
This is a repository copy of Self-consistent single mode investigations of the 
quasi-geostrophic convection-driven dynamo model.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133297/

Version: Accepted Version

Article:

Plumley, M, Calkins, MA, Julien, K et al. (1 more author) (2018) Self-consistent single 
mode investigations of the quasi-geostrophic convection-driven dynamo model. Journal of 
Plasma Physics, 84 (4). ARTN 735840406. ISSN 0022-3778 

https://doi.org/10.1017/S0022377818000831

© Cambridge University Press 2018. This article has been published in a revised form in 
Journal of Plasma Physics https://doi.org/10.1017/S0022377818000831. This version is 
free to view and download for private research and study only. Not for re-distribution, 
re-sale or use in derivative works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


For Peer Review

 

 

��������	
	�����	
���������
���	�
��
��	�����������	
�
��	�����
���������
�����
�����������������

 

 

�������	� ���������	�
������
������


������������ �����������������

����������������	�  ��!������"�
����#��$�%������$&��'���

�������('���$�(&��)�����)��	� �*����������

��'�����������"����)���	� ���'��&+�
���$�),�-�.����&��"�������$��/���$��+������$�
��)�'�����

���0��+�
�)���,�-�.����&��"�������$��/���$��+��)&����

�����+�1��),�-�.����&��"�������$��/���$��+������$�
��)�'�����

2�(��+����.�,�-�.����&��"����$�+�������'�����"������$�
��)�'�����

1�&3��$�	� ����'��#��3�+�����'���&��'���

  

 

 

 

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Under consideration for publication in J. Plasma Phys. 1

Self-consistent single mode investigations of
the quasi-geostrophic convection-driven

dynamo model

Meredith Plumley1†, Michael A. Calkins 2, Keith Julien 1, and
Steven M. Tobias 3

1Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
2Department of Physics, University of Colorado, Boulder, CO 80309, USA

3Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Received xx; revised xx; accepted xx)

The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Carte-
sian dynamo model that is valid in the asymptotic limit of low Rossby number. In
the additional limit of small magnetic Prandtl number investigated here, the QGDM
is a self-consistent, asymptotically exact form of an α2 large-scale dynamo. This article
explores methods for simulating the multiscale QGDM and investigates how convection
is altered by the magnetic field in the planetary regime of small Rossby number and
small magnetic Prandtl number. At present, this combination is beyond the reach of
direct numerical simulations. We use a simplified class of solutions whose horizontal
structure is restricted to a periodic hexagonal lattice characterized by a single horizontal
wavenumber (single mode). In contrast with previous kinematic investigations of the
QGDM, the Lorentz force is included to study saturated, self-consistent dynamos. Two
methodologies are used to assess handling the multiple time scales of the QGDM: a stiff,
common-in-time approach where all time scales are converted to a single time variable
and a heterogeneous multiscale modeling approach employing fast time averaging on the
Reynolds, magnetic and buoyancy eddy fluxes that feed back onto the slow scales. The
strategies produce consistent results and each illustrates self-similar dynamics as the time
averaging window is increased. The properties of the convection are significantly altered
by the dynamo-generated magnetic field. All solutions show a decrease in the overall heat
transfer efficiency as compared to non-magnetic convection, suggesting that a change in
length scale or flow planform plays a critical role in the enhanced heat transfer efficiency
observed in previous dynamo studies. All dynamo solutions show a trend of increasing
ohmic dissipation relative to viscous dissipation as the buoyancy forcing is increased.

1. Introduction

Planets and stars generate and sustain their magnetic fields via the so-called hydro-
magnetic dynamo process (Elsasser 1956), whereby the kinetic energy of fluid motion
is converted into electromagnetic energy. Most natural dynamos are thought to be
powered by buoyancy-driven convection resulting from thermal and/or compositional
heterogeneities. The dynamics of natural dynamos are controlled and characterized by
several non-dimensional parameters. Assuming the simplest case of an incompressible
(i.e. Boussinesq) fluid layer of depth H driven solely by the thermal heterogeneities, the

† Email address for correspondence: meredith.plumley@colorado.edu

Page 1 of 31

Cambridge University Press

Journal of Plasma Physics



For Peer Review

2 M. Plumley, M. A. Calkins, K. Julien and S. M. Tobias

strength of the buoyancy force is quantified by the Rayleigh number Ra,

Ra =
gγ∆ΘH3

νκ
, (1.1)

where γ is the thermal expansion coefficient, g is the magnitude of the gravitational
acceleration (assumed to be constant), and ∆Θ represents the temperature difference
across the fluid layer. The viscosity and thermal diffusivity of the fluid are denoted by ν
and κ, respectively, and their ratio defines the thermal Prandtl number

Pr =
ν

κ
. (1.2)

All convectively-driven planetary and stellar dynamos are estimated, or assumed, to
be in the high Rayleigh number convective turbulence regime. For instance, values of
Ra > 1020 characterize both the Earth’s liquid outer core and the solar convection zone
(Schubert & Soderlund 2011; Ossendrijver 2003).
The system rotation vector Ω and the helical fluid motions it induces are thought to

play an important role in the generation of large-scale magnetic fields (Parker 1955). The
dynamical influence of rotation on fluid motion is controlled by the Rossby and Ekman
numbers, defined by

Ro =
U

2ΩH
, E =

ν

2ΩH2
, (1.3)

respectively measuring the strength of inertial forces relative to the Coriolis force, and
viscous forces relative to the Coriolis force. Here U is a characteristic flow speed and
Ω = |Ω|. Systems in which (E,Ro) ≪ 1 are said to be rapidly rotating. For both the
Earth’s liquid iron outer core and the Sun’s outer convective layer, the Ekman number
is small with E < 10−14. Morever, the Rossby number based on observationally inferred
speed and length scales for the core is Ro ≈ 10−6 (Finlay & Amit 2011). These values
indicate that rotation strongly constrains fluid motions in the core. Estimating Ro in the
solar convection zone continues to be an important goal of stellar physics research, with
recent helioseismic studies inferring values of Ro ≈ 0.1 near the top of the convection
zone (Hanosage et al. 2012; Greer et al. 2015).

The fluid properties of natural dynamos are known to have a significant effect on
the convective motions (Jones 2011). The thermal Prandtl number Pr is less than
unity in both planets and stars. Liquid metals such as in the Earth’s core are typically
characterized by Pr ≈ 10−2 (Pozzo et al. 2013) and stellar plasmas have extremely
small values of Pr ≈ 10−7 (Ossendrijver 2003). Laboratory experiments show that low
Pr convection is strongly inertial, thus allowing for the presence of turbulent motions
at significantly lower Rayleigh numbers than required to achieve turbulence in Pr ≈ 1
fluids (King & Aurnou 2013; Aurnou et al. 2015). The magnetic Prandtl number, defined
as

Pm = ν/η, (1.4)

where η is the magnetic diffusivity, ranges from Pm ≈ 10−3 in the outer regions of the
Sun, down to Pm ≈ 10−6 in the interiors of stars and planets.
Modeling natural dynamos is difficult due to the broad range of scales that charac-

terize these systems and the concomitant numerical stiffness of the governing equations.
Moreover, these challenges are compounded by the fact that rotation often leads to flow
anisotropy (Chandrasekhar 1961). Despite these hindrances, direct numerical simulation
(DNS) investigations continue to be the most widely employed method for dynamo
studies (e.g. Tobias et al. 2011; Jones 2011). However, these studies are limited to
relatively modest parameter values owing to computational restrictions; the recent study
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of Schaeffer et al. (2017) has accessed turbulent dynamos in a spherical shell down
to E = 5 × 10−8. Reduction strategies applied to the governing partial differential
equations attempt to overcome modeling difficulties through the development of sim-
plified equation sets that capture the fundamental physics while filtering dynamically
unimportant phenomena. Multi-scale asymptotic methods are a particularly robust and
powerful technique that yield equation sets with substantially reduced numerical stiffness;
this approach has been utilized with significant success in the case of rapidly rotating
hydrodynamics, where a leading order balance exists between the Coriolis and pressure
gradient forces, otherwise known as geostrophy (Charney 1948, 1971). Perturbations
about this balance yield so-called quasi-geostrophic (QG) dynamics, and simulations of
QG dynamics continue to provide substantial insight into both the large-scale hydrostatic
motions of the Earth’s atmosphere and ocean (Pedlosky 1992), as well as non-hydrostatic
convectively-driven flows that are relevant for planetary atmospheres and interiors, and
the convecting regions of rapidly rotating stars (Julien et al. 2006; Aurnou et al. 2015).
Reduction strategies for dynamos were first carried out by Childress & Soward (1972),

where a weakly nonlinear analysis first showed that Boussinesq QG convection in the
plane-layer Rayleigh-Bénard geometry readily gives rise to dynamo action near the onset
of fluid motion. This model was extended to anelastic atmospheres by Mizerski & Tobias
(2013). The Childress-Soward model was recently generalized to the case of strongly
forced convection and multiple length scales perpendicular to the rotation axis by Calkins
et al. (2015); for brevity, we refer to this new model as the QG dynamo model (QGDM).
To summarize the model, four distinct forms of the QGDM can be derived based on
the magnitudes of the small-scale Reynolds number Reℓ = Uℓ/ν and the small-scale
magnetic Reynolds number Rmℓ = Uℓ/η, where ℓ ≪ H is the horizontal length scale of
convection. The size of Reℓ dictates the importance of inertia relative to viscosity on the
small convective scales, and Rmℓ determines the relative importance of advection of the
small-scale magnetic field to ohmic diffusion (see also Calkins 2018; Calkins et al. 2017).
Note that all cases are strongly nonlinear, as characterized by the large scale Reynolds
number Re = (H/ℓ)Reℓ ≫ 1. Though the precise form of the QGDM varies depending
upon which case is considered, all of the forms are characterized as large-scale dynamo
models since a magnetic field is generated on a scale that is asymptotically larger than
the typical horizontal scale ℓ of convection. To date, only kinematic investigations of the
QGDM have been carried out and have focused solely on the Reℓ = O(1), Rmℓ ≪ 1 case
(Calkins et al. 2016a,b); this particular form of the QGDM is relevant for understanding
planetary interiors, such as the Earth’s outer core, and has the mathematical advantage
that the onset of dynamo action can be determined through an eigenvalue problem due
to the simplified form of the small-scale induction equation.
The kinematic investigations of the QGDM have utilized both simplified, single mode

solutions (Calkins et al. 2016a) and fully nonlinear, multimode solutions (Calkins et al.
2016b). Both of these investigations found that rapidly rotating dynamo action persists
well beyond the onset of convection, though the efficiency of the dynamo (as measured,
for instance, by the critical magnetic Reynolds number required for dynamo action) does
decrease somewhat as the buoyancy forcing is increased and the flow becomes more
turbulent. Nevertheless, the kinematic QG flows remain strongly helical and therefore
lead to large-scale dynamo action for all parameters investigated. Both investigations
found that the structure of the large-scale kinematic magnetic field is insensitive to
changes in the flow regime and buoyancy forcing; it therefore remains to be determined
if similar behavior is observed for self-consistent dynamos in which the Lorentz force is
included.
In the present work, we extend the aforementioned kinematic studies (Calkins et al.
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2016a,b) by investigating single mode solutions to the hydrodynamic QG model with
the inclusion of the nonlinear Lorentz force. Single mode solutions exploit the form of
the reduced equations to enforce a specific horizontal periodic structure (the planform)
characterized by a single horizontal spatial wavenumber. As a result, the QGDM can be
reduced from three spatial dimensions to only one vertical dimension. This single mode
restriction produces unstable solutions, much akin to exact coherent structures obtained
in shear flows (e.g. Waleffe 2001). Single mode solutions have proven useful in multiple
contexts, including rotating, hydrodynamic convection (Bassom & Zhang 1994; Julien &
Knobloch 1999; Sprague et al. 2006; Julien et al. 2016) and magnetoconvection (Julien
et al. 1999; Matthews 1999). Further, given that single mode solutions are unstable
solutions to the full problem, they can be utilized to reduce computation time for the
full model by serving as initial conditions that are free of imbalances (e.g. Sprague et al.
2006). In this study, we focus on those planforms that exist on a hexagonal lattice, i.e.,
horizontal spatial structures constructed from the superposition of three roll planforms
differing in orientation by 120◦.
The QGDM is characterized by three distinct time scales: a fast convective timescale

t; a slow intermediate mean magnetic field timescale τ = ǫ3/2t, and a slow mean
temperature timescale T = ǫ2t, where the small parameter is defined as

ǫ ≡ E1/3. (1.5)

This small parameter ǫ is the small-scale Rossby number. Though the separation of time
scales provides physical insight into the problem of rotating convection-driven dynamos,
it increases the complexity of solving the model numerically. One of the purposes of the
present work is to evaluate various strategies for time-stepping the multi-scale problem
with the simplified form of the equations under the single mode ansatz; the results will
therefore provide a guide for multimode simulations of the QGDM. Section 2 contains
a brief overview of the QGDM, defines the single mode solutions used, and covers
the numerical methods that we use for the multiple time scales. Numerical results are
presented in section 3, with conclusions given in section 4.

2. Model description

We provide only a brief summary of the main features of the QGDM since the detailed
derivation is given in Calkins et al. (2015). The basis of the multiscale model derivation
is the Boussinesq form of the equations for convection-driven magnetohydrodynamics. A
multiple scales expansion is employed in the axial and temporal coordinates, i.e.

∂z → ∂z + ǫ∂Z , ∂t → ∂t + ǫ3/2∂τ + ǫ2∂T . (2.1)

The large-scale vertical coordinate is defined by Z = ǫz, where z is the small vertical
coordinate over which the Proudman-Taylor theorem (Proudman 1916; Taylor 1923;
Greenspan 1968) is satisfied. Each dependent variable is separated into mean and fluc-
tuating components; for instance, a scalar f is decomposed according to

f = f + f ′, (2.2)

where the overbar is defined as an average over the fast spatial (x) and temporal (t)
scales according to

f(Z, τ, T ) = lim
Γ,V→∞

1

ΓV

∫

Γ,V
f(x, Z, t, τ, T ) dx dt, f ′ ≡ 0. (2.3)
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Here Γ is a time interval between the fast convective and mean magnetic time scales and
V is the volume in small spatial coordinates. Upon separating the governing equations
into mean and fluctuating components, all dependent variables are represented as a
perturbation expansion in powers of ǫ1/2. The aspect ratio of the convection is defined
by H/ℓ = ǫ−1 where, again, ℓ is the horizontal scale of the convection.
The horizontal velocity u⊥ = (u, v) in the QGDM is geostrophically balanced, such

that ẑ×u⊥ = −∇⊥ψ, where ψ is the geostrophic stream function. The horizontal velocity
components can then be written as u⊥ = (−∂yψ, ∂xψ) = ∇⊥ψ. Equations are developed
for the time evolution of the vertical vorticity ∇2

⊥ψ, vertical velocity w, temperature
θ = θ + ǫθ′ and magnetic field B = B + ǫ1/2b′. The mean and fluctuating magnetic
field vectors are defined by B =

(
Bx, By

)
and b′ =

(
b′x, b

′
y, b

′
z

)
. For brevity, hereafter, we

include the prime superscript only on variables that possess non-trivial mean values (e.g. θ
and B). The final set of reduced equations, non-dimensionalized using the horizontal
viscous diffusion timescale ℓ2/ν, is given by

D⊥
t ∇2

⊥ψ − ∂Zw = B · ∇⊥j
′
z +∇4

⊥ψ, (2.4)

D⊥
t w + ∂Zψ =

R̃a

Pr
θ′ +B · ∇⊥b

′
z +∇2

⊥w, (2.5)

D⊥
t θ

′ + w∂Zθ =
1

Pr
∇2

⊥θ
′, (2.6)

∂T θ
τ
+ ∂Z(wθ′)

τ

=
1

Pr
∂ZZθ

τ
, (2.7)

∂τϑ+ ∂Z(wθ′ − wθ′
τ
) = 0, (2.8)

∂τB = ẑ× ∂ZE +
1

P̃m
∂ZZB, (2.9)

0 = B · ∇⊥
(
∇2

⊥ψ
)
+

1

P̃m
∇2

⊥j
′
z, (2.10)

0 = B · ∇⊥w +
1

P̃m
∇2

⊥b
′
z. (2.11)

The various operators are defined by D⊥
t = (∂t + u · ∇⊥) and ∇⊥ = (∂x, ∂y, 0), and

the additional overbar with superscript τ appearing in the mean heat equation denotes
further averaging over the τ timescale. The mean temperature is now decomposed

according to θ = θ
τ
+ ǫ1/2ϑ. We note that in the QGDM advection and diffusion act only

over the small horizontal scales due to the spatial anisotropy (Calkins et al. 2015). The
vertical component of the fluctuating current density is j′z = ∂xb

′
y − ∂yb

′
x and the mean

electromotive force (emf) is defined by

E = u× b′. (2.12)

The asymptotically reduced Rayleigh number is defined by

R̃a = E4/3Ra. (2.13)

In the present work we restrict the analysis to the Reℓ = O(1), Rmℓ ≪ 1 form of the
QGDM. Since Rmℓ = PmReℓ, this implies that the model can also be characterized by
a small magnetic Prandtl number. In this limit the fluctuating induction equation loses
material advection and the asymptotically reduced magnetic Prandtl number is defined
as

Pm = ǫ1/2P̃m, (2.14)
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such that P̃m = O(1).
For the small Pm limit considered here, the emf can be written as Ei = αijBj , where

the pseudo-tensor αij is

αij = P̃m

(
w∇−2

⊥ ∂xxψ − ∂xψ∇−2

⊥ ∂xw w∇−2

⊥ ∂xyψ − ∂xψ∇−2

⊥ ∂yw

w∇−2

⊥ ∂xyψ − ∂yψ∇−2

⊥ ∂xw w∇−2

⊥ ∂yyψ − ∂yψ∇−2

⊥ ∂yw

)
. (2.15)

The above relation follows upon eliminating the fluctuating electromagnetic fields from
the mean induction equations with the use of equations (2.10), (2.11) and (2.12). Since
both components of the mean magnetic field are induced by an α-effect, the two small
Pm forms of the QGDM (see Calkins 2018) can be considered asymptotically-exact
α2 dynamos (e.g. Moffatt 1978). For sufficiently long simulation times, it is expected,
and observed by Calkins et al. (2016b), that αij will become symmetric; it was further
observed that α12 ≈ α21 ≈ 0 as t→ ∞.
We employ constant temperature boundary conditions such that the mean temperature

at the bottom and top boundaries is given by

θ = 1 at Z = 0 , θ = 0 at Z = 1. (2.16)

Impenetrable boundary conditions are imposed on the velocity field,

w = 0 at Z = 0, 1. (2.17)

The electromagnetic boundary conditions can be either electrically insulating or perfectly
conducting. For the present work we impose the former such that,

B = 0 at Z = 0, 1. (2.18)

Finally, we note that no explicit boundary conditions need to be imposed on either the
fluctuating temperature or the fluctuating magnetic field since their respective equations
require that they satisfy the boundary conditions

θ′ = 0, b′ = 0 at Z = 0, 1 . (2.19)

2.1. Single mode theory

The single mode method represents the dependent variables as products of a horizontal
planform and vertical structure functions. Single mode expansions for the hydrodynamic
variables are given by the general form

(ψ,w, θ′) =
n∑

j=1

[Ψj(t, Z, τ, T ),Wj(t, Z, τ, T ), Θj(t, Z, τ, T )]hj(x, y) + c.c.. (2.20)

On a periodic hexagonal lattice the sum consists of three roll solutions (n = 3) whose
orientations differ by 120◦, with the direction of each roll characterized by unit vec-
tors m̂1 = (1, 0), m̂2 = (1/2,

√
3/2) and m̂3 = m̂1 − m̂2 = (1/2,−

√
3/2). Here

hj(x, y) = exp[ik(m̂j ·x)], satisfying the horizontal planform equation ∇2

⊥hj = −k2hj
with wavenumber magnitude k. While multiple planform options exist and have been
investigated previously in asymptotic dynamo investigations (e.g., square planforms in
Soward 1974), only the hexagonal planform is included here to limit the number of
choices. In particular, the hexagonal lattice was chosen for its property of admitting
the effects of advective nonlinearity. Different planforms lead to small differences in
the functional form of the single mode model, but they result in qualitatively similar
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dynamics. We consider two distinct single mode approaches: the single amplitude (SA)
model and the mixed amplitude (MA) model.

2.1.1. Single Amplitude (SA) Model

The single amplitude (SA) model uses an equal amplitude approximation on each
component of the superposition (2.20). This gives, for example, |Ψ1| = |Ψ2| = |Ψ3| or
|Ψ1| = 0, |Ψ2| = |Ψ3| such that (2.20) may be collapsed to the real-valued solution

(ψ,w, θ′) = [Ψ(t, Z, τ, T ),W (t, Z, τ, T ), Θ(t, Z, τ, T )]h(x, y). (2.21)

Here h(x, y) satisfies the planform equation, with h =
∑3

j=1
hj , so that the hexagonal

lattice takes the form

h(x, y) =
√
2/3

[
cos(kx) + cos

(
k

2
x+

√
3

2
ky

)
+ cos

(
k

2
x−

√
3

2
ky

)]
, (2.22)

where the normalization factor of
√
2/3 ensures that h2 = 1.

Since mean quantities are independent of x and y, the mean temperature and magnetic
field are given by

θ = θ(Z, τ, T ) , B =
[
Bx(Z, τ, T ), By(Z, τ, T ), 0

]
. (2.23)

Using the low-Pm induction equations (2.10) and (2.11) and defining b′
⊥ = ∇⊥Φ, leads

to

∇2

⊥Φ = −P̃mΨ(Bxhx +Byhy) , (2.24)

∇2

⊥b
′
z = −P̃mW (Bxhx +Byhy) , (2.25)

such that j′z = ∇2

⊥Φ.
The derivation of the single amplitude model with (2.21) and (2.23) is included in

appendix A.1 with details regarding the treatment of the mean equations (2.7)–(2.9) in
appendix A; the complete set of equations expressed over the convective time scale for
the vertical structure functions is given by

∂tΨ +
1

k2
∂ZW = − P̃m

2

[
(B

V
x )

2 + (B
V
y )

2

]
Ψ − k2Ψ, (2.26)

∂tW + ∂ZΨ =
R̃a

Pr
Θ − P̃m

2

[
(B

V
x )

2 + (B
V
y )

2

]
W − k2W, (2.27)

∂tΘ +W∂Zθ
V
= − k2

Pr
Θ, (2.28)

ǫ−2∂tθ
V
+ ∂Z(WΘ) =

1

Pr
∂ZZθ

V
, (2.29)

ǫ−3/2∂tB
V
x = −P̃m∂Z

(
ΨW B

V
y

)
+

1

P̃m
∂ZZB

V
x , (2.30)

ǫ−3/2∂tB
V
y = P̃m∂Z

(
ΨW B

V
x

)
+

1

P̃m
∂ZZB

V
y . (2.31)

Given this single mode formulation, the emf in the mean induction equations can be

written as E
V
i = αijB

V
j , where

αij = P̃m

[
ΨW 0
0 ΨW

]
(2.32)
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is a diagonal and symmetric matrix.
As discussed earlier, the single mode ansatz for the hydrodynamic fields results in no

advective nonlinear terms in (2.26) - (2.28). The only nonlinear hydrodynamic response
is due to the buoyancy flux in (2.29). In the absence of feedback from the Lorentz force
(when B = 0), these equations produce exact solutions to the hydrodynamic problem
(Julien & Knobloch 1999). From (2.24) and (2.25), we note that while the power of any
generated magnetic fluctuations remains in spectral wavenumber k, the horizontal peri-
odic structure differs from the assumed pattern h(x, y) of the hydrodynamic quantities.
Thus, only the component of the Lorentz force that projects onto the planform h(x, y)
is captured in the present single mode formulation.

2.1.2. Mixed amplitude (MA) model

The mixed amplitude (MA) method allows for different amplitudes of the various
components of the planform function. Soward (1974), for instance, used this approach
for both square and hexagonal planforms. Without loss of generality, we find that the
MA method can be reduced to the real-valued ansatz

(ψ,w, θ′) =
n∑

j=1

[Ψj(t, Z, τ, T ),Wj(t, Z, τ, T ), Θj(t, Z, τ, T )]hj(x, y). (2.33)

For the particular case of a hexagonal lattice we have n = 3 with the planform functions
hj(x, y) given by

h1 =

√
2

3
cos(kx) , h2 =

√
2

3
cos

(
1

2
kx+

√
3

2
ky

)
, h3 =

√
2

3
cos

(
1

2
kx−

√
3

2
ky

)
.

(2.34)

Here the functions hj are chosen as components of the original planform function h(x, y)

in (2.22), and we note that h2j = 1/3 for j = 1, 2 and 3. From this point the derivation of
the single mode equations proceeds in a similar way to the SA model, except that each
equation is multiplied by h1, h2 and h3 separately and then horizontally averaged. The
orthogonality of each planform function results in h1h2 = h1h3 = h2h3 = 0, such that
separate equations for each amplitude can be derived. Following this procedure results
in a total of 9 equations governing the fluctuating quantities for the MA model:

∂tΨ1 +
1

k2
∂ZW1 = −P̃m(B

V
x )

2Ψ1 − k2Ψ1, (2.35)

∂tΨ2 +
1

k2
∂ZW2 = −P̃m

(
1

4
(B

V
x )

2 +

√
3

2
B

V
xB

V
y +

3

4
(B

V
y )

2

)
Ψ2 − k2Ψ2, (2.36)

∂tΨ3 +
1

k2
∂ZW3 = −P̃m

(
1

4
(B

V
x )

2 −
√
3

2
B

V
xB

V
y +

3

4
(B

V
y )

2

)
Ψ3 − k2Ψ3, (2.37)

∂tW1 +
1

2
√
2
k2(Ψ2W3 − Ψ3W2) + ∂ZΨ1 =

R̃a

Pr
Θ1 − P̃m (B

V
x )

2W1 − k2W1, (2.38)

∂tW2 +
1

2
√
2
k2(Ψ3W1 − Ψ1W3) + ∂ZΨ2 =

R̃a

Pr
Θ2 − P̃m

(
1

4
(B

V
x )

2 +

√
3

2
B

V
xB

V
y +

3

4
(B

V
y )

2

)
W2 − k2W2, (2.39)
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∂tW3 +
1

2
√
2
k2(Ψ1W2 − Ψ2W1) + ∂ZΨ3 = (2.40)

R̃a

Pr
Θ3 − P̃m

(
1

4
(B

V
x )

2 −
√
3

2
B

V
xB

V
y +

3

4
(B

V
y )

2

)
W3 − k2W3, (2.41)

∂tΘ1 +
1

2
√
2
k2(Ψ2Θ3 − Ψ3Θ2) +W1∂Zθ

V
= − k2

Pr
Θ1 , (2.42)

∂tΘ2 +
1

2
√
2
k2(Ψ3Θ1 − Ψ1Θ3) +W2∂Zθ

V
= − k2

Pr
Θ2 , (2.43)

∂tΘ3 +
1

2
√
2
k2(Ψ1Θ2 − Ψ2Θ1) +W3∂Zθ

V
= − k2

Pr
Θ3 . (2.44)

The mean temperature equation becomes

ǫ−2∂tθ
V
+

1

3
∂Z (W1Θ1 +W2Θ2 +W3Θ3) =

1

Pr
∂ZZθ

V
. (2.45)

Similar expressions to (2.24) and (2.25) can be found for the MA case. The two compo-
nents of the mean induction equation are

ǫ−3/2∂tB
V
x = −∂ZE

V
y +

1

P̃m
∂ZZB

V
x , (2.46)

ǫ−3/2∂tB
V
y = ∂ZE

V
x +

1

P̃m
∂ZZB

V
y , (2.47)

where the emf terms are given by

EV
y = P̃m

[
1

2
B

V
y (W2Ψ2 +W3Ψ3) +

√
3

6
B

V
x (W2Ψ2 −W3Ψ3)

]
, (2.48)

EV
x = P̃m

[
1

6
B

V
x (4W1Ψ1 +W2Ψ2 +W3Ψ3) +

√
3

6
B

V
y (W2Ψ2 −W3Ψ3)

]
. (2.49)

Setting E
V
i = αijB

V
j produces

αij = P̃m

[
1

2
(W2Ψ2 +W3Ψ3)

√
3

6
(W2Ψ2 −W3Ψ3)√

3

6
(W2Ψ2 −W3Ψ3)

1

6
(4W1Ψ1 +W2Ψ2 +W3Ψ3)

]
. (2.50)

Like the SA model, the MA model yields a symmetric αij . Moreover, statisticallyW1Ψ1 ≈
W2Ψ2 ≈W3Ψ3, such that αij becomes identical in structure to the SA model. While the
model is not necessarily time-averaged to ensure that the off-diagonal terms are zero, the
averaged profiles (W2Ψ2,W3Ψ3) are similar such that those terms are small relative to
the diagonal entries.
As shown by equations (2.35)-(2.41), for the MA case the Lorentz force now completely

projects onto the horizontal lattice. However, the ansatz of non-equal amplitude results in
non-zero horizontal advection; these nonlinear interactions generate higher order spatial
harmonics that are not considered in the present work. We can therefore consider the
current MA model as a truncated Galerkin expansion, as was done by Soward (1974) for
the weakly nonlinear case. The MA model is consistent with the SA model in the previous
section through the cancellation of extra nonlinear terms when A1 = A2 = A3 = ASA,
where Ai denotes the three components of the vertical function in the MA case and ASA

is the amplitude of the SA model.
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2.2. Key Definitions

Several quantities are used to analyze the results. A common and useful measure which
characterizes the efficiency of heat transfer through the fluid layer is the Nusselt number
Nu, which is defined as the ratio of convective heat flux to total heat flux and can be
written as

Nu = PrWΘ − ∂Zθ , (2.51)

where averaging in the vertical direction gives

Nu = 1 + Pr 〈WΘ〉 . (2.52)

Here the vertical average is denoted by angled brackets, i.e.

〈f〉 =
∫ 1

0

fdZ. (2.53)

The Nusselt number, as defined in (2.51) and (2.52), can be formally obtained from the
mean temperature equation under the assumption of temporal stationarity and realized
by averaging over all time scales (Julien et al. 2012b). In the following we focus solely
on (2.52) and find it informative to report both instantaneous and time-averaged values
of the Nusselt number, respectively denoted as Nu(t) and Nu. Given the independence
of Nu on (fast) spatial coordinates, fast time-averaging can be trivially expressed using
the overbar notation denoting fast time and space averaging. A similar approach is used
below for time averaging the quadratic expressions of single mode amplitudes.
In the absence of magnetic fields, the heat transfer Nu is also related to the viscous

dissipation rate εcu of the system through the power integral (e.g. Chandrasekhar 1961)

k2
〈
W 2

〉
+ k4

〈
Ψ2

〉

︸ ︷︷ ︸
εc
u

=
R̃a

Pr2
(Nu

c − 1). (2.54)

The above expression is obtained by multiplying the vorticity and vertical momentum
equations by −ψ and w, respectively, and averaging over all space and time to find
εu = 〈(∇2

⊥Ψ)
2〉+ 〈(∇⊥W )2〉. While this expression is derived for the SA model, the MA

model follows a similar derivation with the three components of each variable, such that
εu = 1/3

∑3

j=1
〈(∇2

⊥Ψj)2〉+ 〈(∇⊥Wj)2〉.
The inclusion of the magnetic field and the associated Lorentz force leads to non-zero

ohmic dissipation εB , defined as εB = [〈(j′z)2〉 + 〈(∇⊥b′z)
2〉]/P̃m, such that the power

integral for dynamos becomes

k2
〈
W 2

〉
+ k4

〈
Ψ2

〉

︸ ︷︷ ︸
εu

+
P̃m

2

〈
(B

2

x +B
2

y) (k
2 Ψ2 +W 2)

〉

︸ ︷︷ ︸
εB

=
R̃a

Pr2
(Nu− 1) . (2.55)

Dynamo action therefore implies εB > 0. Comparison of the quantities in (2.54) and
(2.55) can distinguish differences in the energy balances between non-magnetic convection
and convection-driven dynamos. The thermal dissipation rate εΘ, obtained by multiplying
the fluctuating heat equation by θ′, defines an additional power integral as

εΘ = 〈(∂Zθ)2〉+ k2〈Θ2〉 = Nu , (2.56)

and one can relate these quantities, with only a dependence on the inputs R̃a and Pr, as

εcu =
R̃a

Pr2
(εcΘ − 1), εu + εB =

R̃a

Pr2
(εΘ − 1) . (2.57)
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The mean magnetic energy and the fluctuating kinetic energy are defined by, respec-
tively,

EM =
1

2

〈
B

V ·BV〉
, (2.58)

EK =
1

2
〈u · uV〉 . (2.59)

For EM and EK , we use the same convention as with Nu and denote the instantaneous
result as (EM (t), EK(t)) and the time-averaged values as simply (EM , EK). We also find
it useful to characterize time-varying quantities with an appropriately defined root-mean-
square (rms) value; for some scalar quantity f this is defined by

frms =

[(
f − f

A)2
]1/2

, (2.60)

where (·)A denotes an average over the horizontal area of the domain A. To increase the
convergence rate of statistics we exploit the expected vertical symmetries of the profiles
about the midplane (Z = 0.5); a similar strategy was used in the kinematic investigation
of Calkins et al. (2016b).

We find it useful to examine the kinetic helicity, which is known to be conducive to
large-scale dynamo action (Moffatt 1978). The mean helicity H and relative helicity HR

are defined as

H = u · ζ, HR =
H

u2
1/2

ζ2
1/2

, (2.61)

where ζ = 〈∂yw,−∂xw, (∂xv − ∂yu)〉 is the vorticity vector. For the QGDM, the helicity
is

H = 2wζ , (2.62)

where ζ is the vertical vorticity. For the SA model these expressions reduce to

H = −2k2ΨW , HR =
−2kΨW

k2Ψ2 +W 2
, (2.63)

and, recall that since Ψ andW are functions only of Z, the overbar reduces to an average
in time when used in conjunction with these quantities. For the SA model, H is directly
proportional to the emf and αij entries.

2.3. Numerical methods

All equations are temporally discretized with the second order, semi-implicit Runge–
Kutta Crank–Nicolson two-stage scheme (e.g. Peyret 2013). The vertical spatial dimen-
sion in the QGDM is discretized using Chebyshev polynomials, and vertical derivatives
are handled efficiently with the quasi-inverse technique of Julien & Watson (2009). The
boundary conditions are imposed with the tau method (Peyret 2013). The resulting
system of equations is solved with sparse LU solvers at each timestep. Details of the
simulations are provided in Table 1. Resolutions were verified a posteriori with the
requirement that at least 6 physical gridpoints are present within the thermal boundary
layer. The code was rigorously benchmarked by setting the temporal and spatial depen-
dence of assumed (known) solutions, generating forcing functions in each equation from
those predefined solutions, and testing the timestepper against the known solutions.
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2.4. Timestepping considerations

Timestepping the mean temperature equation introduces an issue with the length of
simulations. For instance, the time required for the mean temperature to have diffused
through the vertical layer is O(E−2/3t). The simulation length therefore becomes com-
putationally prohibitive as E is lowered even for this simplified 1D problem; for the
Earth’s outer core, where E = O(10−15), this requires a simulation to be carried out to
a fast convective time t = O(1010) for one large-scale magnetic diffusion time. However,
in the purely hydrodynamic regime the mean temperature in the single mode system

achieves a steady state where ∂T θ
τ
= 0 (Julien & Knobloch 1998). Adopting this as an a

priori constraint resolves the issue associated with the simulation length by significantly
reducing the time required to reach the steady state.
In the present work, the existence of magnetic fields and the associated mean magnetic

evolution timescale τ = ǫ3/2t represent an added complexity in pursuing the aforemen-
tioned a priori constraint. However, this constraint may be achieved as follows (see
Appendix A for further details). The composite mean temperature equation from which
the multiscale decomposition (2.7) and (2.8) are deduced is given by the O(ǫ2) ordered
term

∂T θ
τ
+ ∂τθ + ∂Z(wθ′) =

1

Pr
∂ZZθ

τ
. (2.64)

On defining the composite temperature θ(Z, τ, T ) = θ
τ
(Z, T ) + ǫ1/2ϑ(Z, τ, T ), we obtain

∂T θ + ∂Z(wθ′) =
1

Pr
∂ZZθ +O(ε1/2) . (2.65)

An instantaneous evolution equation for the mean temperature may be obtained by
commuting the differential operators of (2.65) into the kernel of the averaging operator
(2.3). The instantaneous temperature equation is obtained by constraining the kernel to
be zero (details of this can be found in appendix A), leaving

ǫ−2∂tθ
V
+ ∂Z

(
wθ′

V)
=

1

Pr
∂ZZθ

V
, (2.66)

where f
V
denotes averaging over small spatial scales. The single mode mean temperature

equations (2.29) in the SA model and (2.45) in the MA model are deduced from this

equation. Invoking the steady state approximation ǫ−2∂tθ
V
= 0 implies

∂Z

(
wθ′

V)
=

1

Pr
∂ZZθ

V
and Nu(t, τ, T ) = Pr

(
wθ′

V)− ∂Zθ
V
. (2.67)

Time averaging these instantaneous relations gives the relations for intermediate and
slow time scale variations over t, τ

∂Z
(
wθ′
)
=

1

Pr
∂ZZθ and Nu(τ, T ) = Pr

(
wθ′
)
− ∂Zθ , (2.68)

∂Z

(
wθ′

τ)
=

1

Pr
∂ZZθ

τ
and Nu(T ) = Pr

(
wθ′

τ)
− ∂Zθ

τ
. (2.69)

The a priori assumption ∂T θ
τ

0 = 0 is compatible with (2.69) and indicates that Nu(T ) =
Nu is a stationary value. Moreover, the above results also indicate that the variation of
the heat transport about the stationary value is given by

Nu(τ, T )−Nu = Pr
(
wθ′ − wθ′

τ)
+O(ε1/2). (2.70)

This variation in the convective heat flux can admit oscillations with a frequency on
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the mean inductive timescale. Thus, as E is lowered, oscillations that occur should show
longer periods. Notably, (2.70) implies no a priori bounds for the amplitude of the
variation.
Similar to the analysis and discussion of the mean temperature timescale, a large

number of fast convective timesteps are required to reach a mean magnetic diffusion
time τ = E1/2t because of the scale separation between the fast convective time and the
mean magnetic evolution time. For an Ekman number of E = 10−6, a fast convective
time of t = O(103) is required to reach τ = O(1). With a timestep size of ∆t = 10−5,
which is characteristic of many of our cases detailed in Table 1, this yields a total of
108 timesteps. However, to reduce computation time, the simulations are considered
converged if statistically stationary results are obtained for the Nusselt number and
magnetic energy upon time averaging.

2.5. Multiscale timestepping strategies

Obtaining numerical solutions to the QGDM requires specialized numerical techniques
given the presence of multiple time scales in the governing equations. In particular,
temporal discretization of the QGDM implies that averaging must also be performed in
a discretized fashion, and the primary issue then becomes determining the appropriate
averaging timescale, or window. Several methods are in current use for obtaining nu-
merical solutions to temporally multiscale equations, though the choice of the method
employed depends strongly on the detailed form of the equations and significant testing
is required to determine which method best suits the particular problem (e.g. E et al.
2007; Haut & Wingate 2014). Below we discuss the two different techniques that are used
in the present work.

2.5.1. The stiff method

One method for treating the different time scales numerically is to directly simulate the
time derivatives in (2.4) - (2.11) with their form written in terms of ǫ and the convective
time derivative. This requires commuting time averaging with differential operators as
outlined in Appendix A. The single mode approximation then results in the SA and
MA models given in sections (2.1.1) and (2.1.2). Recall that we apply a steady state
approximation for the mean heat equation so no time derivative remains in the mean
temperature equation. Since the derivation of the QGDM requires ǫ ≪ 1, the small ǫ
parameter in the governing equations leads to a numerically stiff problem and we refer
to the use of this common-in-time technique simply as the stiff method.

2.5.2. The heterogeneous multiscale method

A common method for the numerical treatment of multiscale equations is the so-
called heterogeneous multiscale method (HMM) (E et al. 2007). This method, which
incorporates time scale separation, has previously been applied to asymptotic equations
for wind-driven oceanic flows (e.g., Malecha et al. 2014). In the present context, the
HMM consists of timestepping the mean equations on specified large intervals of the
fast timescale. We refer to this as the multiscale method. Specifically, the mean magnetic
field is updated every SB convective timesteps. Thus, the time discretization for the mean
magnetic field is given by ∆τ = SB∆t. The nonlinear terms in the mean magnetic field
equations are averaged over all the fast convective timesteps in each ∆τ time interval.
Appropriate values for SB can be related back to the Ekman number, E = ǫ3, by recalling
the relation between the slow and fast time scales such that

SB = O
(
ǫ−3/2

)
= O

(
E−1/2

)
. (2.71)
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2.6. Stiff vs Multiscale

We find that the stiff and multiscale methods lead to identical results when relation
(2.71) is satisfied, though minor differences can appear when converting SB to an integer
value. That both methods yield the same solutions is encouraging and allows for either
method to be used, yet there are a few important points to note. The multiscale method
requires fewer linear solves than the stiff method, since the mean magnetic field equations
are only solved after a specified number of fast timesteps. In general, however, we find
that the multiscale method requires (for numerical stability) slightly smaller convective

timestep sizes than the stiff method. For instance, the SA model with R̃a = 40, Pr = 1,
and SB = 10 requires ∆t 6 8×10−3 for the multiscale method, whereas the stiff method
is numerically stable for ∆t 6 1 × 10−2. At the slightly larger Rayleigh number with
R̃a = 60, the multiscale method requires ∆t 6 3.5 × 10−3 for numerical stability while
the stiff method can use∆t 6 6×10−3. Given that the stiff method requires 2 extra matrix
solves roughly every step (for SB large), the resulting computational cost is comparable

but slightly favors the stiff method for the R̃a = 60 case.
The difference in permissible timestep sizes for the two methods indicates that the

stiff method becomes more efficient for use at higher R̃a. This benefit could be related
to the averages used for the nonlinear terms in the mean magnetic equations in the
multiscale method, whereas in the stiff technique the nonlinear terms are updated at
each timestep. We note that there are a multitude of different HMM techniques, including
some that decouple ∆t and ∆τ and focus solely on the slow dynamics. In such cases,
the fast dynamics are run until a stationary state producing stable averages is achieved
(see Malecha et al. 2014). This approach enables larger numerical timesteps for the slow
dynamics, such that the multiscale method becomes more efficient. Since we are interested
in both continuous fast and slow dynamics and want to understand how they are coupled,
we choose to keep our timestepping linked through these parameters (E or SB), rather
than a condition based on a minimal time to acquire a stationary state. In the remainder
of this work, we report results from the multiscale method only, since both methods yield
the same results.

3. Results

We have carried out a broad suite of simulations (runs) of the SA model, the MA
model and the single-amplitude, non-magnetic, hydrodynamic model (setting B = 0 in
the SA model). Various details of the simulations are provided in table 1. For all cases
presented we fix the wavenumber k to be that corresponding to the critical wavenumber
kc for the onset of convection. In the present work we restrict the simulations to Pr = 1
and therefore use the wavenumber k = kc = 1.3048 associated with steady convection
(Chandrasekhar 1961). For Pr . 0.68 the onset of convection is oscillatory. In preliminary
simulations with Pr = 0.1 we found that the timestepping and averaging methods
employed in the present work were unsatisfactory in the sense that no convergence
of statistics was observed as the time-averaging window of the mean magnetic field
(SB) was varied. We attribute this behavior to the periodic dynamics that occur for
low Prandtl number fluids; capturing accurate statistics requires a more sophisticated
averaging procedure since the position (in time) of the averaging window has a significant
influence on the resulting average. In particular, significant errors in averaged quantities
of periodic signals are introduced when averaging over non-integer multiples of the
fundamental period of oscillation. Identifying the period of oscillation a priori is not
possible for nonlinear dynamo solutions. For these reasons we leave the analysis of low
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Model R̃a Pr P̃m P̃mc SB NZ ∆t Nu EK EM NBL

SA 40 1 0.7 0.24 102 80 5× 10−4 11.3 65.6 3.14 8
SA 60 1 0.7 0.14 102 80 1× 10−4 17.7 109 5.96 7
SA 80 1 0.7 0.10 101 100 1× 10−4 24.1 163 8.85 8
SA 80 1 0.7 0.10 102 100 1× 10−4 24.8 162 8.29 8
SA 80 1 0.7 0.10 103 100 1× 10−4 24.9 163 8.25 8
SA 100 1 0.7 0.074 102 100 1× 10−5 31.8 222 10.3 7
SA 200 1 0.7 0.074 102 150 1× 10−5 70.9 591 21.8 8

MA 40 1 0.7 - 101 80 5× 10−5 9.29 72.4 1.39 8
MA 40 1 0.7 - 102 80 5× 10−5 10.3 93.3 0.650 8
MA 40 1 0.7 - 103 80 5× 10−5 10.0 84.3 0.862 8
MA 60 1 0.7 - 102 80 5× 10−5 13.3 148 1.84 7
MA 80 1 0.7 - 102 100 5× 10−5 14.3 194 2.45 8
MA 100 1 0.7 - 102 100 1× 10−5 15.5 241 3.33 7
MA 200 1 0.7 - 102 150 1× 10−5 21.4 411 10.5 8

SA 20 1 1 0.68 102 100 1× 10−4 4.73 19.0 0.375 17
SA 20 1 2 0.68 102 100 1× 10−4 2.97 5.97 1.03 22
SA 20 1 5 0.68 102 100 1× 10−4 1.68 1.15 0.900 32
SA 20 1 20 0.68 102 100 1× 10−4 1.06 0.0681 0.305 no BL
SA 100 1 0.1 0.074 102 140 1× 10−4 79.5 2143 2.17 6
SA 100 1 0.3 0.074 102 110 5× 10−5 46.0 561 11.9 6
SA 100 1 0.5 0.074 102 100 5× 10−5 36.4 315 11.2 7
SA 100 1 1 0.074 102 100 1× 10−5 29.5 166 9.85 7

Table 1: Details for the simulations presented. NZ is the number of Chebyshev points in
the vertical direction and NBL is the approximate number of Chebyshev points within
the time averaged thermal Θ boundary layer. The time discretization for the mean
magnetic field is given by ∆τ = SB∆t. The timesteps result in converged solutions,
although they are not optimized or adapted during the runs, meaning larger timesteps
are likely possible. The critical magnetic Prandtl number P̃mc indicates the P̃m above
which a kinematic dynamo can exist (calculated for the SA kinematic model in Calkins

et al. 2016a). Additional runs with varying P̃m were calculated, but the energetics are
unchanged from those reported in the paper.

Prandtl number dynamos for future work. Simulations with higher Pr = 10 displayed
qualitatively similar results to the Pr = 1 case, albeit with higher R̃a transitions to
unsteady dynamics due to the increased importance of viscosity for higher Pr. Additional
Pr = 1 runs with fixed R̃a = 20, 100 and varied P̃m show similar energetics.

3.1. Determination of the emf averaging window, SB

We find a posteriori that the influence of changing the averaging window SB∆t in the
mean induction equation on the resulting dynamo solutions depends on several factors:
the model used (SA or MA); the type of convection (steady or oscillatory); and the

value of R̃a (indicating flow supercriticality). To simplify the presentation, only the fast
convective time t is used in plots presenting time-dependent data.
The simplest solutions that we find are those that correspond to steady convection.
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Figure 1: Plots illustrating the influence of the mean magnetic field averaging length SB

on both (a) the Nusselt number Nu and (b) 〈B2

x(t)〉1/2. The interval length SB denotes
the number of fast convective timesteps over which the mean magnetic field equations
are held constant and the nonlinear terms in the mean induction equations are averaged.
All results were obtained with R̃a = 20, Pr = 1 and P̃m = 1. The time in (b) has been
scaled by SB/10

4 to highlight the temporal self-similarity of all the runs.

t
0 100 200 300 400

10

20

30

SB = 103

0 10 20 30 40 50

N
u
(t
)

10

20

30

SB = 102

0 5 10 15 20 25 30

10

20

30

SB = 101

(a)

t× SB/10
3

0 100 200 300 400

E
M
(t
)

0

5

10

15

20

25

SB = 101

SB = 102

SB = 103

(b)

Figure 2: Comparison of (a) the Nusselt number Nu(t) and (b) the magnetic energy
EM (t) versus the fast convective time t, for three different values of SB using the single

amplitude (SA) model. The simulation parameters are R̃a = 80, Pr = 1 and P̃m = 0.7.
The oscillations that are observed in Nu decrease in amplitude and increase in period as
SB is increased.

Steady convection is found at sufficiently low combinations of R̃a and P̃m values and
yields steady values of the magnetic energy EM for all interval lengths SB . In general,
the values of (R̃a, P̃m) for which these steady solutions are achieved varies. For example,

R̃a = 20 produces steady solutions for all P̃m 6 20, whereas R̃a = 100 is only steady for
runs with P̃m 6 0.4. Although EM is constant for steady convection solutions, changing

SB affects the periodicity of the individual components 〈B2

x(t)〉1/2, 〈B
2

y(t)〉1/2. While we

label these as steady results due to the fact that B
2

x + B
2

y reaches a constant value, the

Page 16 of 31

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Single mode investigations of the QG dynamo model 17

t
30 40 50

N
u
(t
)

0

10

20

30

SB = 101

SB = 102

SB = 103

(a)

t

30 40 50

E
K
(t
)

0

50

100

150

200

(b)

t
0 100 200

E
M
(t
)

0

2

4

6

8

(c)

t× SB/10
3

0 200 400

E
M
(t
)

0

0.5

1

1.5

2

SB = 102

SB = 103

(d)

Figure 3: Results illustrating the influence of SB for the mixed amplitude (MA) model.
The quantities shown are (a) Nusselt number Nu(t); (b) kinetic energy EK(t); (c)
magnetic energy EM (t); and (d) magnetic energy EM (t) with rescaled time. The

parameters are R̃a = 40, Pr = 1 and P̃m = 0.7 for SB = 101, 102 and 103. While
all of the Nu and EK results appear similar, there is a visible difference in the magnetic
energy results between the SB = 101 results and the larger SB cases. Plot (d) highlights
similarities in EM for the two largest values of SB , where the SB = 102 run time has
been scaled by 10 and begins after the initial transient.

dynamos are oscillatory for all cases. An example of these steady solutions is illustrated
in figure 1, where the Nusselt number Nu settles to a constant value for all SB . However,
as E is decreased (and SB is increased), the result requires a longer simulation time to
reach equilibrium. The runs presented in figure 1b have been rescaled to demonstrate
self-similarity of the solutions. Each run at a given SB has been multiplied by the factor
needed to match the timescale of the SB = 104 run; for example, the SB = 102 run
has been scaled by 102. For these steady cases, the choice of SB is irrelevant since time-
averaged quantities such as the emf and Nusselt number do not change with time.

The results show more complex dependence on SB when the underlying convection is
unsteady. We find that the value of SB becomes critical to capturing self-similar behavior,
which we consider to be indicative of capturing physically correct behavior. Therefore,
the results are deemed ‘converged’ if self-similar behavior is identified, where self-similar
behavior implies reaching the same statistically steady results for Nu and EM . Unsteady
convective dynamics appear as R̃a is increased, where the precise value of R̃a at which
unsteady motions occur depends on both Pr and P̃m. Above the transition to unsteady
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Figure 4: The instantaneous magnetic energy EM (t) and kinetic energy EK(t) for the SA

model (a,b) and MA model (c,d) for various values of R̃a. Oscillations appear as R̃a is

increased in the SA model, losing periodicity for R̃a = 200, and all the MA model results
show large fluctuations. The parameters are Pr = 1, P̃m = 0.7 and SB = 102. Different
vertical and horizontal axes ranges are used to more clearly display the MA results.

motions, the hydrodynamic component of these flows becomes oscillatory with a single
frequency for sufficiently small R̃a. Additional frequencies in both the convection and
mean magnetic field are then generated as R̃a is increased further until chaotic convection
is observed for sufficiently high reduced Rayleigh number. An example of a case with
periodic oscillations is shown in Figure 2 for several values of SB . We note that (2.70)
implies variability in the heat transfer on the τ timescale; as such an ǫ-dependent increase
is observed in the period of oscillations in the Nusselt number on an O(ǫ−3/2) scale
with a constant of proportionality ∼ 1/20 (for the SB = 103 run). Additionally, the
magnetic energy shows self-similar behavior in time for the longer SB = 102, 103 runs,
with consistent averages despite the fact that the amplitudes of the oscillations in EM

decrease with increasing SB , settling to a constant value for the SB = 103 run. For
Pr = 10 we observe the same behavior in the dynamics on SB . The Pr = 10 case also
displays both the transition to unsteady convection for higher R̃a, and the requirement
of longer SB intervals for self-similar behavior of the runs.
In comparison to the SA model, the results from the MA are more physically rich in

both their time dependence and spatial (Z) structure (figure 3). Whereas the Nu(t) and
EK(t) results shown in figure 3a and 3b, respectively, exhibit similar behavior for the

Page 18 of 31

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Single mode investigations of the QG dynamo model 19

W
-20 0 20 40

Z

0

0.2

0.4

0.6

0.8

1
R̃a = 20

R̃a = 40

R̃a = 60

R̃a = 80

R̃a = 100

R̃a = 200

(a)

Θ

0 10 20 30

Z

0

0.1

0.2

0.3

0.4

0.5

(b)

rms(j ′z)
0 50 100

Z

0

0.2

0.4

0.6

0.8

1

(c)

rms(b′z)
0 50 100

Z

0

0.2

0.4

0.6

0.8

1

(d)

Figure 5: Vertical profiles for various rms quantities of the SA model with P̃m = 0.7,
Pr = 1, SB = 102 and various R̃a; (a) vertical velocity; (b) fluctuating temperature; (c)
vertical fluctuating current density; and (d) vertical fluctuating magnetic field. To better
display the thermal boundary layers only the lower half of the Θ profile is shown in (b).

Profiles in (c,d) are averaged in time for all R̃a and theW,Θ profiles for R̃a = 80, 100, 200
are averaged in time.

three values of SB , figure 3c shows that significant differences in the magnetic energy EM

appear for different values of SB . These results illustrate that it is insufficient to rely on
the behavior of a single quantity when determining if the results converge, or exhibit self-
similar behavior, with increasing SB . Figure 3d shows the magnetic energy for only the
two largest values of SB over scaled time; here we observe similar temporal dependence
and amplitudes of EM for the two cases, suggesting that SB = 102 is sufficient to capture
the correct dynamics. We attribute these differences to a lack of sufficient temporal scale
separation in the sense that the equivalent value of E is too large, as was also observed
in the R̃a = 80 SA case shown in figure 2. The spatial structure of the solutions confirms
this as the time averaged vertical profiles of the two longer cases agree, while the SB = 10
result shows slight differences in the interior structure.

In all of the results that follow we set SB = 102 (see table 1). This value of SB was
chosen because lower SB runs take less time to reach a statistically stationary state, and
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Figure 6: Vertical profiles for various rms quantities of the MA model with P̃m = 0.7,
Pr = 1, SB = 102 and various R̃a; (a) vertical velocity; (b) fluctuating temperature; (c)
vertical fluctuating current density; and (d) vertical fluctuating magnetic field. To better
display the thermal boundary layers only the lower half of the Θ profile is shown in (b).
All of the profiles have been time averaged.

all of the tested cases show that the SB = 102 results are similar to the higher SB results
as the time-averaged quantities agree with higher SB metrics.

3.2. Increasing the convective supercriticality

We examine the effect of increasing the convective supercriticality over the range of
20 6 R̃a 6 200 (see table 1) for a fixed value of P̃m. The magnetic energy EM and
kinetic energy EK , shown in figure 4, illustrate the oscillations that are found in dynamo
solutions as R̃a is increased for the SA model (upper row) and the MA model (lower

row). Given that EM and Nu are tied through the B
2

x + B
2

y term that contributes to
the Lorentz force in the Ψ and W equations, oscillations in the convective dynamics
naturally lead to oscillations in the magnetic field. Evident from the R̃a = 80, 100 results
in 4(a),(b) is the inverse relationship between EM and EK .
Profiles showing the vertical structure of the fluctuating quantities in the SA model

are given in figure 5 for a range of Rayleigh numbers. As expected, both W and b′z show
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Figure 7: Comparison of (a) the vertical velocity profile W and (b) the horizontal
structure of the full w =W (Z)h(x, y) field for the MA model at the midplane. Plot (a)
shows the vertical profiles for the two classes of dynamo solutions; the separate amplitudes
(W1,2,3) of the MA model are shown in gray, and the symmetrized rms profiles for the
MA model and the SA are shown by the solid red and solid black curves, respectively.
The horizontal structure of w is shown in plot (b), where the hexagonal structure shows
slight variations in the shape arising from the different amplitudes in each direction. The
parameters are R̃a = 100, Pr = 1, P̃m = 0.7 and SB = 102.
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Figure 8: Profiles of the rms x-component of the mean magnetic field vector for (a) the

SA model and (b) the MA model. The parameters are P̃m = 0.7, Pr = 1 and SB = 102.

a growing amplitude with R̃a, and the fields Θ and j′z show the development of boundary

layers that decrease in width with increasing R̃a. In comparison to non-magnetic convec-
tion, the magnitude of all hydrodynamic quantities (W,Ψ,Θ) is diminished due to the
conversion of kinetic energy into magnetic energy.
Typical profiles of MA dynamo solutions are shown in figure 6a,b. The solutions do not

settle to an equal amplitude, e.g.W1 =W2 =W3, even when using initial conditions with
each component equal to the SA solution. Thus, we observe that the subspace associated
with the SA model is unstable. However, due to rotational invariance in the horizontal
plane, it is expected that statistically these amplitudes should agree when adequate
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Figure 9: Relative helicity HR profiles for (a) non-magnetic (B = 0) convection and

(b),(c) dynamo solutions. The parameters are P̃m = 0.7, Pr = 1, SB = 102 and various

R̃a. The line markings for each R̃a as listed in (a) also apply for (b),(c). All profiles are
anti-symmetric with respect to Z so that only the lower half of each profile is displayed.

averaging is performed such that W1 ≈ W2 ≈ W3. Figure 7a shows comparisons of the
W profiles for the SA and MA dynamo models, including the individual components and
the rms profile. The horizontal structure is displayed for the midplane ofW1(Z)h1(x, y)+
W2(Z)h2(x, y) +W3(Z)h3(x, y) in figure 7b where the hexagonal structure is evident,
although deviating slightly from a perfect hexagonal pattern.

The time averaged profiles of the x-component of the mean magnetic field are shown in
Figure 8. The mean magnetic field also forms boundary layers that progressively thin with
increasing R̃a. The mean magnetic field oscillates in time for all of the cases investigated
here; however, as R̃a is increased, a broad range of frequencies become excited which
gives way to a complex temporal dependence even for these relatively simple single mode
convection solutions.

Figure 9 shows the influence of R̃a on the helicity for both (a) non-magnetic con-
vection solutions and (b,c) magnetic solutions. As the thermal forcing increases, the
anti-symmetric profiles form boundary layers which move closer to the boundaries and
become narrower than the non-magnetic counterparts. These results are a clear indication
that the convection is significantly modified by the presence of the magnetic field.

3.3. Dissipation and heat transfer

Comparison of these runs with non-magnetic convection reveals lower Nusselt numbers
and larger magnitude interior mean temperature gradients for a fixed value of R̃a (see
figure 10a,b). The non-magnetic case approaches an isothermal interior according to the

scaling law |∂Zθ| ∼ R̃a
−1

(Sprague et al. 2006), while the SA dynamos show a diminished
exponent and the MA dynamos saturate at large Rayleigh numbers. Similarly, the kinetic
energy is diminished from non-magnetic rotating convection single mode solutions, as
shown in figure 10c. Given that these results can be tied to the equality of power integrals
in (2.57), the exchange and balance of energy can be understood through a comparison

of the three figures. Since Nu = εΘ and 2k2EK = εu, a scaling relation of εcΘR̃a
1

∼ εcu
is expected for the non-magnetic case where εB = 0. Scaling 2k2EK = εu ∼ R̃a

α

EK
and

Nu = εΘ ∼ R̃a
β

Nu; figures 10a,c confirm the balance with (R̃aNu)
1.5R̃a

1

= (R̃aEK
)2.5.

For the magnetic case, there must be a balance between the three terms in (2.57) since
εB 6= 0. The SA model shows εu and εΘ are diminished from the non-magnetic case

with scalings of R̃a
1.5

EK
and R̃a

1.2

Nu so that the non-magnetic balance is violated. This
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Figure 10: Heat transfer quantities and volume-integrated energies for the two classes of
dynamo solutions and non-magnetic (B = 0) SA results: (a) Nusselt number Nu; (b)
mean temperature gradient at the vertical midplane ∂Zθ(Z = 0.5); (c) kinetic energy EK ;
and (d) fraction of ohmic dissipation fohm = εB/(εB + εu). Results for the SA model
are shown by circles, the MA model results are shown by triangles and non-magnetic
convection results are denoted with a square. Here Pr = 1, P̃m = 0.7 and SB = 102.
The R̃a = 20 results closely align with the non-magnetic result, as it is barely above the
critical threshold for dynamo action and the magnetic energy remains small. All other
R̃a results included are well above the threshold for dynamo action, with critical P̃mc

values reported in column 5 of table 1.

implies from (2.57) that εB must scale around R̃a
2.2

B . The calculated scaling of the ohmic

dissipation (not shown) is approximately εB ∼ R̃a
2.5

B , indicating that ohmic dissipation

is dominant over viscous dissipation in the fluid layer for high R̃a. Figure 10d shows the
fraction of ohmic dissipation, where it is observed that εB dominates over εu at large R̃a
for both the SA and MA models.
The mean temperature profiles for a range of R̃a are shown in figure 11 for the magnetic

SA case (plot a) and the magnetic MA case (plot b). The SA cases resemble that of
non-magnetic convection in which the mean temperature profiles become increasingly
isothermal in the fluid interior and show the development of thin thermal boundary
layers as the Rayleigh number is increased. In contrast, the MA cases show a more
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Figure 11: Mean temperature profiles θ for the (a) SA and (b) MA dynamo solutions and

a range of R̃a.

complicated dependence on R̃a, where the interior mean temperature gradient saturates
at large R̃a, though the thermal boundary layers continue to thin with increasing R̃a.
Both dynamo solutions highlight the decreased efficiency of thermal mixing in the interior
relative to the non-magnetic case. While it is known that the mean temperature gradient
for non-magnetic single mode solutions does not saturate with increasing R̃a, multimode
simulations have demonstrated saturation for Pr 6 1 (Julien et al. 2012a).

The dissipation relations for non-magnetic convection and the dynamo can be com-
pared by setting R̃a/Pr2 fixed and equal in both expressions (2.54) and (2.55). These
expressions can then be rearranged and equated to indicate that

εu
Nu− 1

+
εB

Nu− 1
=

εcu
Nuc − 1

. (3.1)

Given that εB > 0, this can be written as an inequality

εu
Nu− 1

6
εcu

Nuc − 1
. (3.2)

To achieve this balance, there are three possibilities: (i) εu 6 εcu and Nu > Nuc, (ii)
εu <<< εcu and Nu < Nuc or (iii) εu > εcu and Nu >>> Nuc. Here we use the bold <<<

symbols to denote that the quantity must increase or decrease an amount large enough
to compensate for an opposing increase or decrease; for instance, in the third case the
relative increase in εu (which increases the fraction) must be compensated by the relative
increase in Nu to make the inequality in (3.2) hold.
In table 2, the decrease in both εu and Nu, relative to the non-magnetic case, can

be seen over the entire range of R̃a, indicating that these runs are in case (ii). Upon
substituting these values in to (3.2), we find the relationship is satisfied. Equality in

(3.2) is only achieved when εB ≈ 0 as for the R̃a = 20, P̃m = 0.7 case. These results
indicate that in these single mode models dynamo action acts to throttle the heat flux
through the layer.
Experimental studies of non-rotating convection in the presence of an imposed vertical

magnetic field report a decrease in the heat transfer from the non-magnetic case (Cioni
et al. 2000; Aurnou & Olson 2001). However, DNS results from self-consistent rotating
dynamos have found that the heat transfer increases in the presence of magnetic forces
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B = 0 SA MA

R̃a Nuc εcu Nu εu εB fohm Nu εu εB fohm

20 5.3584 87.1645 5.3584 87.1645 O(10−7) 0 5.36 87.1645 0 0
40 19.177 727.08 11.3346 223.27 190.10 0.46 10.3 317.68 54.32 0.15
60 37.703 2202.2 17.7433 370.45 634.09 0.63 13.3 503.94 234.06 0.32
80 59.291 4663.3 24.8 548.91 1362.4 0.71 14.3 660.57 403.42 0.38
100 83.126 8212.6 31.8 757.1 2412 0.76 15.5 820.60 629.39 0.43
200 223.64 44528 70.7 1988 11951 0.86 22.8 1438.6 2931.6 0.67

Table 2: Various quantities from the power integral relations given in equations (2.54)

and (2.57) for a range of R̃a with P̃m = 0.7, Pr = 1, k = 1.3048 and SB = 102. Here εcu
is the total viscous dissipation for non-magnetic convection, and εu and εB are the total
viscous and ohmic dissipations for dynamo solutions. The fraction of ohmic dissipation
is defined by fohm = εB/(εB + εu). Note that for R̃a = 20, the critical magnetic Prandtl

number is P̃mc ≈ 0.65.
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Figure 12: The Nusselt number (a) and magnetic energy (b) results for an MA run with

R̃a = 40, Pr = 1, P̃m = 0.7 and SB = 103 showing the time variability and intermittent
bursts of increased EM in the runs. For this run, the mean magnetic diffusion time is
t = O(103).

relative to non-magnetic simulations (Stellmach & Hansen 2004; Christensen & Aubert
2006). The DNS dynamo model results can therefore be classified as case (iii), given the
higher reported kinetic energies as well. One possible explanation for the discrepancy
between the change in Nu of the present asymptotic model and the DNS dynamo results
is that the fixed horizontal structure considered here eliminates this phenomenon. Our
results indicate that the restructuring of the convective planform in the presence of a
magnetic field is crucial for enhancing the heat transfer (Chandrasekhar 1961; Fearn
1979).

3.4. Intermittency

Figure 12 shows the heat transfer and magnetic energy results from a MA model run
with R̃a = 40, Pr = 1, P̃m = 0.7 and SB = 103 that displays intermittent changes with
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time. While the results show large variations for the majority of the time, intermittent
bursts of nearly periodic patterns appear at some intervals. Whereas the Nusselt number
shown in figure 12a is characterized by smaller fluctuations during these periods, we
observe large variations (bursts) in the magnetic energy (figure 12b). This behavior is
generally consistent with our findings that the heat transfer is reduced in the presence
of strong magnetic field for these single mode solutions. The bursts in activity appear
over roughly 1/5SB = 1/5E−1/2 diffusion times. Throughout these bursts, the averaged
Nusselt number and kinetic energy values decrease and the averaged magnetic energy
increases in comparison to averages outside of these intermittent periods. The vertical
structure functions show more variation between them during these bursts as well. Similar
intermittent behavior was observed in a recent DNS investigation (Bushby et al. 2018),
though the DNS results were found for parameter values disparate from those considered
here.

4. Conclusion

This study investigates the dynamics of the QGDM, which is a fully nonlinear dynamo
model that is valid in the limit of low Rossby and low magnetic Prandtl numbers. This
regime is relevant to the dynamics of Earth’s liquid outer core and planetary interiors
and cannot currently be accessed through direct numerical simulation or laboratory
experiments. Using the single mode technique of assuming periodic horizontal planforms
characterized by a single horizontal wavenumber k, the problem is reduced from three
spatial dimensions to a single dimension in the vertical. While single mode solutions
are known to be unstable in multimode simulations, they provide a useful comparison
for more realistic dynamics (Sprague et al. 2006). The dimensional simplification allows
for a detailed examination of time-stepping methods to handle the three intrinsic time
scales within the QGDM and permits an investigation of self-consistent dynamo action
resulting from a specialized class of solutions.
The mean temperature equation is handled instantaneously on the fast convective

timescale to avoid the computationally demanding length of the vertical diffusion times
that would be needed. This is achieved by factoring the time averaging over t from
the mean temperature equation (see Appendix A). The mean induction equation is
then tested with two multiscale methods: the common-in-time stiff approach where the
induction timescale is converted to the convective timescale, i.e. ∂τ = ǫ−3/2∂t; and the
heterogenous multiscale approach, where the mean induction equations are updated at
intervals of fast convective time specified by SB∆t and use the fast-time averaging of
Reynolds, convective and magnetic stresses from that interval. We find that both of
these methods provide consistent results. Moreover, varying the time interval SB over
which the induction equation is averaged shows that self-similar behavior is reached for
longer averaging windows, indicating that sufficient scale separation of the equations is
necessary for this model. The dynamics, especially for the MA model, show strong time
dependence and smooth results rely on extensive time averaging of the solutions, despite
reaching statistically steady heat transfer and magnetic energy results.
Although the single mode solutions represent a highly simplified class of solutions,

they nevertheless yield complex spatiotemporal dynamics. For sufficiently large Rayleigh
numbers, both classes of solutions (SA and MA) yield chaotic dynamos with a broad
range of time scales. Moreover, in contrast to previous kinematic investigations of the
QGDM, the present work demonstrates that the dynamo-generated magnetic field has
a strong influence on the structure and dynamics of the convection. The helicity of the

Page 26 of 31

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Single mode investigations of the QG dynamo model 27

flow is strongly modified and gives rise to magnetic fields that differ substantially in both
spatial structure and temporal behavior from the kinematic solutions.

All the dynamo solutions found in the present study show a decrease in the heat
transfer relative to non-magnetic solutions at the same Rayleigh number. In contrast,
DNS investigations (e.g. Stellmach & Hansen 2004; Christensen & Aubert 2006) generally
find the opposite effect whereby the heat transfer is increased in the presence of magnetic
field. There is no formal proof that either case should be preferred. It is likely that our
decreased heat transfer results are a consequence of the single mode, fixed horizontal
planform solutions assumed in the present work. Our results therefore suggest that the
restructuring of the convective planform (the single wavenumber, hexagonal horizontal
structure assumed in the ansatz) plays a critical role in allowing enhanced heat transfer.
This restructuring could occur either through the complete restructuring of the planform,
modification of the dominant horizontal wavenumber, or a combination of these two
effects.

A detailed investigation of the dissipation mechanisms in the single mode solutions
shows that at sufficiently large Rayleigh numbers ohmic dissipation dominates over
viscous dissipation. The solutions show a monotonic increase of the fraction of ohmic
dissipation fohm with increasing R̃a. In general, both plane layer (Tilgner 2014) and
spherical (Christensen & Aubert 2006) DNS studies find a non-monotonic dependence of
fohm on the thermal forcing. At present, it is unclear why such behavior occurs, though
we speculate that it may be related to the loss of rotational dominance in some cases
due to the finite values of the Ekman numbers employed in DNS. Our results show that
viscous dissipation plays a minor role in the heat transfer for increased forcing. Thus,
the model is not categorically viscously dominated, despite the presence of a single,
viscously-selected horizontal scale that induces the dynamo.

By construction, the QGDM is designed to operate in the regime of low Ro and
low Pm, a regime currently challenging for DNS and laboratory experiments to probe.
Accordingly, this model provides results that cannot truly be compared with current
direct numerical simulations, which remain limited to higher Pm values. Connections
between the results of the asymptotic model and DNS must come from simulations of
an alternative derivation of the QGDM, which features a Pm = O(1) and is not an
α2 dynamo (Calkins et al. 2015). However, some qualitative comparisons are made, for
instance, in regards to the intermittent behavior of the magnetic energy. This extended
regime that the QGDM can access is made possible by the filtering of fast inertial
waves and fast Alfvén waves that are of secondary importance to the comparatively
slow magneto-convective dynamics resulting from dynamo action. Ultimately, this study
provides a foundation for future explorations of the model, where all dynamically active
scales are permitted, through diagnostics for time integration strategies, requirements
of self-similar behavior and indications that the magnetic field strongly influences the
convective flow.
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Appendix A. Derivation of the instantaneous mean temperature

equation

The mean temperature equations (2.7) and (2.8) are deduced from the equation

∂T θ
τ
+ ∂τθ + ∂Z(wθ′) =

1

Pr
∂ZZθ

τ
. (A 1)

occurring at O(ǫ2) in the asymptotic development (Calkins et al. 2015). For clarity,
we repeat here that the overbar · from (2.3) denotes averaging over the small spatial
variables and fast convective time t, and · τ denotes averaging over mean magnetic time

τ . Setting θ(Z, τ, T ) = θ
τ
(Z, T ) + ǫ1/2θ(Z, τ, T ), (A 1) can be expressed as a composite

equation

ǫ−1/2∂τθ + ∂Z
(
wθ′
)
=

1

Pr
∂ZZθ +O(ǫ1/2) . (A 2)

Decomposing the averaging into its spatial and temporal components gives

ǫ−1/2∂τ
1

Γ

∫ Γ

0

θ
V
dt+ ∂Z

1

Γ

∫ Γ

0

(wθ′)
V
dt =

1

Pr
∂ZZ

1

Γ

∫ Γ

0

θ
V
dt+O(ǫ1/2) . (A 3)

Here · V denotes averaging over the small spatial scales and Γ is an interval in time,
where O(t) ≪ Γ ≪ O(τ). Given that Γ is not a function of τ , T or Z, the integral and
derivatives can be reordered in each term.

1

Γ

∫ Γ

0

[
ǫ−1/2∂τθ

V
+ ∂Z(wθ′)

V
=

1

Pr
∂ZZθ

V
]
dt+O(ǫ1/2) . (A 4)

A similar analysis follows for the mean induction equations. Choosing the strong con-
straint that the kernel must be zero, we obtain the instantaneous mean temperature
equation

ǫ−2∂tθ
V
+ ∂Z(wθ′)

V
=

1

Pr
∂ZZθ

V
. (A 5)

This equation expresses the slowly varying nature of the mean temperature and, following

Sprague et al. (2006), the stationary state approximation is achieved on setting ǫ−2∂tθ
V
=

∂T θ
V
= 0.

A.1. Single Mode Model Derivations

Utilizing the ansatz for the single amplitude (SA) model, the Lorentz term in the
vorticity equation and the Lorentz force in the vertical momentum equation become

B · ∇⊥j
′
z = −P̃m

(
∂2xhB

2

x + 2 ∂x∂yhBxBy + ∂2yhB
2

y

)
Ψ, (A 6)

B · ∇⊥b
′
z =

P̃m

k2

(
∂2xhB

2

x + 2 ∂x∂yhBxBy + ∂2yhB
2

y

)
W. (A 7)

Multiplication by h and horizontal averaging (denoted by the overbar) then gives

hB · ∇⊥j′z = −P̃m
(
h∂2xhB

2

x + 2h∂x∂yhBxBy + h∂2yhB
2

y

)
Ψ, (A 8)

hB · ∇⊥b′z =
P̃m

k2

(
h∂2xhB

2

x + 2h∂x∂yhBxBy + h∂2yhB
2

y

)
W. (A 9)
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The vorticity and momentum equations can then be written as

−k2∂tΨ − ∂ZW = P̃m
[
(∂xh)

2
B

2

x + 2 (∂xh∂yh)BxBy + (∂yh)
2
B

2

y

]
Ψ + k4Ψ, (A 10)

∂tW + ∂ZΨ =
R̃a

Pr
Θ − P̃m

k2

[
(∂xh)

2
B

2

x + 2 (∂xh∂yh)BxBy + (∂yh)
2
B

2

y

]
W − k2W,

(A 11)

where use has been made of the following identities

h∂2xh = −(∂xh)
2
, (A 12)

h∂x∂yh = −(∂xh∂yh), (A 13)

h∂2yh = −(∂yh)
2
. (A 14)

Upon noting that ∂xh∂yh = 0 for the single mode solutions, the complete set of equations
is given by

∂tΨ +
1

k2
∂ZW = −P̃m

[
c1B

2

x + c2B
2

y

]
Ψ − k2Ψ, (A 15)

∂tW + ∂ZΨ =
R̃a

Pr
Θ − P̃m

[
c1B

2

x + c2B
2

y

]
W − k2W, (A 16)

∂tΘ +W∂Zθ = − k2

Pr
Θ, (A 17)

∂T θ + ∂Z
(
WΘ

)
=

1

Pr
∂ZZθ, (A 18)

∂τBx = −2P̃m c2 ∂Z
(
ΨW By

)
+

1

P̃m
∂ZZBx, (A 19)

∂τBy = 2P̃m c1 ∂Z
(
ΨW Bx

)
+

1

P̃m
∂ZZBy. (A 20)

Here (A 18) is obtained from (A5) and all overbars now denote area averaging over the
horizontal spatial variables x, y. The averaged values of the derivatives depend on the

planform chosen and are denoted as (∂xh)
2
= c1k

2 and (∂yh)
2
= c2k

2. For the hexagonal
planform, c1 = c2 = 1/2. A similar analysis results in the MA model. The steady state
approximation is achieved on setting ∂T θ = 0.
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silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B 87, 014110.
Proudman, J. 1916 On the motion of solids in a liquid posessing vorticity. Proc. R. Soc. Lond.

92, 408–424.
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. 2017 Turbulent geodynamo

simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29.
Schubert, G. & Soderlund, K. M. 2011 Planetary magnetic fields: Observations and models.

Phys. Earth Planet. Int. 187 (3), 92–108.
Soward, A. M. 1974 A convection-driven dynamo: I. the weak field case. Phil. Trans. R. Soc.

Lond. A 275, 611–646.
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an

asymptotically reduced system for rotationally constrained convection. J. Fluid Mech.
551, 141–174.

Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low Ekman
number. Phys. Rev. E 70 (5), 056312.

Taylor, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc.
Lond. 104, 213–218.

Tilgner, A. 2014 Magnetic energy dissipation and mean magnetic field generation in planar
convection-driven dynamos. Phys. Rev. E 90, 013004.

Tobias, S. M., Cattaneo, F. & Boldyrev, S. 2011 Ten Chapters in Turbulence, chap. MHD
Dynamos and Turbulence. Cambridge University Press.

Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93–102.

Page 31 of 31

Cambridge University Press

Journal of Plasma Physics


