
This is a repository copy of Private browsing:a window of forensic opportunity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/133246/

Version: Submitted Version

Article:

Chivers, Howard Robert orcid.org/0000-0001-7057-9650 (2014) Private browsing:a
window of forensic opportunity. Digital Investigation. pp. 20-29. ISSN 1742-2876

https://doi.org/10.1016/j.diin.2013.11.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Private Browsing: A Window of Forensic Opportunity

Howard Chivers

Department of Computer Science, The University of York, Heslington, York, YO10 5GH, UK

Abstract

The release of Internet Explorer 10 marks a significant change in how browsing artifacts are stored in the Windows file system,

moving away from well-understood Index.dat files to use a high performance database, the Extensible Storage Engine. Researchers

have suggested that despite this change there remain forensic opportunities to recover InPrivate browsing records from the new

browser. The prospect of recovering such evidence, together with its potential forensic significance, prompts questions including

where and when such evidence can be recovered, and if it is possible to prove that a recovered artefact originated from InPrivate

browsing. This paper reports the results of experiments which answer these questions, and also provides some explanation of

the increasingly complex data structures used to record Internet activity from both the desktop and Windows 8 Applications. We

conclude that there is a time window between the private browsing session and the next use of the browser in which browsing

records may be carved from database log files, after which it is necessary to carve from other areas of disk. It proved possible to

recover a substantial record of a user’s InPrivate browsing, and to reliably associate such records with InPrivate browsing.

Keywords: Digital Forensics, Internet Explorer, Microsoft Windows, Database, Carving

1. Introduction

The release of Internet Explorer 101 marked a significant

change in how Internet history and cache data are stored within

the file system; the binary historical formats which have been

widely documented in the forensic community (e.g. (Jones,

2003)) were replaced by a high performance database tech-

nology known as the Extensible Storage Engine (ESE). This

database is used to support a range of other applications, includ-

ing Windows Search, and was the subject of a previous paper

in which we described the results of carving for deleted ESE

database records from the Search Database (Chivers and Har-

greaves, 2011). The carving tool is now known as ESECarve 2

and has subsequently been used to assist a number of real in-

vestigations.

InPrivate Browsing is an Internet Explorer mode which is

launched by the user in a separate browsing window; the

claim is that this mode “prevents local storage on your com-

puter”(Microsoft, 2012). The prospect of evidential recovery

from private browsing is of considerable forensic interest, and

several researchers have reported using string searches to iden-

tify artifacts of interest; others have used ESECarve to survey

residual browsing histories and suggest that such evidence is

recoverable (Malmström and Teveldal, 2013).

Email address: hrchivers@iee.org (Howard Chivers)
1We acknowledge Microsoft copyright in terms used in this paper to de-

scribe Microsoft products, including: Windows, Windows 8, Metro Applica-

tion, Internet Explorer, Windows Search, InPrivate Browsing, Extensible Stor-

age Engine (ESE), and esentutl.
2ESECarve is available from the author for forensic investigation, education

and research

The prospect of recovering evidence from InPrivate brows-

ing prompts questions, including when such evidence can be

recovered, the implications for seizure tactics, where the evi-

dence can be found, and if it is possible to prove that a recov-

ered artefact originated with InPrivate, as opposed to normal,

browsing. This paper reports the results of experiments which

answer these questions, and also provides some explanation of

the increasingly complex data structures used to record Internet

activity from the desktop and by Windows 8 Metro Applica-

tions. Results of forensic interest include:

• InPrivate browsing artifacts can be positively identified us-

ing the Type field in cache content records.

• Pull-the-plug seizure may allow the recovery of In-

Private browsing records from the database file (Web-

CacheV01.dat); however, it may also result in a database

that cannot be recovered for use with application interface-

based tools because log files have not been completely

written to disk.

• The window of opportunity for the recovery of InPrivate

artifacts from database log files extends to the next time

the browser is opened for use. During this window sub-

stantial recovery is possible, afterwards these data are se-

curely deleted.

• Browsing evidence may also be recovered from areas of

disk apart from normal database files and logs; this may

persist for some time.

• The table structure within the database includes separate

records for applications, allowing some fine grain distinc-

tions to be made about the use of the computer.

Preprint submitted to Digital Investigation October 25, 2013

The remainder of this paper is organized as follows: Sec-

tion 2 briefly describes the Extensible Storage Engine and Data

Storage in HTTP/HTML, both of which are needed to under-

stand the descriptions of database behaviour and browser arti-

facts that follow; this is followed by a review of publications

related to private browsing. Section 3 describes how the exper-

iments used to determine browser behaviour were conducted.

The next sections present detailed results; section 4 describes

the files that support Internet Explorer and how the database ta-

bles are structured, section 5 describes the conclusions of exper-

iments to determine if InPrivate browsing records can be recov-

ered. Findings are further discussed at section 6 and the paper is

concluded in section 7. Appendixes describe the restoration of

a database to a clean state, and record carving using ESECarve.

Terminology. This paper uses the term ’record’ to mean a

single database record or row. Browsing records include a URL

with an associated date and time. They document a single In-

ternet action; examples include a cached response to a HTTP

request, a download, a history record of a visit to a domain, or

the storage of a cookie. The term ’browsing record’ here should

not be taken as an implication that it originated from human ac-

tion.

2. Background

2.1. Extensible Storage Engine (ESE)

The Extensible Storage Engine is documented on-line by Mi-

crosoft (Microsoft, 2013), and details of its internal structure

have been published by Joachim Metz (Metz, 2010). A previ-

ous paper (Chivers and Hargreaves, 2011) provides an overview

of the database and the reliability of records recovered by carv-

ing. This section briefly describes transaction processing, as a

background to why database records are often found in log files

or in cached memory such as the pagefile.

The Extensible Storage Engine is designed to process high

transaction volumes and be recoverable from failures, such as

a system crash while data are being written to disk. A typical

transaction sequence is shown in figure 1, with the file names

currently used by Internet Explorer 10.

An incoming transaction is first held in a memory log cache

(1), then any necessary database pages are brought into mem-

ory (2) and the transaction applied (3); as soon as possible the

updated database record is written to the log file (4). Eventu-

ally the database file is updated with the page which contains

the new transaction. A database whose file has not been fully

updated is known as dirty. On a normal shutdown the log cache

is flushed to disk, whereas the database file (WebCacheV01.dat)

may not necessarily be updated and may be left in a dirty state.

If the database is dirty it must first be recovered (in ESE ter-

minology), before it can be accessed using the database ap-

plication interface. This process recovers the database to a

consistent state by replaying log transactions from a known

checkpoint. The checkpoint is stored in a V01.chk file and

the logs are recorded in files numbered in a hexadecimal se-

quence (e.g.V010009.log, V010000A.log) together with the cur-

rent working log (V01.log). When the current working log

Figure 1: The Propagation of Transaction Data into Disk Files.Transactions are

cached in memory and written quickly to log files; the database file is subse-

quently updated from memory or recovered from the logs.

Log Cache

Page Cache

Transaction

xxxxxx
.log

WebCacheV01
.dat

(1)

(2)

(3)

(4)

(5)

Memory Disk

is full it is renamed to the next name in the hexadecimal se-

quence, and a new V01.log file is created. Logs that are no

longer needed are deleted.

Both database and log records use the same record format, so

records from either can be recovered by carving.

It is evident from this process that database records are found

in memory and perhaps therefore in the pagefile, in log files,

and in the database file. The action of allocating and freeing

files for logs may also leave records in unallocated or slack

space in the file system. Because this is a high performance

database there are deeper layers of caching and lazy writing

which may delay the writing or deletion of records.

Some forensic tools require the database to be recovered to a

clean state before it can be processed via the database applica-

tion interface; the esentutl utility can be used for this purpose,

and for investigating the table structure of an unknown ESE

database. This is described in section Appendix A. Forensic

practitioners should also note that:

• Some forensic tools automatically recover the database to

a clean state before retrieving records via the application

interface; they require the .chk, and .log files as well as the

database file.

• The recovery process will delete as well as add database

records; it is often more productive to carve from a dirty

database rather than a recovered copy.

• Pull-the-plug seizure may result in an unrecoverable

database because logs files have not been flushed to disk

from database caches. This occurred in approximately

40% of the experiments reported here.

2.2. HTTP/HTML Data Storage

Certain data types originating from HTTP protocol trans-

actions or from scripted actions in HTML pages are stored

2

separately in the file system and result in distinctive database

records: cookies, Web Storage and Indexed Database storage.

Cookies are a well known mechanism for maintaining state

between HTTP protocol exchanges, for example to allow a web

server to identify a request with a previous transaction (Barth,

2011). Cookies are name:value pairs which are returned in

HTTP requests to the domain which supplied them. The value

is a short text string, which is often a key to information held at

the server, such as a user’s session information.

The other two data types are managed by scripts running on

web pages . WebStorage (W3C, 2013b), known as DOMStor-

age by Microsoft allows the storage of name:value data on the

client. It is more flexible than the cookie mechanism in the as-

signment of access rights, lifetime, and size, allowing the stor-

age of data objects of up to 10MByte. DOMStorage may be

used for client-side storage, such as cached mailboxes or other

files, as well as for session continuity. From the forensic arte-

fact perspective DOMStorage can be thought of as a separately

managed data cache, the difference being that DOMStorage is

managed by scripts on web pages, unlike cache content which

is managed by the browser.

The third type of data storage is the Indexed Database API

(W3C, 2013a), also known as IndexedDB. This provides web

pages with the ability to store large arbitrary objects which

are flexibly indexed; for example, keywords may be associated

with documents and allow the retrieval of a set of documents by

specifying a key. This more flexible storage allows the caching

of complex objects such as scenes from online games, and also

allows them to be viewed offline. This is a relatively new fea-

ture which is part of HTML5 and has yet to achieve widespread

use. This storage will not be discussed further in this paper,

since it stored in a separate database, Internet.edb3

2.3. Protected Integrity Levels and Application Containers

Browsing records are separated into different database tables

by data type (e.g. cookie, DOMStorage, URL cache, download,

cached page content) and also by integrity category. Earlier ver-

sions of Internet Explorer divided data into two integrity cate-

gories, one for sites accessed in protected mode (Internet and

Restricted network zones), and the other for data loaded from

Trusted Sites, the Local Intranet or the Local Machine. This

separation is maintained in Internet Explorer 10; however, the

Metro Applications introduced in Windows 8 execute in sepa-

rate AppContainers, each of which is a separate integrity parti-

tion. This separation can be confusing for a user; for example

the desktop Internet Explorer and will not share cookies with

the same browser launched as a Metro Application.

For the forensic practitioner the distinction between integrity

containers may add information about the user’s behaviour, and

is needed to understand the large number of Internet caches in

the file system.

3The Internet.edb database is usually located at: \Users\%USERPROFILE

%\AppData\Local\Microsoft\Internet Explorer\Indexed DB. A demonstration

of pictures that use Indexed Data can be seen at http:\\snapyx.azurewebsites.net

- note the large difference in time to load the images between the first and

subsequent visits.

2.4. Related Work

Some general studies have been carried out on private brows-

ing. Aggarwal et al. (2010) provide a thoughtful analysis of

threat models and what constitutes private browsing and sur-

vey four different browsers. They find weaknesses in all but do

not report the possibility of data retention in Internet Explorer

8. In contrast Ohana and Shashidhar (2013), also working with

Internet Explorer 8 and other browsers identified recoverable

evidence in unallocated and slack space. Similar results were

obtained by Said et al. (2011) who noted evidence on disk and

in physical memory for InPrivate browsing in Internet Explorer

8.

Mahendrakar et al. (2010) review artifacts in memory and

ways they can be obfuscated or recovered; they suggest a tool

to reassemble files from memory blocks. The approach taken

here is not to attempt reassembly of database files, but to re-

liably carve individual records. (Satvat et al., 2013) is a more

recent paper, but despite quoting Internet Explorer 10 as the

target, they describe the analysis of Index.dat files which are

associated with earlier versions of the browser. The paper pro-

vides interesting suggestions for active attacks; however, these

are less relevant to the normal forensic process.

Malmström and Teveldal (2013) experimented with Internet

Explorer 10 and suggest that residual evidence may be recov-

erable following InPrivate browsing; they also document some

aspects of the Containers table. This work concludes that the

positive identification of InPrivate browsing records is still an

open question, and prompts further questions about the extent

and reliability of the recovery of such records.

3. Method

The results reported here were obtained using Windows 8

Pro and Internet Explorer Version 10.0.9200.16384. The op-

erating system was run within a VMWare virtual machine, al-

lowing a complete reset of the system state when necessary.

To simulate a ’pull the plug’ seizure the virtual machine was

paused while the browser was still open and an image taken of

the resulting system. Each stage in each experiment was im-

aged using FTK Imager into an E01 image file for future study.

Recovery of database metadata, current database contents, and

carving were carried out using ESECarve V1.19, selection and

counting of results were carried out using scripted regular ex-

pressions in Python, and file system mapping was carried out in

XWays Forensics V17.3.

Memory images were not captured, since they are unfortu-

nately rarely available to forensic analysts; however, the find-

ings here on pagefile provide a good indication of the potential

benefit of a memory image if one were available.

The database schema (metadata) was first extracted and a se-

ries of scoping experiments carried out to confirm how ESE

data fields are used by Internet Explorer. This allowed confir-

mation of important factors such as the interpretation of date

and time information; the results are summarized in section 4

below.

3

Each browsing experiment was conducted over 5 days in

which the remanence of artifacts resulting from InPrivate brows-

ing on the first day were measured under different conditions of

system use. The measurement process was to carve all available

database records from the disk image for the day; records of in-

terest were identified and the offsets provided by the carver then

mapped to the file system producing a complete map of artifacts

of interest. The InPrivate browsing activity was designed to

produce an image-rich data set with sufficient images to allow

indicative statistics to be obtained. www.carandclassic.co.uk

provides lists of classic cars for sale with small pictures, and

sufficient pages were visited to guarantee that each browsing

session had cached over 500 images.

Only recoverable database records were counted as results,

in contrast with the alternative of searching the image for dis-

tinctive URLs. As would be expected, the URL search would

identify a few extra artifacts where the URL was available but

the surrounding record was corrupt. In these tests the difference

is small (around 7%). In real cases it has proved necessary to re-

cover the contextual information provided by the whole record,

not just a URL fragment. This methodology is therefore closer

to the needs of forensic practice than string search counting.

Three InPrivate experiments were carried out: a scoping ex-

ercise, a controlled comparison with ample system memory,

and finally a mixed-load scenario.

The scoping exercise was used to confirm the likelihood that

artifacts would be found. Because it appeared that InPrivate

records were added to the database normally, and then deleted,

it seemed likely that there was a marker value within each record

which either indicated deletion or InPrivate browsing. This was

identified and then confirmed by reference to Microsoft docu-

mentation. The first experiment also suggested that the avail-

ability of records in the database and log files would persist

only to the next use of the browser, although records could still

be found on other parts of the disk.

The second experiment was designed to confirm that InPri-

vate browsing records could be uniquely identified, and the

point at which data were deleted from database files. Three

separate machines were used: Use, Avoid, and Control. InPri-

vate browsing was carried out on the first two, after which the

Use machine was subject to daily light browsing, and the Avoid

machine was subject to daily use without opening the browser.

The Control machine was subject to the same use, but the ini-

tial session was carried out using normal, as opposed to InPri-

vate, browsing. These experiments were carried out with am-

ple memory (1 GByte) allocated to each virtual machine; since

the browsed images were small in size and there was negligi-

ble background machine load it was expected that the browser

would be unlikely to page memory.

The results of this experiment confirmed expectations: com-

parison of the Avoid and Use machines resulted in InPrivate

artifacts being deleted on the first use of the browser in the Use

machine, but not during the experiment in the Avoid machine.

Comparison of the artifacts recovered from the Use machine

and the Control machine was unable to find any instance which

contradicted the field value which marked InPrivate browsing.

Also as anticipated, no artifacts were discovered on disk outside

Figure 2: Overview of Cache Data Structures.The Containers table acts as an

index into a series of Container nn tables and specifies the directory path to the

related cache directory; individual records in the Container nn table specify the

cached filename.

Containers
...
ContainerId ... Directory
...

Container_nn
...
... URL ... Filename
...

WebCacheV01.dat

Cache

the browser files.

The third experiment was designed to simulate a computer

with a heavier workload; a virtual machine was created with

500GByte of memory, and while the test InPrivate browsing

session was conducted a video was watched using the Firefox

browser. The disk map of this experiment is reported in de-

tail below; the results were consistent with those previously

achieved and resulted in a large number of long-lived recov-

erable browsing records outside the database and log files.

4. Browser Data structures

4.1. Overview

Internet Explorer 10 maintains a single database which in-

cludes history records and indexes to various caches, the database

file WebCacheV01.dat is located at:

\Users\%USERPROFILE%\AppData\Local\Microsoft

\Windows\WebCache

This location appears to be standard, we have not identified

a registry stetting or group policy that allows it to be changed.

The same directory includes associated database files, V01.chk,

V01.log, and V01nnnn.log, where nnnn is a hexadecimal se-

quence number.

The relationship between the most important database tables

is shown in figure 2.

The WebCacheV01.dat database contains a Containers table,

and records in that table act as an index to actual data containers

which are tables with names of the form Container nn. The

presence of a record in the Containers table does not guarantee

that there is a corresponding Container nn table, although they

are usually present.

Index records in the Containers table specify the directory

which contains the actual data items (e.g. cookies, cache), the

names of these files are specified in the browsing records in the

associated Container nn table.

The Containers table therefore acts as a master index, its

fields include:

4

Figure 3: Secure Directories.Files are placed in subdirectories of the path identified in the Containers table.

Table: Containers

ContainerId
Name
PartitionId
Directory
SecureDirectories
SecureUsage

Field Value

13
Content
L
C:\Users\IE10Test\AppData\Local\Microsoft\Windows\Temporary Internet Files\Low\Content.IE5\
YC3XD8A450OECQ8Y B1N8T3MQ
27 00 00 00 26 00 00 00 27 00 00 00

Y6SNPOZU
27 00 00 00

Table: Container_13

ContainerId
SecureDirectory
Filename

Field Value

13
3
gpt[1].js

The SecureDirectory field in the container record
specifies the 3rd 8-character random name which
is the sub-directory in which the file is stored. The
usage string specifies the number of entries in the
directory; here 0x00000027 = 39.

• ContainerId: which is the number of the associated Con-

tainer nn table.

• Directory: in which cached or stored files are held.

• Name: which describes the type of data in the container

(e.g. cookie, content, history).

• PartitionId: which specifies the integrity partition: L -

Low, H - High, or a specific AppContainer).

Windows 8 systems may have large number of containers;

each Metro Application will usually have containers for both

cookies and cache content and the desktop Internet Explorer

will have similar containers at both M and L integrity levels.

Containers are also allocated to History records and other data

types. A typical Windows 8 laptop with only the standard Metro

Applications and little history is likely to have between 40 and

50 containers. Knowledge of these data structures is potentially

valuable to a forensic practitioner, since they each specify a di-

rectory with Internet records on disk.

Each record in a Container nn table includes the following

fields:

• ContainerId: which references the associated row in the

Container table.

• SecureDirectory: which is used to index a sub-directory

within the cache path.

• Type: which may be used to determine if the record origi-

nated with InPrivate Browsing.

• AccessCount: the number of times a URL has been refer-

enced (but not necessarily selected by the user).

• Date and Time Information: fields include Sync, Creation,

Expiry, Modified, and Accessed times.

• URL: the URL from which the information was obtained,

in some instances a response header is also available.

• Filename: the name of the cache file used to store the data

item.

These fields are included because they are likely to be of

forensic significance; they are discussed in detail in the sec-

tions below. Other fields have not been diagnosed or confirmed

by experiment.

4.2. Secure Directories

Content cache items and certain other types (e.g. DOMStore

data objects) are stored in sub-directories of the path specified

in the Containers table. These sub-directories are given random

8 character names, similar to cache storage in previous versions

of Internet Explorer. The mapping from the database record to

the sub-directory name is implemented as shown in figure 3.

The SecureDirectories string is a list of 8 character names, in-

dexed starting from 1; the SecureDirectories value in the record

specifies which of these sub-directories is used for that particu-

lar data item.

The usage record is stored as a long binary string, here shown

as a series of hexadecimal values; the values should be read

as a series of 4-byte little-endian numbers which indicate the

number of files in the corresponding directory. Experimentally

it was not always possible to confirm that these numbers were

exactly correct, they often differed by a small number from the

actual number of files, this is unexplained but may be a result

of cached writing.

One feature of the directories listed in the Containers ta-

ble (not the random named subdirectories) is that they usually

contain a container.dat file, of zero size. The consequence is

where there are records without associated files, such as His-

tory records, the directory listed in the Containers table contains

only the zero size container.dat file. This arrangement seems to

have little forensic value, other than the possibility that zero size

files of this type may indicate the presence of actual records in

a corresponding database table.

5

Table 1: Examples of PartitionIds and related directories for Internet Explorer content entries in the Containers table. The text distinguishes between different

integrity partitions: Low, Medium, and those specific to an Application.

ContainerId PartitionId Directory

8 M C:\Users\IE10Test\AppData\Local\Microsoft\Windows\Temporary Internet

Files\Content.IE5\

7 S-1-15-2-1430448594-

2639229838-973813799-

439329657-1197984847-

4069167804-1277922394

C:\Users\IE10Test\AppData\Local\Packages\windows ie ac 001\AC

\INetCache\

13 L C:\Users\IE10Test\AppData\Local\Microsoft\Windows\Temporary Internet

Files\Low\Content.IE5\

4.3. PartitionId and AppContainer

Integrity levels and AppContainers were introduced in sec-

tion 2.3. For desktop applications the PartitionId in the Con-

tainers table is L (low integrity) corresponding to data written

in protected mode (Internet, or Restricted zones), or H (high

integrity) corresponding to data from the Local Machine, Lo-

cal Intranet, or Trusted domains. Note that some data, such as

daily history records, are written by the local machine outside

protected mode, despite originating from an Internet access.

For AppContainers the SID (Security Identifier) of the Appli-

cation is the PartitionId, and the associated directory is specific

to that application. The name for Internet Explorer when run

as an Application is windows ie ac 001, and this can be related

to the SID via the associated directory path, or by searching

for the SID in the Registry (under Classes), and retrieving the

associated DisplayName.

Table 1 provides an example of three Content records related

to Internet Explorer.

4.4. Date and Time Information

Each browsing record has a number of date and time stamps,

although not all will necessarily be set. The meaning of these

date-time groups is intuitive and follows previous practice. The

summary below has been confirmed by browsing with offset

machine times while monitoring network packets as well as the

resulting cache files.

All dates and times are recorded in UT (GMT); those derived

from the host computer use the same offsets as the file system.

The dates and times present in the Content tables have the fol-

lowing significance:

• SyncTime: is the most recent time the url content was syn-

chronized, either by downloading a data item to the cache,

or by comparing the update time of the on-line content to

that of the cached item. If the cached data item is updated

as a result of a synch, then the modify time in the file sys-

tem is the same as the sync time.

• CreationTime: is the time that the cached item is first cre-

ated; it is the same as the file system create time for the

corresponding file.

• ExpiryTime: is the time set in the protocol data unit by

the web server; it is intended to be the time after which the

cache must be refreshed. This date-time may be calculated

from a maximum age, or directly reflect an expiry time;

either or both may appear in the HTTP protocol header.

• ModifiedTime: is the modified time set in the protocol data

unit by the web server. It is intended to reflect when the

on-line data item was last updated. It is not related to file

update times in the cache.

• AccessTime: is the most recent time the user accessed the

cached item.

Records also include PostCheckTime and SyncCount fields.

No values for PostCheckTime were observed. Despite exper-

iments designed to ensure cache synch, which was confirmed

in the network trace and in SyncTime values, the sync count

did not reflect the activity. It’s purpose is undiagnosed. Note

that times are changed when history records are rewritten, as

described in the next section.

4.5. Data Name

The name field in the Containers table gives the purpose of

the associated container and its directory. Familiar names from

previous versions of Internet Explorer are Cookies, Content,

and History. Downloaded data are given their own container,

iedownload, as is web storage which is named DOMStore. This

list is certainly not exhaustive, three other types of named data

justify specific mention: MSHIST01yyyymmddyyyymmdd, iecom-

pat, and PrivacIE.

• The name used for history records is also familiar from

previous versions of Internet Explorer: MSHIST01 fol-

lowed by two dates in year-month-day format. The name

signifies the date range over which records have been col-

lected. For example MSHIST012013100220131003 con-

tains records between 2nd and 3rd of October, 2013. His-

tory records provide a summary of user activity, more de-

tail is found in the Content records that index the Internet

cache.

As with previous versions of Internet Explorer, daily his-

tory records are subsumed into weekly records: a new

Container nn table is created, records copied to that con-

tainer and the old history tables deleted, usually when the

browser is next opened. Unfortunately the new records

have modified URLs and timestamps. The URL field is

6

prefixed with the to-from dates of the history container,

in the same format as the table name; when the record

is rewritten this is replaced by the new date range. The

SyncTime and AccessedTime are changed to the time the

browsing records were rewritten.

• iecompat records are a pre-configured list of Internet ad-

dresses where it may be necessary to use a compatibility

mode, that is for Internet Explorer to emulate an earlier

browser version. They are loaded when the database is

rebuilt, so may appear in memory or logs after a delete op-

eration. Apart from perhaps providing evidence that the

database has been rebuilt, which in any case is likely to be

evident, they appear to be of little forensic interest. These

records were filtered from these experiments to avoid over-

stating the number of recovered records.

• PrivacIE records are not related to InPrivate browsing.

They are used to record URLs to third party sites, for ex-

ample advertisers’ web pages that are referenced on web

pages visited by the user. This information is used in In-

Private filtering to limit indirect access to such sites (Wil-

son, 2012). Unfortunately it is not just the name that

may cause confusion between InPrivate Filtering and In-

Private browsing; the type indicator used to identify In-

Private browsing is also used for PrivacIE records, and

the forensic practitioner must be aware of the distinction

to avoid ascribing PrivacIE records to InPrivate browsing.

See section 5.1, below.

5. InPrivate Browsing

This section describes two important outcomes of the ex-

periments described in section 3: how to identify records, and

where and when such records may be found.

5.1. Identifying InPrivate Browsing Records

Because InPrivate browsing records were found to be stored

in the same tables as other content, and then later deleted, it

seemed likely that there was a marker in each record to iden-

tify if its origin was InPrivate browsing. Scoping experiments

identified the Type field as a likely candidate, and analysis re-

vealed that this field was a bitmask with some obvious fea-

tures: cookie records always had the 0x100000 bit set, and His-

tory records were similarly associated with 0x200000. The bit

correlated with InPrivate browsing is 0x20000. This provided

sufficient information to search Microsoft Developer informa-

tion; the specification of these bitmasks is divided between the

header files WinInet.h and Wininet.h in the Windows 8 SDK.

Field definitions that are likely to be of interest to forensic prac-

titioners are listed in table 2.

Further experiments were carried out to identify other cir-

cumstances where the PRIVACY MODE CACHE ENTRY bit

was set, and none were found for cache Content records. This

bit was set, however, in PrivacIE records, which are introduced

above. In this case the STICKY CACHE ENTRY bit was also

set, usually giving a type value of 0x20004.

Table 2: Decoding the Type Field. This table lists the bit assignments most

likely to be of forensic interest; a full list can be found in the Windows 8 SKD

headers WinInet.h and Wininet.h.

Description Value

NORMAL CACHE ENTRY 0x00000001

STICKY CACHE ENTRY 0x00000004

HTTP 1 1 CACHE ENTRY 0x00000040

STATIC CACHE ENTRY 0x00000080

DOWNLOAD CACHE ENTRY 0x00000400

REDIRECT CACHE ENTRY 0x00000800

PRIVACY MODE CACHE ENTRY 0x00020000

COOKIE CACHE ENTRY 0x00100000

URLHISTORY CACHE ENTRY 0x00200000

PENDING DELETE CACHE ENTRY 0x00400000

POST RESPONSE CACHE ENTRY 0x04000000

INSTALLED CACHE ENTRY 0x10000000

IDENTITY CACHE ENTRY 0x80000000

In conclusion, the agreement of Microsoft SDK documenta-

tion with experimental evidence provides confidence that Con-

tent records with the PRIVACY MODE CACHE ENTRY bit

set originated from InPrivate browsing. However, PrivacIE

records do not provide evidence of InPrivate browsing; where

the container cannot be reliably identified, records with the

STICKY CACHE ENTRY bit set should be regarded as Pri-

vacIE, and not InPrivate browsing.

5.2. The Lifecycle of InPrivate Browsing Artifacts

This section presents results of the third experiment described

in section 3. This was deliberately carried out in a mixed work

environment rather than a ’clean’ environment in which the

only activity was that under study. Memory was constrained

and competing processes were running at the same time as In-

Private browsing.

A full disk map for the results of this experiment is presented

in table 3. The map was created by carving the whole disk for

Internet Explorer 10 records using ESECarve, filtering those

records to extract only InPrivate browsing using the Type field

described above, then mapping the resulting records to files.

Each stage of the experiment was separately mapped, and the

table shows the how the number of records recovered and their

file system assignments changed as the experiment progressed.

The term unallocated is used for any space within the file

system which is not allocated to a file system object or file, this

is synonymous with free space used by some forensic tools.

The table is divided into two parts, the first set of records map

to database files, the second to other areas of the disk; they will

be described separately. The counts given in each section are

the number of InPrivate browsing Content records recovered.

5.2.1. Database Files

Database log records are first written to the current log file

(V01.log), and when this is full that file is renamed to the next

in the hexadecimal sequence (in this example V010000F.log)

and a new V01.log allocated. This process is evident in the disk

map.

7

Table 3: Disk Map of Recovered InPrivate Browsing Records. InPrivate browsing Content records were carved from a disk image and mapped to file allocations.

The table shows how the availability and mapping of recovered records change with time.

1: Pull Plug 2: After Shutdown 3: After Use 24 Hours Later 4: After Use 48 Hours Later

Count Allocated To Count Allocated To Count Allocated To Count Allocated To

817 WebCacheV01.dat 0 Records overwritten with 0x4F

580 V010000D.log 0 Disk space reallocated, overwritten with 0x4F or new records

624 V010000E.log 624 unallocated 0 Contents overwritten with 0xFF

254 V01.log 260 V010000F.log 0 Reallocated to a new file and overwritten.

0 unallocated 23 V01.log 16 V0100010.log 0 unallocated, over-

written 0x4F

984 pagefile.sys 984 984 984

442 System Volume In-

formation

442 442 442

Total Carved Records: 3701 2333 1442 1426

Total Unique Records: 899 812 742 741

The database file, WebCacheV01.dat, is populated with In-

Private browsing records during the browsing process; these are

securely deleted (overwritten) when the browser is closed. No

records remained in this file after the browsing session.

Records do remain in the log files after the InPrivate ses-

sion. In general (see V010000E.log, V01.log/V010000F.log,

V01.log/V0100010.log) logs are removed when Internet Ex-

plorer is opened, not when it is closed. This is consistent with

the behavior that would be predicted for this database (see sec-

tion 2.1): while it is operation in-memory records and logs are

updated and the database file is marked as ’dirty’; before the

database can be re-opened for use it is updated from the logs

and logs that are no longer needed are deleted. In control ex-

periments in which the test machine was used but the browser

not opened the logs were not modified.

The evidence for how these logs are eventually deleted is

mixed, but it is clear that no InPrivate browsing records remain.

The common behavior observed for several files is for individ-

ual records to be overwritten by 0x4F, this is consistent with the

treatment of InPrivate records in the database file.

There is one anomaly in these results which is the treatment

of V010000D.log. This log file was deleted while the InPrivate

session was active, and it is eventually returned to unallocated

space and completely overwritten by 0xFF. The anomaly is that

it is released to unallocated space in column 2 (at the first shut-

down) but not overwritten until the system is next used. Re-

moving file allocation then subsequently overwriting it in free

space is a curious system behaviour, it was checked using a dif-

ferent forensic tool with the same result, to ensure that it was

not a feature of the mapping in XWays Forensics.

5.2.2. Other Disk Artifacts

InPrivate browsing records were found in large quantities in

two areas of disk unrelated to the database files. The first is

pagefile, which was expected given the process environment in

which the browsing was carried out.

The second area was within a large file in the System Vol-

ume Information directory. Comparison of the records found

in this directory with the database files captured in previous ex-

perimental steps suggest that this content originated from the

V010000D.log file.

5.2.3. Recovery Success

Because the same record may be found in several places there

will inevitably be duplicates. The total of unique records shown

in table 3 is the number of unique combinations of database

ID and URL recovered from all sources; this measure will not

count revisited URLs, however revisits were not a major fea-

ture of this experiment. Because of the comprehensive method

of capture, the 899 records captured when the machine was

stopped after browsing is likely to be a high proportion of the

total records generated while browsing.

There are three distinct sources of browsing records: the

database file, log files, and other areas on disk. In this experi-

ment most of the unique results could have been obtained from

any of the three sources; at the end of the experiment when no

records were available from database files 82% of the available

records were still recoverable. The disk map also provides a

clear indication of when various InPrivate browsing records are

available:

• From the database file: during browsing, or if the machine

has been powered off during browsing.

• From database log files: after the browsing session, and

before the browser is next opened.

• From other areas on disk: may persist for some time, de-

pending on system activity.

6. Discussion

The primary objectives of this research were to clarify under

what circumstances, and to what extent, it is possible to recover

InPrivate browsing records from Internet Explorer 10, and to

identify a marker that provides evidence that a recovered record

originated from InPrivate browsing.

Experimental results confirmed by Windows header files pro-

vide a clear marker for InPrivate browsing records: a Type field

8

with bit 0x20000 set. This result is confirmed experimentally

for Content records, i.e. those that index the cache. PrivacIE

records, which are not necessarily related to InPrivate brows-

ing also set this bit. Usually confirmation of the data held in a

record requires the ContainerId to be checked in the Contain-

ers table; however this may not be possible if that table is not

recovered. There is also the usual problem of foreign key ref-

erences; using a key (i.e. ContainerId) to look up a value in

a second table requires evidence that they existed at the same

time, similar to the problem of determining what web content

a user actually viewed from an old URL. In this case, however,

evidence within a record will identify it as PrivacIE data: this

name is present in the URL field, and the Type is likely to have

the sticky cache bit set (0x4). There should therefore be no

possibility of confusing PrivacIE records with Content records

resulting from InPrivate browsing.

InPrivate browsing records were found in the database file,

WebCacheV01.dat, in related log files, and in other areas on the

disk:

WebCacheV01.dat held recoverable InPrivate records while

the browsing session was in force, or if the machine was de-

powered while the browsing session was still open; when the

browsing session closed these records were securely deleted.

Log files provided recoverable records between the closure

of the InPrivate browsing session and the next time that Internet

Explorer was opened. This was observed in all experiments,

and is consistent with the expected database behaviour: while

the database is in use in-memory records and logs are updated

and the database file is marked as ’dirty’; before the database

can be re-opened it is updated from the logs and logs that are

no longer needed are deleted. The fate of records that were

in deleted logs is not fully resolved; the disk mapping process

did not identify a single record remaining after log files were

deleted, which suggests secure deletion.

Other disk areas provided recoverable records; the experi-

ment reported above found records in the pagefile and in System

Volume Information. As would be expected, it proved possible

to influence the extent that records were saved to pagefile by

varying the amount of physical memory and the background

workload of the machine. These factors can be expected to

influence the recovery of records from this area, and also the

length of time that they remain in the pagefile before being

overwritten. The records found in System Volume Information

derive from a logfile which was deleted while the InPrivate ses-

sion was active; it has not proved possible to recover this file

information using the VSS service (i.e. as a shadow copy), so

the function of these records is unknown.

7. Conclusion

This paper reports research into the extent that a user’s InPri-

vate browsing history in Internet Explorer 10 can be recovered,

and if such records can be reliably identified as resulting from

InPrivate browsing.

None of the records recovered during these experiments could

be read using the standard database application interface, the

experimental work relied on a carving tool (ESECarve) to find

records within a disk image, after which they were manually

mapped to the file system presented by a standard forensic tool.

In about 40% of the experiments depowering the computer dur-

ing the browsing session resulted in an unrecoverable database,

due to missing log files.

The results indicate that InPrivate browsing records can be

reliably identified. Browsing records may be recovered in large

quantities depending on seizure timing: if the machine is de-

powered during an InPrivate browsing sessions records may re-

main in the database file (WebCacheV01.dat) if Internet Ex-

plorer has not been used since such a session then there are

likely to be records in database log files, otherwise it is neces-

sary to carve records from the disk. Experimentally, all three

areas held a high proportion of the user’s browsing session, and

even after log file records became inaccessible over 80% of the

browsing record remained in other disk areas.

This work has extended and clarified informal results of other

researchers, some of whom found considerable historical records

and some of whom found little. It demonstrates that longitudi-

nal studies over a series of machine and application cycles pro-

vide more information about the remanence of forensic artifacts

than one-off usage experiments, as does the explicit considera-

tion of background machine load during forensic experiments.

References

Aggarwal, G., Bursztein, E., Jackson, C., Boneh, D., 2010. An analysis of pri-

vate browsing modes in modern browsers. In: USENIX Security Sympo-

sium. pp. 79–94.

Barth, A., 2011. Rfc 6265: Http state management mechanism.

http://tools.ietf.org/html/rfc6265 (accessed October 2013).

Chivers, H., Hargreaves, C., 2011. Forensic data recovery from the windows

search database. digital investigation 7 (3), 114–126.

Jones, K. J., 2003. Forensic analysis of internet explorer activity files.

Mahendrakar, A., Irving, J., Patel, S., 2010. Forensic analysis of private brows-

ing mode in popular browsers.

Malmström, B., Teveldal, P., 2013. Forensic analysis of the ese database in

internet explorer 10.

Metz, J., 2010. Extensible storage engine (ese) database file (edb) format speci-

fication. http://forensic-proof.com/wp-content/uploads/2011/07/Extensible-

Storage-Engine-ESE-Database-File-EDB-format.pdf (accessed October

2013).

Microsoft, 2012. Internet explorer 10 privacy statement.

http://windows.microsoft.com/en-gb/internet-explorer/ie10-win8-privacy-

statement (accessed October 2013).

Microsoft, 2013. Extensible storage engine. http://msdn.microsoft.com/en-

us/library/5c485eff-4329-4dc1-aa45-fb66e6554792.aspx (accessed October

2013).

Ohana, D. J., Shashidhar, N., 2013. Do private and portable web browsers leave

incriminating evidence? a forensic analysis of residual artifacts from private

and portable web browsing sessions. 2012 IEEE Symposium on Security

and Privacy Workshops 0, 135–142.

Said, H., Al Mutawa, N., Al Awadhi, I., Guimaraes, M., 2011. Forensic analy-

sis of private browsing artifacts. In: Innovations in Information Technology

(IIT), 2011 International Conference on. pp. 197–202.

Satvat, K., Forshaw, M., Hao, F., Toreini, E., 2013. On the privacy of private

browsing–a forensic approach.

W3C, 2013a. Indexed database api. http://www.w3.org/TR/IndexedDB/ (ac-

cessed October 2013).

W3C, 2013b. Web storage. http://www.w3.org/TR/webstorage/ (accessed Oc-

tober 2013).

Wilson, C., 2012. Privacie entries. http://kb.digital-

detective.co.uk/display/NetAnalysis1/PrivacIE+Entries (accessed October

2013).

9

Appendix A. Database File Recovery using esentutl

This section describes database recovery via the esentutl util-

ity. Although no InPrivate browsing records could be recovered

via the database application interface the process of database

recovery may be needed for some forensic tools, and the knowl-

edge of how to use esentutl allows the investigation of new

types of ESE database.

In most practical cases the database file (WebCacheV01.dat)

will be in a ‘dirty shutdown’ state; in other words not all the

current pages from memory will have been flushed to disk, and

it will first need to be brought to a consistent state if it is to be

interrogated via the database API.

Appendix A.1. Required files

The Internet Explorer 10 database is normally located at:

\Users\%USERPROFILE%\AppData\Local\Microsoft

\Windows\WebCache

The files that must be retrieved from the image are:

• The database file (WebCacheV01.dat).

• Any log files (V01.log and V01nnnnn.log - where nnnnn is

a hexadecimal sequence number).

• The checkpoint file (V01.chk).

V01.log is the file that is currently being written with log

records. The esentutl utility (see below) may reference this file

by the next number in the ascending series of hexadecimal log

numbers. This is the number it will be assigned when full, at

which time a new V01.log will be started.

Appendix A.2. Recovering the database file

This requires the Microsoft esentutl utility, which is a stan-

dard component of Windows, and is run from the command

line. The correct version of esentutl must be used; in other

words the recovery is best carried out using the version of Win-

dows from which the database was obtained. The first stage is

to check if the database file needs to be updated, and if so that

the required log files are present:

esentutl -mh <path to database file>

This provides a metadata dump from the database, of which

two lines are of particular significance:

State: Dirty Shutdown

Log Required: 192-195 (0xc1-0xc3)

If the state is given as ‘Clean Shutdown’ no pre-processing is

required; usually it is ‘Dirty Shutdown’, meaning that the Web-

CacheV01.dat file must be brought to a consistent state before

it can be read via an API.

The hexadecimal numbers of the required logs specify the

names of the required log files: V01000C1.log, V01000C2.log,

together with V01.log in this example. (Note the com-

ment above: V01.log is the most recent log, in this case

V01000C3.log.)

The esentutl recovery process is then used to bring the database

to a consistent state. Assuming that esentutl is run from a direc-

tory containing WebCacheV01.dat, the necessary log files, and

the checksum, then the command line is:

esentutl -r V01 -d

Assuming that esentutl reports success, the WebCacheV01.dat

file may now be accessed via the database API. If the database

is unknown it is often useful to begin by obtaining a list of table

names, using:

esentutl -mm <path to database file>

Appendix B. Record Carving using ESECarve

ESECarve is a recovery tool which is capable of reading

clean databases via their application interface, or reliably carv-

ing database records. A description of the carving process and

its reliability is given in (Chivers and Hargreaves, 2011); the

tool is available from the author for forensic investigation, edu-

cation or research.

In order to run the carving tool it is necessary to provide a tar-

get schema; this is built by the tool automatically from a sam-

ple clean database: a file named Reference.edb is placed in the

working directory. This file should be from the same version of

windows as the investigation target.

The tool is invoked on the command line with:

ESECarve –IE10 -r <working-directory> <target-file>

The result is a file CarvedData.csv which can be opened in a

spreadsheet. The program also places a log file ESECarveLog.txt

which records the processing together with MD5 hashes for in-

put and output files. The fields in the output file are identical

to those that would be recovered via the database application

interface, with the addition of an offset field which records the

address from which the record was carved

10

