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Abstract

We propose a method for examining and measuring the complexity of animal social networks that are characterized using

association indices. The method focusses on the diversity of types of dyadic relationship within the social network. Binomial

mixture models cluster dyadic relationships into relationship types, and variation in the preponderance and strength of these

relationship types can be used to estimate association complexity using Shannon’s information index. We use simulated data to

test the method and find that models chosen using integrated complete likelihood give estimates of complexity that closely reflect

the true complexity of social systems, but these estimates can be downwardly biased by low-intensity sampling and upwardly

biased by extreme overdispersion within components. We also illustrate the use of the method on two real datasets. The method

could be extended for use on interaction rate data using Poisson mixture models or on multidimensional relationship data using

multivariate mixture models.

Significance statement

Animals from many species interact socially with multiple individuals, and these interactions form a social network. Pairs of

individuals have social relationships that differ in their strength and type. This social complexity has long interested behavioural

biologists, particularly in the context of social cognition.Measuring social complexity, however, presents challenges.We propose

a new method for measuring the complexity of animal social networks. Our approach is based on quantifying variation in the

strengths of social connections (measured using association indices) which we use to classify different types of pairwise

relationships. We, then, use the number, strength and prevalence of these different types of relationships to measure association

complexity. Our approach can be used to compare association complexity between populations and/or species. We provide code

that researchers can use with their own datasets.

Keywords Social complexity . Association index . Entropy .Mixture models . Animal social networks . Group living

Introduction

Social complexity is a much used concept in behavioural ecol-

ogy (Kappeler 2019, Topical collection on Social complexity).

However, definitions vary widely and, often, are not opera-

tionalized. Measures of social complexity have been sought

and used for a variety of reasons, perhaps most notably to test

the social intelligence hypothesis for the evolution of cogni-

tion (Kwak et al. 2018; Kappeler 2019, Topical collection on

Social complexity) and the social complexity hypothesis for

the evolution of communication (Freeberg et al. 2012).

In studies of non-human societies, the term social complex-

ity has primarily been used in two broad ways. First, social

complexity is used to describe the number of different types

(roles) of individuals that make up a social group (e.g.,

Blumenstein and Armitage 1998; Groenewoud et al. 2016).

Second, social complexity is used to describe the complexity
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of social relationships among individuals within a social

group or population (e.g., Fischer et al. 2017). Recent work

has highlighted the importance of considering these two as-

pects of social complexity separately. These two types of com-

plexity appear to evolve under different patterns of local relat-

edness (Lukas and Clutton-Brock 2018). In social mammals,

complex social relationships are associated with groups that

have low relatedness, while members of groups composed of

close relatives are more likely to show a diversity of roles

(Lukas and Clutton-Brock 2018). While both aspects of social

complexity have important implications, it is the measurement

of the complexity of social relationships that we attempt to

address here.

To have utility, measures of social complexity should be

comparable across populations within species, as well as

across species, perhaps within some higher taxon. This is

challenging. Populations are typically of different sizes, de-

mographics and may use space and interact socially in differ-

ent ways. Furthermore, they are studied with different proto-

cols and with differing intensities. Ideally, we seek a measure

that is as follows: (a) unaffected by network size, so the social

complexity calculated from a full social network is similar to

that calculated from any substantial random portion of it; (b)

little influenced by the addition of distantly connected indi-

viduals into the study network; (c) not biased high (suggesting

false complexity) by sampling issues; and (d) not biased low

(obscuring complexity) by low-intensity sampling. Measures

of social complexity can potentially bemultidimensional, with

different dimensions capturing elements of the concept (e.g.,

Whitehead 2008; Fischer et al. 2017).

There have been two general perspectives to measuring

social complexity using network data. The top-down ap-

proach looks at complexity as a network property, using mea-

sures such as size, diameter, modularity, dimensional cou-

pling, disparity and computational complexity (Butts 2001;

Whitehead 2008). These measures tend to be affected by net-

work delineation, thus causing problems with issues (a) and

(b) outlined previously. Indeed, these problems are common

to many attempts to develop measures to compare the struc-

ture of social networks (Faust 2006).

An alternative, bottom-up, perspective, is to consider social

complexity from the perspective of the members of a social

network. Hinde (1976) defined social structure as the Bnature,

quality, and patterning of relationships^. Then, social com-

plexity can be thought of as the complexity of dyadic relation-

ships. If we operationalize relationships using Brelationship

measures^, such as interaction rates and association indices

(Whitehead 2008), these can be used to estimate social com-

plexity. Bergman and Beehner (2015) suggest a simple defi-

nition of social complexity as Bthe number of differentiated

relationships that individuals have^. A good example of this

relationship-based approach to social complexity, which

builds on Bergman and Beehner’s (2015) ideas, is Fischer

et al.’s (2017) method. Using detailed observations of

affiliative and agonistic interactions, each dyadic relationship

is quantified, and, then, these are clustered into one of four

relationship classes. Social complexity is quantified using the

diversity of relationships experienced by an individual, and

individual-level complexities are aggregated into measures

of group complexity. While Fischer et al.’s (2017) method is

an appealing and rich approach, it depends on the availability

of detailed data on direct social interactions (e.g., grooming

and aggression), which are often difficult to observe in studies

of the social structure of wild animals.

Many studies of social structure employ association indi-

ces, estimates of the proportion of time that a dyad is associ-

ated (Cairns and Schwager 1987). These association indices

are used to infer the structure of social relationships within the

population. Association indices (the Bsimple ratio index^, the

Bhalf-weight index^, etc.) are typically calculated as ratios: the

number of times that the dyad was observed associating di-

vided by the number of times that they could have been ob-

served associating—a binomial process. Using this attribute of

association indices, we introduce a method, which in some

respects, parallels that of Fischer et al. (2017), for deriving a

measure of social complexity, which we call association com-

plexity, from association indices. We use binomial mixture

models on association data to model the distribution of rela-

tionships within a population (see Fig. 1). The mixture models

represent the associations as belonging to several classes, each

with a mean strength of association and rate of occurrence

within the population (McNicholas 2016). The mixture

modelling finds how many classes are best supported by the

data and, then, estimates these parameters. These are then

input to a Shannon index of entropy (Shannon and Weaver

1949) to give a measure of diversity among the associations

experienced by individuals, which we use to measure

complexity.

Here, we first explain the method and, then, test it against

simulated data. We explore the effects of sampling rate as well

as within-class variability on our estimates of association com-

plexity. Finally, we illustrate the process with real data and

discuss potential extensions.

Methods

Binomial mixture models

We assume that each dyad, ij, has a real association index, Rij,

that is the actual proportion of time that they are in association

and that each Rij belongs to one of K relationship classes,

though which class is unknown. So, for instance, there might

be some tight Bbonded^ relationships with Rij = μ1 = 0.75,

some pairs of Bfriends^ with Rij = μ2 = 0.20 and some Bcasual

acquaintances^ with Rij = μ3 = 0.03.
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Then, if the relationship between individual i and individ-

ual j is of class k (ij) (the classes, the ks, are labelled 1, 2, 3,…,

K; each class with a real association index μk) and there are dij
observation occasions, the number of observed associations,

xij, is binomially distributed with sample size dij and probabil-

ity μk(ij). Thus:

xij∼binomial dij;μk ijð Þ

� �

ð1Þ

We do not know K, the number of classes of relationship,

the means for each class, {μk}, or the proportion of relation-

ships in each class, {αk} [Σαk = 1]. However, mixture models

allow us to estimate these parameters. Mixture models assume

that an observed distribution is a mixture of several unknown

distributions and estimate the nature and importance of these

different components (McNicholas 2016). In our case, we are

trying to dissect a distribution of relationship measures into its

components, with each of the components representing a dif-

ferent class of relationship. The parameters [{μk}, {αk}] of the

binomial mixture model are estimated using maximum likeli-

hood via an expectation-maximization (EM) algorithm (see

the Supplementary material for algorithm details). The num-

ber of classes, K, is estimated by fitting a set of candidate

models with different values of K and choosing the best one

based on criteria, such as the Bayesian Information Criteria

(BIC), Akaike Information Criterion (AIC), or the Integrated

Completed Likelihood (ICL) (McNicholas 2016). We calcu-

late ICL as BIC + 2E, where E is the entropy of the classifica-

tion matrix. Thus, ICL penalizes models in which the relation-

ship class of dyads is uncertain.

Quantifying complexity

The mixture models suggest that relationships of class k occur

with frequencyαk and these dyads associate at a rate of μk (the

strength of the association index). Thus, the frequency of as-

sociations in the population between two individuals with re-

lationship class k is:

qk ¼ μk :αk=∑μk :αk ð2Þ

Then, the diversity in association can be expressed by

Shannon and Weaver’s (1949) entropy index:

S ¼ −∑qk :In qkð Þ ð3Þ

And, this is our proposed measure of association

complexity.

Fig. 1 Illustration of our dyadic

concept of association

complexity, illustrated for

societies of low (a), medium (b)

and high (c) complexities. Social

networks (left) contain different

numbers of relationship types

(represented by edge colors), each

with a unique distribution of true

association indices (centre). We

measure complexity as the

uncertainty that an association is

of a particular relationship type,

visualised here as the sum of

association indices of each type

(right). A more even distribution

of sums across more classes of

association leads to greater un-

certainty, resulting in higher

values of S
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This measure has the desirable quality that, in general, so-

cial structures with more relationship classes will have a

higher value of S. In addition, this measure also quantifies

differences in the diversity of associations between social

structures with the same number of relationship classes. A

society will have higher complexity when the frequency with

which classes occur decreases as the strength of association

increases. Maximal complexity for a given number of classes

is achieved when

αk ¼
μ
−1
k

.

∑μ−1
k

ð4Þ

As under these conditions, associations of all classes are

equally frequent. Deviations from Eq. (4) lead to differences

in the frequency of associations of each class, which results in

less diversity in association types. Societies with the same

value of K can have very different values of S, and difference

in values of K will not always reflect differences in S. Stated

another way, S indicates the degree of uncertainty in the rela-

tionship class of a given association. As an example, consider

three hypothetical societies, one with K = 5 and q = {0.2, 0.2,

0.2, 0.2, 0.2}, another with K = 5 and q = {0.9, 0.025, 0.025,

0.025, 0.025}, and a third with K = 2 and q = {0.5, 0.5}. The

first two societies have the same number of relationship clas-

ses, but in the first, the frequency of associations of each class

is the same, and thus, the diversity of associations is extremely

high (S = 1.61), while in the second, one class dominates,

reducing the association complexity (S = 0.47). Furthermore,

while the third society has only two relationship classes, as-

sociations of both class are equally likely, leading to an esti-

mate of complexity higher than the second society (S = 0.69).

We illustrate the variation in Swithin and between values ofK

in our simulations (see subsequent texts).

Testing the method

We used simulated data to test our proposed method. We were

particularly interested in which criterion to use for selecting

the number of components (AIC, BIC, ICL), as well as how

the sampling effort, indicated by the denominator of the asso-

ciation index (dij) might affect estimates of the number of

classes of social relationship (K) and association complexity

(S). In addition, we sought to more closely simulate real world

data by including overdispersion within relationship classes.

Overdispersion represents how much more variable observa-

tions are than a particular model assumes. In practice,

overdispersion from a theoretical distribution could be caused

by a variety of behavioural, psychological, environmental or

measurement issues. Overdispersion in binomial data is often

modelled via beta-binomial distributions. The beta-binomial

distribution results from binomial trials in which the

probability of success is not constant but follows a beta distri-

bution with shape parameters β1 and β2. In this context, we

have found it more useful to consider an alternate parameter-

ization based on the mean, μ = β1/(β1 + β2), and the

overdispersion parameter ρ = 1/(β1 +β2 + 1).

The simulations used Poisson and beta-binomial distribu-

tions to produce sets of dij and xij, respectively. These simula-

tions were parameterized to reflect the characteristics of real

world datasets. We examined six real association datasets (two

of which are used as examples, in the subsequent texts) from

individually identified wild cetaceans, calculating mean(dij)

and estimating overdispersion, ρ, for each. Overdispersion,

ρ, was estimated using maximum likelihood assuming the

number of components (K), as well as values of {μk} and

{αk} are as estimated by the binomial mixture models (using

ICL; see subsequent texts). These suggested reasonable

ranges of mean(dij) from 15 to 100 and ρ from 0 to 0.01.

We simulated a population of N associating individuals

(Ndyad = (N(N − 1)) / 2). We simulated social structure by set-

ting the number of relationship classes, choosing frequencies

and distributions of association probabilities for each type,

assigning dyads to types and then generating true dyadic as-

sociation probabilities. We then simulated observational sam-

pling of associations from this social structure. More specifi-

cally, in a given simulation run withK relationship classes, we

1. Drew relative αk from a uniform distribution on [0, 1],

with the constraint that min (αk) > 0.1/K

2. Drew μk from a uniform distribution on [0, 1], with the

constraint that they were at least 0.1 apart

3. Drew ρk from a uniform distribution on [0, 0.015]

4. Assigned k (ij) to dyads with probability αk

5. Generated Rij for each dyad from a beta distribution with

mean μk(ij) and overdispersion parameter ρk(ij)
6. Generated dij from a Poisson distribution with mean D

7. Generated xij from a binomial distribution with probabil-

ity Rij and dij trials

From these simulated social structures, we measured real-

ized association complexity from the k (ij) and Rij and then fit

a series of binomial mixture models withK= 1, 2, 3, 4, 5, 6, 7,

8, and 9 to the xij and dij. We chose a best value of K based on

BIC, ICL, and AIC and recorded estimates of S based on the

models chosen by each of these criteria.

We systematically varied the values of N, K, and D across

simulations to test the method under different population

sizes, social structures, and sampling effort. We ran 20 simu-

lation runs for every combination of the following parameters:

N = 20, 50; K = 1, 2, 3, 4, 5; D = 20, 40, 60, 80, 100.

To examine model performance at estimating S and K, we

analysed the mean error in model estimates under different

conditions. This gave us a measure of the degree to which

our model accurately reflects actual complexity under
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different conditions, as well as allowing us to examine the

model output for bias. We also estimated the correlation be-

tween true and estimated values of S for each criterion and

under different conditions, to determine the degree to which

we can expect the output of the model to reflect differences in

complexity between societies.

We also tested our model for sensitivity to systematic in-

creases in overdispersion. Using N = 20, K = 1, 2, 3, 4, 5 and

D = 20, 40, 60, 80, 100, we ran simulations in which we

defined a common overdispersion parameter ρ for all compo-

nents. We used ρ = 0.005, 0.01, 0.015, 0.02, running 20 sim-

ulations for each combination of parameters. We examined

our model for biases introduced by increased overdispersion

by analysing the mean error in estimates of S and K in rela-

tionship to overdispersion, social structure and sampling.

Illustration using real data

We used two real datasets to illustrate the method. These anal-

yses are illustrative only and are not necessarily optimal anal-

yses of these data. Photoidentification data on 30 northern

bottlenose whales (Hyperoodon ampullatus) were collected

off Nova Scotia, Canada, between 1988 and 2003, as in

Gowans et al. (2001) with some extra data from later years.

Photoidentification data on 77 female sperm whales (Physeter

macrocephalus) were collected off Dominica, West Indies,

between 1984 and 2015, as in Gero et al. (2013a), again, with

some extra data. In both studies, sampling periods were days,

only individuals identified on more than 10 days were includ-

ed, association of a dyad was defined as identified within

10 min on the same day, and association indices were calcu-

lated using the simple ratio index. For each dataset, we used

the binomial mixture model together with the ICL criterion to

estimate the number of relationship classes and the character-

istics of each, as well as an estimate of association complexity

(from Eq. (3)).

Computer code

This work was carried out in parallel and largely independent-

ly using the packages R (by MW) and MATLAB (by HW).

Functions for using binomial mixture models on association

data in both languages are given in the Supplemental material.

Results

Testing the method

As expected, most variation in S in our simulations was driven

by differences in the number of relationship classes, as dem-

onstrated by a high correlation between true values of S and K

(r = 0.93, Fig. 2). However, when only considering cases in

whichK > 1 (as whenK = 1, S is always 0), the correlation was

much lower (r = 0.67), and a significant degree of overlap in

values of S between different values of K was apparent (Fig.

2). While the number of relationship classes greatly affects the

complexity of associations, the frequency and strength of re-

lationship classes are also an important factor.

The results of our simulation study largely suggest that ICL

is the best criterion to use for these models. The correlation

between the estimates of S via ICL and true complexities across

all parameters was 0.9, while AIC and BIC had overall corre-

lations of 0.79 and 0.78, respectively. This high correlation for

ICL across sampling efforts, network sizes, and social struc-

tures indicates that estimates of S based on models chosen via

ICL are highly comparable between networks. At low sampling

efforts (D < 40), ICL does give estimates of S less correlated

with true complexities than AIC or BIC, but it rapidly tends

towards a perfect correlation with increased sampling effort. In

contrast, the correlations between true and estimated complex-

ities obtained by AIC and BIC do not increase with sampling

effort and are consistently below 0.9 (Fig. 3, left).

AIC and BIC were both likely to overestimate the com-

plexity of a social structure, and this overestimation was ex-

acerbated by increased sampling effort. In contrast, the esti-

mates obtained by ICL are downward biased at low sampling

rates, but the bias decreases as sampling effort increases. This

indicates that ICL estimates are unlikely to be overestimates of

true complexity, but large amounts of data (D > 80) are likely

needed to ensure accurate estimates. However, even at low

sampling rates, the bias is less than 0.5 (Fig. 3, right).

In addition, both AIC and BIC provide estimates that are

sensitive to network size in our simulations, with larger networks

having added positive bias. In contrast, ICL did not give esti-

mates biased by network size (Fig. 3) and, thus, provide an

estimate of complexity that is comparable between social net-

works of different sizes and levels of completeness (a reasonable,

roughly random subset of a larger network should provide a

similar estimate as the full network).

Fig. 2 Distributions of realized complexity values (S) between societies

with different numbers of relationship classes (K). Violin plots represent

density estimates and quartiles of true S values for each value of K used.

Simulation runs forK = 1 are not plotted as these runs, by definition, have

S = 0. Blue points represent the maximum possible entropy for each value

of K. Each distribution represents the results of 500 simulation runs

Behav Ecol Sociobiol            (2019) 73:8 Page 5 of 10     8 



ICL was prone to underestimating both S and K at low

sampling rates. This tendency was exacerbated by social

structures with more relationship classes. This bias was re-

lieved with increased sampling effort. In addition, ICL rarely

found multiple relationship classes in social structures in

which there was only one class of dyad (Fig. 4). Therefore,

while we suggest the use of ICL to choose the number of

components in these models, as it gives good estimates that

are comparable between networks, we caution that these esti-

mates will likely be underestimated with low sampling inten-

sity, particularly for complex social structures.

All criteria were somewhat sensitive to systematic in-

creases in overdispersion. High levels of overdispersion led

to overestimates of complexity, particularly under high sam-

pling intensity. However, ICL was far less sensitive to

overdispersion than AIC or BIC. At values of ρ < 0.015, ICL

converged towards zero bias as sampling effort increased to-

wards D = 100, and even at ρ = 0.015, upward bias at high

sampling intensity was small. At ρ = 0.02, upward bias at high

sampling intensities became more pronounced (Fig. 5).

Illustration using real data

The distributions of simple ratio association indices for the

northern bottlenose whale and sperm whale datasets are

shown in Fig. 5. Mixture models suggested 2 relationship

Fig. 4 Relationship between

input value of K and error in

estimates of S and K obtained

from models chosen via ICL.

Colors indicate simulated

sampling effort (as expressed by

mean denominator of association

indices, D). Results are presented

based on runs with N = 20, and

each data point represents the

mean of 50 simulation runs.

Dotted black line indicates a mean

error of 0

Fig. 3 Correlation between real

and estimated S (left) and mean

error in estimates of S (right) for

each criterion under different

levels of sampling effort

(expressed as mean denominator,

D) and network sizes (in number

of individuals,N). Each data point

is based on 250 simulation runs

(50 runs for each value of K).

Dotted black line indicates a mean

error of 0
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classes for the northern bottlenose whales with an association

complexity of S = 0.69 and 3 relationship classes for the sperm

whales with an association complexity of S = 0.91. The mean

denominators of the association indices and estimates of

overdispersion were D = 34.6 and ρ = 0.010 for the northern

bottlenose whales and D = 59.9 and ρ = 0.007 for the sperm

whales. Using the simulation data in Fig. 4, these suggest that

our model estimates may have small (< 0.2) downward biases.

Figure 6 shows the estimated distribution of real associa-

tion indices from the binomial mixture models and estimates

of overdispersion. While they roughly match the distribution

of measured association indices, the matching is not too good,

but it is must be remembered that the measured association

indices include sampling error while the estimated real asso-

ciation indices do not.

Both species have a preponderance of extremely low associ-

ation relationships (μ1 = 0.017 and α1 = 0.88 for the northern

bottlenose whales; μ1 = 0.002 and α1 = 0.90 for the sperm

whales), as well as some low association relationships (μ2 =

0.125 and α2 = 0.12 for the northern bottlenose whales; μ2 =

0.072 and α2 = 0.07 for the sperm whales). The sperm whales

additionally have amuch smaller class of fairly strong association

relationships (μ3= 0.252 andα3 = 0.03). The latter correspond to

relationships within social units (Gero et al. 2013a).

Discussion

We have presented a method for quantifying the complexity of

association networks based on dyadic sighting histories. We

use binomial mixture models to estimate the number of differ-

ent classes of relationship and the association frequencies of

each class and take the diversity of these frequencies as our

measure of association complexity. Our results show that this

approach can generally be used to effectively model the dy-

adic associations and measure network complexity and is

comparable between networks.

Hinde (1976) defined social structure as the Bnature, qual-

ity, and patterning of relationships^. Ideally, we would mea-

sure complexity from all three of these elements. However, it

is well-known that measures of the global patterning of

relationships—such as metrics from network analysis—are

not comparable between networks, due to the dependency of

these measures on network size and density (Faust 2006; Rito

et al. 2010; vanWijk et al. 2010). This is a significant problem

for the field of animal social networks because it makes the

comparative approach difficult. Our method instead examines

social complexity through the nature and quality of dyadic

relationships—providing a bottom-up measure of complexity

that can be fairly compared between association networks.

Fig. 5 Results of overdispersion

simulation. Values shown are

mean error in estimates of S for all

runs with a given overdispersion

parameter. Colors indicate criteria

used to estimate the number of

components. Dotted black line

indicates a mean error of 0
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Our method can therefore be used with a comparative ap-

proach to examine drivers of social complexity across popu-

lations, species and potentially taxa.

A previous approach to measuring dyadic complexity

(Fischer et al. 2017) is a promising way forward for many

systems, but it is not appropriate for association data, because

it requires classes of interaction to be known and pre-defined

in the complexity measure. The researcher needs data more

detailed than just who was with whom (associations) and on

whether an interaction is of the class aggressive or the class

affiliative. Our approach instead seeks to automatically iden-

tify different classes of dyad based on the patterns of associ-

ations. The same limitations that apply to any analysis using

association indices apply to our method. Since all that is being

measured and modelled is the proportion of time individuals

spend together, the nuances of social relationships are perhaps

not captured by these measures. For example, our method

would not be able to distinguish between two relationship

classes that associate with the same probability but interact

in different ways while associated. We suggest that our model

will be a useful comparative tool when the collection of de-

tailed interaction data is impractical, such as in studies of wild

cetaceans.

Our complexity measure is unaffected by network size;

since our measure is based on dyads, the association com-

plexity of a reasonably well-sampled social network will be

similar to that of the full network. Our measure is also fairly

robust to the existence of individuals that are distantly con-

nected to the network and thus observed infrequently.

Although our method rarely estimates a higher level of

complexity than that of the true network, low-intensity

sampling biases it towards artificially low estimates of

complexity. It is a common feature of social network anal-

ysis that low-intensity sampling produces metrics that are

unreliable (Whitehead 2008; Franks et al. 2010; Farine and

Whitehead 2015), and we, therefore, suggest that caution is

taken when interpreting results from this model on sparsely

sampled data.

Fig. 6 Distribution of measured

association indices for northern

bottlenose (above) and sperm

(below) whales together with

estimated relationship classes

from binomial mixture models

with ICL, with intra-class

dispersion estimated using

maximum likelihood
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Because the complexity measure is partly based on uneven-

ness of dyadic weights, we might expect a network sampled

with the gambit of the group to have a higher level of com-

plexity than a network sampled by observing pairwise associ-

ations (e.g., by focal sampling). This is because there will be

more casual acquaintances in the network as an artefact of the

gambit sampling method. For example, both individuals A

and B might only be observed together because they are both

associating with individual C. Thus, when adopting a compar-

ative approach, differences in sampling protocol will need to

be considered.

Finally, the driver of association complexity needs to be

considered for each social system, because complex social

structures can arise through a number of mechanisms.

Complex social structures, such as multilevel societies, can

arise from cognitively demanding behavioural processes, such

as cultural transmission (Cantor et al. 2015). However, com-

plexity can also be driven by simple differences between in-

dividuals in their social behaviours (Firth et al. 2017).

Furthermore, there is increasing recognition of the role that

features of the physical environment play in shaping social

structures (He et al. 2019, Topical collection on Social

complexity). Therefore, it could be that the social decisions

of individuals do not produce a complex network, but instead

social complexity is driven by patterns of space use or the

complexity of the environment (Titcomb et al. 2015; Leu

et al. 2016). Complex patterns of overlapping space use could

lead to higher estimates of social complexity with our method.

It is therefore important that our proposed metric not be

interpreted as a measure of the complexity of individuals’

social decision-making but rather as a feature of the social

structure of the population.

If our measure of association complexity is to be widely

used, it needs some measure of confidence. We suggest the

temporal jackknife, in which different temporal segments of

data are omitted in turn. This method is appropriate with be-

havioural association data when the nonparametric bootstrap

cannot be used (as randomizing identities produces self-

associations) (Whitehead 2008). Additionally, it would be

helpful to give analytic estimates of the bias due to sampling

rates and overdispersion that are indicated by our sensitivity

analyses. There also could be more robust measures of asso-

ciation complexity from mixture model data that perform bet-

ter than the Shannon index, but we have not yet found any.

The method that we have proposed could be varied or

extended in several potentially productive ways. Using the

same dataset, two or more measures of association could be

defined, based on different behavioural states or ways of as-

sociating (e.g., Gero et al. 2005, 2013b). These, then, consti-

tute multivariate relationship measures, which could be clus-

tered using multivariate mixture models (McNicholas 2016).

To obtain our univariate measure of association complexity,

using Eqs. (2) and (3), we need someway of compounding the

now vector-valued centroids of the clusters (μs), perhaps

using principal components analysis. However, we could also

calculate separate measures of complexity for each association

measure, so that, for instance, complexity could be compared

between behavioural states or modes of communication. Our

association complexity measure(s) could also be used in par-

allel with other network or relationship measures, such as

modularity (Newman 2006), to give a more nuanced compar-

ison between social networks.

Many social network data are in the form of interaction

rates (Farine and Whitehead 2015). Poisson mixture models

would be appropriate in these cases, perhaps with offset var-

iables indicating effort. These interaction rate data could be

combined with each other, or with association data, in a mul-

tivariate mixture analysis. Offset variables may be useful more

generally. For instance, generalized affiliation indices are the

residuals from a regression of the measures of association or

interaction on structural predictor variables, such as gregari-

ousness or spatiotemporal overlap (Whitehead and James

2015). Inputting generalized affiliation indices into mixture

models, either directly into Gaussian mixtures or as offsets

in binomial or Poissonmixtures, could control for use of space

and other confounds.

We have attached R and Matlab code for deriving associa-

tion complexity using mixture models, and the method will

also be incorporated in the next release of SOCPROG, a pack-

age for analysing animal social structures using individual

identification data (Whitehead 2009).
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