�𝜏 − �̅�)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 + (2𝑁) ∑ ∑  (𝐵𝑖 − 𝐵𝜏̅̅ ̅)(𝑅𝑖 − 12)𝑖∈𝜏𝜏 +                               (13) (2𝑁) ∑ ∑  𝑢𝑖𝜏(𝑅𝑖 − 12)𝑖∈𝜏𝜏 +  

 
The percentage contributions from this decomposition of the absolute Gini are identical to those for the relative 
Gini. So, as long as the percentagewise decomposition is the main focus of attention – as it is here - it is clear 
that weighting function ignorability is not a concern.  

Variance 
 

In simplified form, Shorrock’s (1982) decomposition relies on the fact that if  
 𝑦 = 𝑥 + 𝑧 
then  
 𝑣𝑎𝑟(𝑦) = 𝑐𝑜𝑣(𝑥, 𝑦) + 𝑐𝑜𝑣(𝑧, 𝑦) 
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Given (3), (6) and (7) we have: 
 𝐻𝑖 − �̅� = 𝛼𝜏 − �̅� + 𝐵𝑖 − �̅� + 𝑢𝑖𝜏                    (14) 

 
which can be expanded to give: 𝐻𝑖 − �̅� = (𝛼𝜏 − �̅�) + (�̅�𝜏 − �̅�) + (𝐵𝑖 − 𝐵𝜏̅̅ ̅) + 𝑢𝑖𝜏              (15) 
 
Using the Shorrocks decomposition this gives: 
 𝑉𝑎𝑟(𝐻) = 𝑐𝑜𝑣(𝛼𝜏 − �̅�, 𝐻) + 𝑐𝑜𝑣((�̅�𝜏 − �̅�), 𝐻) + 𝑐𝑜𝑣((𝐵𝑖 − �̅�𝜏), 𝐻) + 𝑐𝑜𝑣(𝑢𝑖𝜏, 𝐻)              (16) 
 
 
 
II. GLOSSARY OF BIOMARKERS  

Cotinine 
Cotinine is the predominant metabolite of nicotine and it is a quantitative indicator of active smoking. Cotinine 
levels greater than or equal to 12ng/ml usually identify active smoking with high sensitivity (96.7%; Jarvis et al. 
2008). 
 
Total Cholesterol 
Is measured in units of millimoles per litre of blood, (mmol/L). The English government recommends that total 
cholesterol should be equal or less than 4 mmol/L among individuals at high risk of cardiovascular disease 
(CVD) (i.e. obese, with an history of CVD, etc. ) and equal or less than 5 mmol/L or less for healthy individuals. 
Values above these thresholds indicate a higher risk of CVD.  
 
Glycated Haemoglobin (HbA1c) 
Is a measure of the level of sugar in the blood over the previous 8 to 12 weeks before measurement. It is the 
proportion of haemoglobin proteins that have been bound by glucose.  HbA1c can be expressed as a percentage 
or as a value in mmol/mol. HbA1c is measured in percentages in all waves of the HSE. HbA1c values of 6.5% 
or more indicate diagnosis of diabetes, while values between 5.7% and 6.4% indicate pre-diabetes risk (American 
Diabetes Association, 2010; World Health Organisation, 2011).  
 
Fibrinogen  
Is a marker of inflammation and it aids the body to stop bleeding by helping blood clots to form. It is measured 
in grams per litre (g/L). The measure is continuous and there are no established clinical cut-points but normal 
levels generally range between 1.5-3 g/L. Higher levels of fibrinogen are implicated in the development of CVD 
and many inflammatory diseases, such as liver diseases.  
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III. SUPPLEMENTARY RESULTS 

 

Table A.1  Distribution of types 

 

Types 
Types  

Definition a  
Biomarkers 

(Sample Size)  
 

 
Cholesterol 

Glycated 
Haemoglobin Fibrinogen 

Ill Health 
Index 

1 LE,F,<59, HD 449 578 123 122 
2 LE,F,<59, LD 1016 1268 249 247 
3 LE, F, 60-79, HD 389 391 113 109 
      
4 LE, F, 60-79, LD 556 551 146 140 
5 LE, F, 80+, HD 140 139 34 34 
6 LE, F, 80+, LD 109 109 20 20 
      
7 LE, M, <59, HD 438 639 152 147 
8 LE, M, <59, LD 752 1,090 190 186 
9 LE, M, 60-79, HD 386 403 122 117 
      
10 LE, M, 60-79, LD 439 459 125 123 
11 LE, M, 80+, HD 101 102 25 24 
12 LE, M, 80+, LD 127 126 23 23 
      
13 ME, F, <59, HD 94 110 32 29 
14 ME, F, <59, LD 422 485 96 96 
15 ME, F, 60-79,HD 231 229 61 57 
      
16 ME, F, 60-79, LD 498 497 115 113 
17 ME, F, 80+,HD 94 93 26 21 
18 ME, F, 80+,LD 157 153 28 28 
      
19 ME, M, <59, HD 127 171 32 31 
20 ME, M, <59, LD 521 659 115 115 
21 ME, M, 60-79, HD 222 231 64 64 
      
22 ME, M, 60-79, LD 491 505 124 118 
23 ME, M, 80+, HD 132 131 31 31 
24 ME, M, 80+, LD 211 206 47 44 
      
25 HE, F, <59, HD 78 83 22 21 
26 HE, F, <59, LD 375 411 82 81 
27 HE, F, 60-79, HD 200 202 65 62 
      
28 HE, F, 60-79, LD 617 611 133 129 
29 HE, F, 80+, HD 75 75 7 7 
30 HE, F, 80+, LD 134 134 26 26 
      
31 HE, M, <59, HD 91 119 17 17 
32 HE, M, <59, LD  485 605 111 109 
33 HE, M, 60-79, HD 171 177 62 62 
      
34 HE, M, 60-79, LD  559 575 144 139 
35 HE, M, 80+, HD 79 72 12 11 
36 HE, M, 80+, LD 130 127 21 21 

 
 

Observations       11096 12516 2795 
 

2724 
a LE= Qualification below nvq3GCE A level, ME=Nvq 3/GCE A level, HE= nvq4/nvq5/degree or equivalent; F=Female, M=Male; <59=Born before 

1959, 60-79=Born between 1960 and 1979, 80+= Born after 1980; LD= Living in a low deprived area, HD= Living in a high deprived area. 
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Table A.2 Means of effort variables by type 

 

 Type Cotinine Drinking Bad Diet 

1 LE,F,<59, HD 72.03 11.01 5.74 

2 LE,F,<59, LD 33.94 10.45 5.17 

3 LE, F, 60-79, HD 129.17 17.84 6.53 

4 LE, F, 60-79, LD 73.19 14.76 6.16 

5 LE, F, 80+, HD 99.53 16.37 6.58 

6 LE, F, 80+, LD 83.26 14.20 6.22 

7 LE, M, <59, HD 107.20 23.45 5.99 

8 LE, M, <59, LD 53.73 21.33 5.28 

9 LE, M, 60-79, HD 159.79 34.44 6.74 

10 LE, M, 60-79, LD 89.68 33.01 6.41 

11 LE, M, 80+, HD 110.89 28.68 6.85 

12 LE, M, 80+, LD 85.00 29.35 6.63 

13 ME, F, <59, HD 61.77 12.43 4.88 

14 ME, F, <59, LD 26.83 12.31 4.47 

15 ME, F, 60-79,HD 67.57 16.42 5.98 

16 ME, F, 60-79, LD 50.13 15.59 5.32 

17 ME, F, 80+,HD 72.23 20.31 5.71 

18 ME, F, 80+,LD 30.95 18.78 5.85 

19 ME, M, <59, HD 81.05 26.09 5.37 

20 ME, M, <59, LD 37.85 22.91 5.11 

21 ME, M, 60-79, HD 99.48 32.77 6.16 

22 ME, M, 60-79, LD 61.12 29.66 5.93 

23 ME, M, 80+, HD 61.79 38.52 6.28 

24 ME, M, 80+, LD 46.94 36.20 5.94 

25 HE, F, <59, HD 50.66 14.49 4.38 

26 HE, F, <59, LD 15.68 14.80 4.29 

27 HE, F, 60-79, HD 34.20 14.32 5.04 

28 HE, F, 60-79, LD 14.66 14.42 4.81 

29 HE, F, 80+, HD 23.11 14.03 4.60 

30 HE, F, 80+, LD 17.04 17.05 5.06 

31 HE, M, <59, HD 57.09 24.94 4.69 

32 HE, M, <59, LD  19.10 22.77 4.55 

33 HE, M, 60-79, HD 51.54 27.54 5.33 

34 HE, M, 60-79, LD  29.80 24.44 5.29 

35 HE, M, 80+, HD 54.42 35.90 5.20 

36 HE, M, 80+, LD 30.42 30.95 5.04 
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Table A.3. Means of biomarkers by type 

 

 Type 
Cholesterol 

Glycated  
Haemoglobin Fibrinogen 

Ill Health  
Index 

1 LE,F,<59, HD 6.13 5.77 3.16 4.47 

2 LE,F,<59, LD 6.16 5.74 3.17 4.43 

3 LE, F, 60-79, HD 5.28 5.43 3.12 3.63 

4 LE, F, 60-79, LD 5.20 5.36 2.81 3.36 

5 LE, F, 80+, HD 4.60 5.24 2.87 3.01 

6 LE, F, 80+, LD 4.51 5.23 2.67 2.66 

7 LE, M, <59, HD 5.65 5.90 3.21 4.38 

8 LE, M, <59, LD 5.71 5.85 3.17 4.37 

9 LE, M, 60-79, HD 5.61 5.51 2.83 3.63 

10 LE, M, 60-79, LD 5.66 5.52 2.81 3.78 

11 LE, M, 80+, HD 4.70 5.33 2.39 2.52 

12 LE, M, 80+, LD 4.50 5.31 2.55 2.88 

13 ME, F, <59, HD 6.16 5.78 3.33 4.54 

14 ME, F, <59, LD 6.20 5.70 3.16 4.43 

15 ME, F, 60-79,HD 5.12 5.37 3.00 3.40 

16 ME, F, 60-79, LD 5.20 5.33 2.86 3.32 

17 ME, F, 80+,HD 4.71 5.22 2.98 3.26 

18 ME, F, 80+,LD 4.70 5.26 2.80 3.21 

19 ME, M, <59, HD 5.72 5.81 3.08 4.08 

20 ME, M, <59, LD 5.78 5.78 3.05 4.37 

21 ME, M, 60-79, HD 5.62 5.45 2.68 3.33 

22 ME, M, 60-79, LD 5.66 5.45 2.72 3.59 

23 ME, M, 80+, HD 4.75 5.26 2.48 2.77 

24 ME, M, 80+, LD 4.63 5.25 2.58 2.84 

25 HE, F, <59, HD 6.11 5.69 3.11 4.17 

26 HE, F, <59, LD 6.12 5.65 3.14 4.44 

27 HE, F, 60-79, HD 5.13 5.36 2.83 3.27 

28 HE, F, 60-79, LD 5.13 5.31 2.72 3.18 

29 HE, F, 80+, HD 4.76 5.16 3.29 3.32 

30 HE, F, 80+, LD 4.72 5.22 2.93 3.22 

31 HE, M, <59, HD 5.62 5.82 3.06 4.65 

32 HE, M, <59, LD  5.77 5.69 2.92 4.25 

33 HE, M, 60-79, HD 5.39 5.36 2.75 3.32 

34 HE, M, 60-79, LD  5.50 5.39 2.65 3.45 

35 HE, M, 80+, HD 4.69 5.34 2.46 2.48 

36 HE, M, 80+, LD 4.76 5.23 2.60 3.00 
 Observations 11096 12516 2795      2724 
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Table A.4 Regressions by type – Cholesterol 

 
 
 
 
 
 
 
 

Cont’d 
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Cotinine 0.001* -0.000 -0.000 0.000 -0.002** 0.000 -0.000 0.001 -0.000 0.001*** 0.002 -0.001 0.001* -0.000 0.000 0.001 0.000 0.000 
Drinking 0.001 0.001 0.000 0.004** 0.001 0.001 0.004 -0.003 0.004 0.002 -0.003 0.002 0.004 0.003* 0.001 0.001 0.001 -0.001 
Bad diet -0.046 0.028 0.018 0.034 -0.045 -0.003 -0.066 -0.006 -0.021 0.021 0.016 0.055 0.009 -0.014 0.032 0.032* 0.017 0.033 
Constant 5.898*** 5.611*** 5.518*** 5.310*** 5.154*** 4.613*** 6.395*** 6.187*** 5.180*** 4.965*** 4.685*** 4.366*** 5.378*** 5.777*** 5.189*** 5.266*** 4.537*** 4.579*** 
Obs 127 521 222 491 132 211 78 375 200 617 75 134 91 485 171 559 79 130 
Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 

 

Table A.5 Regressions by type - Glycated Haemoglobin 

Cont’d 
 

 

 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 

 

 

 

 

Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Cotinine 0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.001*** 0.000 -0.001 0.001 -0.001 0.001*** 0.000 0.000 0.000 -0.001 
Drinking 0.001 0.003 0.001 -0.002 -0.001 0.002 0.002 0.004*** 0.002 0.001 0.002 -0.001 -0.006 0.002 0.002 0.005*** -0.004 0.000 
Bad diet 0.017 -0.003 0.003 -0.014 -0.027 -0.052 0.012 0.058*** 0.032 -0.015 0.050 -0.015 0.016 0.025 0.026 0.052*** 0.008 0.005 
Constant 5.991*** 6.134*** 5.200*** 5.316*** 4.875*** 4.883*** 5.504*** 5.255*** 5.431*** 5.724*** 4.408*** 4.579*** 6.199*** 6.000*** 4.873*** 4.791*** 4.690*** 4.711*** 
Obs. 449 1016 389 556 140 109 438 752 386 439 101 127 94 422 231 498 94 157 

Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Cotinine -0.000 0.000 0.000 0.001*** 0.000 0.000 -0.000 -0.000 0.000 0.000 0.001*** -0.000 0.000 0.000* 0.000 0.000 0.000 0.000 
Drinking -0.005*** -0.004*** 0.002 -0.002*** -0.001 -0.000 -0.001 -0.004*** -0.001 0.001 -0.001 -0.001 -0.007* -0.004*** -0.001 -0.001 -0.001 0.000 
Bad diet 0.004 0.006 0.001 -0.012 0.001 -0.011 -0.005 0.020* 0.009 0.022* 0.013 0.014 0.042 0.019 0.003 0.018** -0.003 -0.011 
Constant 5.820*** 5.747*** 5.373*** 5.439*** 5.222*** 5.285*** 5.983*** 5.825*** 5.445*** 5.314*** 5.175*** 5.268*** 5.640*** 5.654*** 5.373*** 5.230*** 5.243*** 5.320*** 
Obs. 578 1268 391 551 139 109 639 1090 403 459 102 126 110 485 229 497 93 153 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Cotinine -0.001 0.000 0.000 0.000 0.000 0.001*** 0.000 0.000 0.000 0.000* 0.000 0.001 0.001* 0.001*** 0.000 0.001*** 0.004*** 0.000 
Drinking -0.001 -0.003** -0.001 -0.001 0.000 0.000 -0.004 -0.002 -0.002 -0.002** -0.000 -0.003** -0.006* -0.002** -0.000 -0.001 0.003 -0.001 
Bad diet 0.009 0.002 0.037** -0.010 0.003 0.010 0.001 -0.013 0.001 -0.015** -0.012 0.006 -0.006 -0.016 0.003 -0.005 -0.047 -0.006 
Constant 5.827*** 5.820*** 5.197*** 5.532*** 5.222*** 5.140*** 5.759*** 5.739*** 5.381*** 5.419*** 5.223*** 5.223*** 5.959*** 5.805*** 5.345*** 5.414*** 5.411*** 5.287*** 
Obs 171 659 231 505 131 206 83 411 202 611 75 134 119 605 177 575 72 127 
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Table A.6 Regressions by type - Fibrinogen 

 
Cont’d 

 

 

 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 

Table A.7 Regressions by type – Ill Health Index 

 
Cont’d 

 

 

 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively. 

Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Cotinine 0.001 0.000 -0.000 0.001 -0.001 0.001 0.001** 0.000* 0.001** 0.001*** 0.002** -0.000 -0.000 0.000 -0.000 0.000 0.001 -0.001 
Drinking -0.005 -0.009*** 0.003 -0.011*** -0.016** 0.005 -0.001 -0.003 -0.000 0.001 -0.004 0.000 -0.014* -0.011*** 0.016** -0.004 0.005 -0.001 
Bad diet 0.030 0.006 0.043 -0.006 0.037 -0.154* -0.016 0.021 0.079*** -0.024 0.037 0.009 0.035 0.021 -0.056* -0.023 -0.156** 0.025 
Constant 2.982*** 3.228*** 2.809*** 2.978*** 2.917*** 3.746*** 3.249*** 3.070*** 2.162*** 2.826*** 1.968*** 2.516*** 3.327*** 3.174*** 3.241*** 3.039*** 3.944*** 2.659*** 
Obs. 123 249 113 146 34 20 152 190 122 125 25 23 32 96 61 115 26 28 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Cotinine 0.000 0.001*** 0.000 0.001*** 0.001 0.000 0.001*** 0.001 0.003*** 0.001** -0.011 -0.005 -0.001 0.001** 0.002** 0.001** 0.002 -0.000 
Drinking -0.005 0.002 0.002 -0.000 0.000 0.004* -0.003 -0.003 -0.004 -0.001 -0.020 0.003 -0.010* -0.002 0.010*** -0.001 -0.004 -0.004 
Bad diet 0.059 -0.007 0.002 0.005 -0.080** -0.016 0.076* -0.069** -0.019 0.013 0.046 0.009 0.054 0.001 -0.018 0.016 -0.039 -0.153** 
Constant 2.745*** 2.955*** 2.600*** 2.614*** 3.028*** 2.561*** 2.670*** 3.518*** 2.895*** 2.631*** 3.518** 2.820*** 3.182*** 2.926*** 2.522*** 2.547*** 2.822** 3.777*** 
Obs 32 115 64 124 31 47 22 82 65 133 7 26 17 111 62 144 12 21 

Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Cotinine 0.001 0.001 -0.001 0.001 -0.002 0.001 0.000 0.000 0.000 0.001** 0.000 0.000 -0.000 0.001 0.001 -0.001 -0.001 -0.002 
Drinking -0.016** -0.006 0.007* -0.019*** -0.025** 0.020 -0.001 -0.005 0.001 0.002 0.007 -0.002 -0.032*** -0.019** 0.014 -0.001 -0.009 0.002 
Bad diet 0.114** 0.024 0.028 -0.014 0.044 -0.189 -0.051 0.083** 0.092* -0.060 0.046 0.046 -0.020 0.059 -0.082* 0.033 -0.025 -0.014 
Constant 3.829*** 4.332*** 3.394*** 3.688*** 3.222*** 3.898*** 4.753*** 3.963*** 2.877*** 3.998*** 2.009*** 2.546*** 4.955*** 4.283*** 3.721*** 3.173*** 3.602*** 3.304*** 
Obs. 122 247 109 140 34 20 147 186 117 123 24 23 29 96 57 113 21 28 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
Cotinine 0.000 0.002** 0.000 0.001** 0.003 0.001 0.002** 0.001 0.005** 0.002*** -0.016* -0.014 -0.002 0.003*** 0.002** 0.002*** 0.001 -0.002 
Drinking -0.007 -0.002 -0.002 -0.000 -0.000 0.002 -0.002 -0.007 -0.008 0.001 -0.014 0.004 -0.021 -0.004 0.010** -0.005* -0.009 -0.000 
Bad diet -0.045 0.038 -0.017 0.029 -0.035 -0.030 0.100 -0.131** -0.046 0.039 -0.097 -0.066 -0.102 -0.011 0.015 0.025 0.026 -0.114 
Constant 4.449*** 4.086*** 3.480*** 3.318*** 2.930*** 2.933*** 3.422*** 5.197*** 3.500*** 2.865*** 4.484*** 3.617*** 5.892*** 4.329*** 2.882*** 3.318*** 2.605 3.815*** 
Obs 31 115 64 118 31 44 21 81 62 129 7 26 17 109 62 139 11 21 
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IV. ROBUSTNESS CHECKS  
 
In this section we report a number of robustness checks and sensitivity analyses of our 
decomposition results under alternative definition of types and/or a different definition of 
circumstances and effort variables. All the results discussed in this Section are not reported 
but they are available upon request. 
 
One potential concern with the results shown in Section 4 might be the relatively small sub-
samples by type for some biomarkers, especially fibrinogen and the ill-health index. This 
might artificially increase the heterogeneity of coefficients across types and be capturing 
sampling variation across these relatively small sub-samples. In order to check for this 
possibility, we experimented with the definitions of types by considering different 
combinations of circumstances variables. We first deleted residential status among the 
circumstances variables and this leads to 18 types (instead of the 36 types actually employed) 
and a significant increase in sub-sample size. Secondly, we split education in two categories 
(below/above compulsory schooling) using cohort and gender as other circumstances 
variables. This leads to 12 types and a further gain in the average sub-sample size. 
Interestingly, these experiments affect some of the regression results but leave the sign and 
the magnitude of the decomposition results substantially unchanged. 
 
As a second check, we considered, separately, other additional circumstance variables 
available in our dataset for the definition of types. First, we experimented with parental 
smoking status, namely whether or not parents smoked when the respondent was a child and 
we deleted residential status from the set of circumstances variables. Also in this case, our 
decomposition results are substantially unchanged. Second, we considered the possibility of 
including the ethnicity of the respondents as additional circumstance variable. However, we 
found that the share of non-white individuals in the older cohorts and in the higher levels of 
education was too small, e.g. less than 5 individuals for some types in the case of fibrinogen. 
This would lead to a very imprecise decomposition of inequality and may not bring 
substantial differences to our main results, because of a strong correlation of ethnicity with 
the other circumstances (education and cohort). Similarly, other information collected in the 
HSE is ruled out due to low sample sizes: information on whether an individual was born 
prematurely and information on whether parents died and their cause of death are available 
only for a few waves and produce a very limited sample sizes. 
 
Finally, we also experimented with the definition of effort variables. First, we include 
whether the individuals take medications prescribed by the doctor among the effort factors. 
This variable is useful to control for the fact that medications might be actually prescribed by 
the doctor in response to adverse biomarker scores thus potentially affecting our 
decomposition results. When included among the effort variables, we find a significant and 
positive association between medications and biomarkers and a significant contribution of 
this variable among the decomposition terms. However, the inclusion of this additional 
effort variable does not affect the pattern of decomposition. We also consider the inclusion 
of BMI, the type of work (i.e. job strenuousness) and sport activity variables among the 
effort variables as they may affect significantly biomarkers scores. However, the inclusion of 
these variables in an IOp framework is problematic for a number of reasons. For what 
concerns BMI, it is non-monotonic in efforts since both being under-weight and over-weight 
are health problems. Secondly, IOp requires partitioning factors into circumstances and 
efforts, while BMI may reflect partly genetics, which is typically regarded as a circumstance, 
as well as 'lifestyle choices' that may be seen as an effort. A similar argument applies to the 
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type of work as it is partly under the individual control (thus an effort factor) but also 
strongly dependent on education and skills which are partly related to the socio-economic 
background of the individual (thus a circumstance). An additional concern with the use of 
BMI comes from the scaling of the effort variables in our decomposition method. 
Specifically, a BMI equals to 0 does not have practical relevance. The inclusion of physical 
activity among the effort variables is less contentious. Unfortunately, information on 
sporting activity is available only in selected waves of the HSE and the measures are not 
entirely comparable across waves. For instance, using the variable which is repeated most 
often (the average hours of sport in a week) the number of observations available would 
drop by around 70% for the analysis of cholesterol, by 60% for glycated haemoglobin and by 
100% for the remaining biomarkers. This would be problematic for our empirical approach 
which is based on estimating separate regressions of health outcomes on effort for each of 
the sub-samples defined by types  


