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Abstract A triple vector bundle is a cube of vector bundle structures which commute
in the (strict) categorical sense. A grid in a triple vector bundle is a collection of
sections of each bundle structure with certain linearity properties. A grid provides
two routes around each face of the triple vector bundle, and six routes from the base
manifold to the total manifold; the warps measure the lack of commutativity of these
routes. In this paper we first prove that the sum of the warps in a triple vector bundle
is zero. The proof we give is intrinsic and, we believe, clearer than the proof using
decompositions given earlier by one of us. We apply this result to the triple tangent
bundle T 3 M of a manifold and deduce (as earlier) the Jacobi identity. We further apply
the result to the triple vector bundle T 2 A for a vector bundle A using a connection in
A to define a grid in T 2 A. In this case the curvature emerges from the warp theorem.
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M. K. Flari, K. Mackenzie

1 Introduction

1.1 Double vector bundles, grids and warps

Double vector bundles arise naturally in Poisson geometry, in the connection theory
of vector bundles, and generally in the study of geometric objects with two com-
patible structures. Double vector bundles have been “floating around” since at least
Dieudonné’s [4] treatment of connection theory, but the first systematic and general
treatment was provided by Pradines [21]. A recent account with references is [16,
Chap. 9]. We briefly recall the necessary facts.

A double vector bundle consists first of all of a square of vector bundles as shown
in the first figure of (1). There are two vector bundle structures on D, with bases A

and B, each of which is itself a vector bundle on base M ; the two structures on D

commute in the categorical sense (see below), and the map D → A ×M B formed by
the two bundle projections is a surjective submersion. We call this the double source

map and denote it by ♮; that ♮ is a surjective submersion was proved by Li-Bland and
Ševera [13].1 We further assume that ♮ has a right-inverse Σ : A ×M B → D that is
linear in both A and B; we call this a sigma-map.

D B

A M,

q D
B

q D
A

qB

qA

T A T M

A M,

T (q)

pA p

q

T ∗ A A∗

A M.

r

cA q∗

q

(1)

The second and third figures in (1) show two standard examples arising from an
arbitrary vector bundle A. If A has a Poisson structure, then it is linear if and only if
the associated map T ∗ A → T A is a morphism of double vector bundles (in an obvious
sense) of the structures above. When this is so, A is the dual of a Lie algebroid [3].
The third structure was introduced in global form in [19]. We give more details on this
double vector bundle in Example 2. Double vector bundles also arise in the Lie theory
of double Lie groupoids [17]; we will not consider this theory here.

Each element d of a double vector bundle D may be represented in outline by the
diagram in (2) which shows the projections of d under the two bundle projections.
Given another element d ′ as shown, the sum over A has the outline shown in the third
figure.

d b

a m,

d ′ b′

a m,

d +
A

d ′ b + b′

a m.

(2)

1 We are grateful to Rajan Mehta for pointing this reference out to us.
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Warps, grids and curvature

The statement that the two vector bundle structures on D ‘commute in the categorical
sense’ implies for the additions that

(d1 +
A

d2)+
B
(d3 +

A
d4) = (d1 +

B
d3)+

A
(d2 +

B
d4), (3)

where (di ; ai , bi ; m), i = 1, . . . , 4, have a1 = a2, a3 = a4, b1 = b3 and b2 = b4.
Equation (3) is the key interchange law for double vector bundles. There are similar
conditions involving the scalar multiplications, see [16, §9.1].

It follows that for elements d which project to zeros under both bundle projections,
the two additions, and the scalar multiplications, coincide. Under these operations the
set of such elements forms a vector bundle over M , called the core of D [21], usually
denoted by C .

The core C is a submanifold of D; every element of C is an element of D. When
working with examples, the core can usually be identified with a familiar vector bun-
dle and it can be important to distinguish between elements of this bundle and the
corresponding element of the double vector bundle. For example, the core of the dou-
ble vector bundle T A, the middle diagram in (1), can be identified with A itself, [16,
9.1.7]. Therefore, an element a of the core A, can be viewed either as an element of A,
or as an element of T A. In the latter case, we denote it by a ∈ T A. For general double
vector bundles and triple vector bundles, this distinction is usually not necessary, so
in Sects. 2, 3, and 4, we will not write bars over core elements. This distinction will
be made clearly in Sect. 5.

Now suppose that (d; a, b; m) and (d ′; a′, b′; m) have a = a′ and b = b′. Then
there is a unique c ∈ C such that

d = d ′ +
A
(c +

B
0̃a) = d ′ +

B
(c +

A
0̃b). (4)

In equations of this type, what is important is that d −d ′, calculated in either vector
bundle structure of the double vector bundle D, results in the same core element c plus
an appropriate zero. In Sect. 2.2, and particularly in Sects. 5 and 6, we will write such
equations succinctly as d − d ′ ⊲ c. Expressions of this form are useful in summarizing
detailed calculations. We find, however, that the ⊲ notation is not practical for detailed
work; we have not attempted to develop a calculus for working with ⊲.

We now describe the original motivating example for the concepts of grid and warp.
In the 1988 edition of their book [1, p. 297], Abraham, Marsden and Raţiu gave the

following formula for the Lie bracket of vector fields X and Y on a manifold M ,

T (Y )(X (m)) − X̃(Y (m)) = ([X, Y ](m))↑(Y (m)), (5)

where X̃ is the complete lift of X to a vector field on T M and the uparrow denotes the
vertical lift to TY (m)T M of the vector [X, Y ](m). The complete lift, or tangent lift, X̃

is J ◦ T (X) where J : T 2 M → T 2 M is the canonical involution which interchanges
the two bundle structures on T 2 M . The double vector bundle T 2 M is a special case
of the middle diagram of (1), where A = T M , and its core vector bundle is yet a third
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copy of T M . The left-hand side of (5) is encapsulated in (6).

T 2 M T M

T M M.

T (p)

T (Y )

pT MX̃ p X

p

Y

(6)

If we look at the elements T (Y )(X (m)) and X̃(Y (m)), we see that they have the same
outlines

T (Y )(X (m)) X (m)

Y (m) m,

X̃(Y (m)) X (m)

Y (m) m.

The two elements determine a unique core element c ∈ T M . Taking d =

T (Y )(X (m)) and d ′ = X̃(Y (m)) in (4), we have

T (Y )(X (m)) − X̃(Y (m)) = c +
T (p)

0̃Y (m),

where the subtraction on the left is the usual subtraction of vectors which are tangent
to T M at Y (m), and the addition on the right is addition in T (p) : T 2 M → T M . That
is, c +

T (p)
0̃Y (m) is the vertical lift of c to Y (m) and so, by (5), c = [X, Y ](m). Briefly,

T (Y )(X (m)) − X̃(Y (m)) ⊲ [X, Y ](m).

A comment on notation: In the case of a general double vector bundle D, the two
additions +

A
and +

B
are distinct. In the case of T 2 M , however, both side bundles are

copies of T M . To distinguish between the two structures, we use the projection maps;

for example, addition in T 2 M
T (p)
−−→ T M will be denoted by +

T (p)
. We adopt this

notation whenever necessary, especially in Sects. 5 and 6.
Note that (5) needs to be proved in local coordinates, or in terms of the action of

vector fields on functions. The use of (6) expresses the result in a compact conceptual
way.

We now express these results in the terms that will be used throughout the paper.
Consider a double vector bundle D as in (1).
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Warps, grids and curvature

Definition 1 A pair of sections X ∈ Γ A and ξ ∈ ΓB D form a linear section of D if
ξ is a morphism of vector bundles over X .

A grid on D is a pair of linear sections (ξ, X) and (η, Y ) as shown in (7).

That nontrivial grids exist on a double vector bundle is ensured by the assumption
that D → A ×M B has a right-inverse that is linear in both A and B; that is, that D

admits sigma-maps.

D B

A M.

ξ

η Y

X

(7)

For each m ∈ M , ξ(Y (m)) and η(X (m)) have the same outline. They therefore deter-
mine an element of the core C and, as m varies, a section of C which we denote
w(ξ, η). Precisely,

ξ(Y (m)) —
A

η(X (m)) = w(ξ, η)(m)+
B

0̃X (m),

ξ(Y (m)) —
B

η(X (m)) = w(ξ, η)(m)+
A

0̃Y (m).
(8)

Definition 2 The warp of the grid (7) consisting of (ξ, X) and (η, Y ) is w(ξ, η) ∈ Γ C .

Note that w(ξ, η) changes sign if ξ and η are interchanged. Our convention gives
the positive sign to the counterclockwise composition ξ ◦ Y .

The question of signs— or orientations —will haunt us throughout the paper. Later
on, we will see that there are various rules that, in many cases, determine which
difference to take as the positive warp. These rules generally follow from established
conventions of differential geometry.

Equation (5) can now be expressed as saying that the warp of (6) is [X, Y ].
Before proceeding, we give two further examples of grids and warps in double

vector bundles.

Example 1 Consider the double vector bundle T A, the middle diagram in (1), where
(A, q, M) is a vector bundle, and let ∇ be a connection in A.

Recall the horizontal lifting of vector fields from M to A induced by ∇. To define a
vector field on A it is sufficient to define its effect on pullback functions f ◦ q for f ∈

C∞(M), and on linear functions ℓϕ for ϕ ∈ Γ A∗, defined by ℓϕ(a) = 〈ϕ(q(a)), a〉.
Given a vector field Z on M , denote by Z H the horizontal lift of Z to A defined by

Z H (ℓϕ) = ℓ∇∗
Z (ϕ), Z H ( f ◦ q) = Z( f ) ◦ q,

where ∇∗ is the connection in A∗ dual to ∇. Since Z H maps linear functions to linear
functions and pullbacks to pullbacks, it is a linear vector field; it clearly projects to Z .
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The word ‘horizontal’ here has its standard meaning in connection theory, and does
not refer to the structures in T A.

It is straightforward to check that (Z1 + Z2)
H = Z H

1 + Z H
2 and that ( f Z)H =

( f ◦ q)Z H .
Now take any μ ∈ Γ A and form the grid shown in (9).

T A T M

A M.

T (q)

T (μ)

pAZ H p Z

q

μ

(9)

We claim that the warp of the grid is ∇Zμ; that is, for m ∈ M ,

T (μ)(Z(m)) − Z H (μ(m)) = ((∇Zμ)(m))↑(μ(m)), (10)

where the right-hand side is the vertical lift of (∇Zμ)(m) ∈ Am to Tμ(m) A.
We give a sketch proof of (10). Again, it is sufficient to verify equality on linear

functions and pullbacks. Applying each side of (10) to a pullback f ◦q, f ∈ C∞(M),
gives zero.

Consider a linear function ℓϕ for ϕ ∈ Γ A∗. We have

T (μ)(Z(m))(ℓϕ) = Z(m)(ℓϕ ◦ μ) = Z(m)(〈ϕ,μ〉)

= 〈∇∗
Z(m)(ϕ), μ(m)〉 + 〈ϕ(m),∇Z(m)(μ)〉,

and Z H (μ(m))(ℓϕ) = 〈∇∗
Z(m)

(ϕ), μ(m)〉.

Lastly, 〈ϕ(m),∇Z(m)(μ)〉 = ((∇Zμ)(m))↑(μ(m))(ℓϕ). For more details see [16,
§3.4].

Suppose given a sigma-map Σ : T M ×M A → T A. For Z ∈ X(M) define
Z H ∈ X(A) by Z H (a) = Σ(Z(m), a) for a ∈ Am . This Z H is a linear vector field
over Z . Thus a sigma-map defines a horizontal lifting process, and thus a connection
in terms of covariant derivatives ∇Z . These processes can be reversed to show that
every connection in terms of covariant derivatives ∇Z defines a sigma-map.

It is thus possible to work with connections in vector bundles by using covariant
derivatives, by horizontal lifting processes, or by using sigma-maps for the double
vector bundle T A. The ∇ formulation is now almost universal. However it does not
relate easily to the notion of connection in a principal bundle. Kobayashi and Nomizu
[11] gave two global definitions of a connection in a principal bundle P(M, G): as a
suitable g-valued 1-form on P and as an invariant horizontal distribution on P . The
latter defines, and is equivalent to, a lifting of vector fields on M to invariant horizontal
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Warps, grids and curvature

vector fields on P , and this formulation resembles the lifting of vector fields in a vector
bundle.

In the 1970s several authors, notably Dieudonné [4] and Besse [2], used the lifting
formulation for connections in vector bundles. Dieudonné [4, XVII.16] used what
we have called a sigma-map T M ×M A → T A, and Besse used the corresponding
left-split map T A → A into the core. Equation (10) may be discerned on page 38 of
[2] and is a special case of (17.17.2.1) in [4].

This example is central to Sect. 5. We will consider curvature in Sect. 5.

Example 2 For the third diagram in (1), first consider the manifold T ∗ A where
(A, q, M) is a vector bundle. There is a canonical diffeomorphism, denoted R, from
T ∗(A∗) to T ∗ A, which reverses the standard symplectic structures; see [19] and ref-
erences given there. We define r : T ∗ A → A∗ to be the composite of R−1 with the
projection T ∗(A∗) → A∗. Similarly, use R−1 to transport the vector bundle structure
of T ∗(A∗) → A∗ to T ∗ A → A∗. Then the third diagram in (1) is a double vector
bundle. The core of T ∗ A can be identified with T ∗M ; given ω ∈ T ∗

m M , its image
ω ∈ T ∗ A is the pullback of ω across q : A → M to 0A

m . The map R−1 carries
ω ∈ T ∗ A to −ω ∈ T ∗(A∗).

Given a section ϕ ∈ Γ A∗, the 1-form dℓϕ : A → T ∗ A is a linear section over ϕ.
Likewise given μ ∈ Γ A, we obtain a 1-form dℓμ on A∗. Composing with the map

R : T ∗(A∗) → T ∗ A, we obtain a linear section of T ∗ A → A∗ over μ.
It was proved in [19] that

R(dℓμ(ϕ(m))) − dℓϕ(μ(m)) = −q∗(d〈ϕ,μ〉)(μ(m)).

(or see [16, 9.5.3]). This shows that the warp of the grid which consists of (R◦(dℓμ), μ)

and (dℓϕ, ϕ) is −d〈ϕ,μ〉.

1.2 Outline of the paper

In a previous paper [18] one of us used a grid in the triple vector bundle T 3 M to express
the Jacobi identity as a statement about the warps of the grids in the constituent double
vector bundles. The proof given in that paper relied on a decomposition of T 3 M into
seven copies of T M , and it was not clear whether the apparatus of grids and warps
had provided a proof of the Jacobi identity or merely a formulation of it. One purpose
of the present paper is to give an intrinsic proof of a general result for triple vector
bundles and to resolve this question.

Section 2 introduces the basic setup and notation for triple vector bundles. In
Sect. 2.2 we formulate the main theorem of the paper on the warps of a grid on a
triple vector bundle.

In a double vector bundle two elements with the same outline determine a core
element (up to sign). In a triple vector bundle there are intermediate levels at which
two elements may have the same outline, and there is more than one notion of core.
Section 3 is concerned with describing the core elements determined by pairs of
elements for which some levels of the outlines are equal. A brief summary is given at
the end of the section.
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Section 4 gives the proof of the warp theorem, Theorem 1. This states, roughly,
that given a grid on a triple vector bundle E , the sum of the ultrawarps is zero. The
ultrawarps are the warps of the grids induced on the core double vector bundles by the
grid on E . The proof is intrinsic and does not rely on a decomposition of E . A brief
summary is given at the end of the section.

In Sect. 5 we consider a vector bundle A and the triple vector bundle T 2 A. A
connection in A induces a grid in T 2 A, and we show that the concept of curvature
arises from the warp theorem; see Theorem 2.

Section 6 presents the example of T 3 M and the deduction of the Jacobi identity for
the Lie bracket of vector fields on M from the warp theorem.

Some concluding remarks are given at the end of the paper.

2 Triple vector bundles and the warp theorem

In this section we do two things. First, we set up everything we need for triple vector
bundles, in order to formulate the warp theorem (Theorem 1). Secondly, we describe
the original formulation [18] of the theorem, and outline the steps which lead to an
intrinsic proof.

2.1 Basics on triple vector bundles

The basic structure of triple vector bundles has been given in [9,15,18].
Consider the following diagram,

E1,2,3 E1,3

E2,3 E3

E1,2 E1

E2 M,

(11)

where each edge is a vector bundle. By an upper face we mean a face which has E1,2,3

as total space. The lower faces are the three faces which have M as base manifold. We
refer to the faces by the names

Back, Front, Left, Right, Up, Down.

The total space of (11) should be denoted, for consistency with the labeling scheme,
by E1,2,3 but we will usually denote it by E .

Definition 3 A cube of vector bundles is a system of vector bundle structures as in
(11), such that each face is a double vector bundle, and such that the vector bundle
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operations in E → E1,2 are morphisms of double vector bundles from the Up face of
E to the Down face of E and similarly for the other vector bundle structures in E .

The terminology ‘cube of vector bundles’ is temporary; in [9,15,18] the definition
of a triple vector bundle included the (sometimes tacit) requirement that what was there
called a decomposition existed, and this can be seen to be equivalent to the existence
of a sigma-map. In order to isolate the condition that ensures the existence of a sigma-
map, we introduce the above terminology for structures without this condition. In the
rest of this subsection we work with such a single cube of vector bundles E .

How do we add elements in E? If e, f ∈ E lie over the same point of E2,3, as
shown in (12), their sum has the outline shown in (13).

e e1,3

e2,3 e3

e1,2 e1

e2 m

+
2,3

f f1,3

e2,3 e3

f1,2 f1

e2 m

(12)

e +
2,3

f e1,3 +
E3

f1,3

e2,3 e3

e1,2 +
E2

f1,2 e1 + f1

e2 m.

(13)

The outlines for scalar multiplication are similar.

Core double vector bundles and the ultracore. Since each face of E is a double vector
bundle, each face has a core vector bundle.

The cores of the lower faces Ei, j are denoted Ei j with the comma removed. The
core of the upper face with base manifold Ek is denoted Ei j,k . (This convention comes
from [8].)

Focus on the core vector bundles of the Up and of the Down faces. The Up face
projects to the Down face via the double vector bundle morphism which consists of
the bundle projections E1,2,3 → E1,2, E2,3 → E2, E1,3 → E1 and E3 → M . The
restriction of E1,2,3 → E1,2 to E12,3 goes into E12 and inherits the vector bundle
structure of E1,2,3 → E1,2. Together with the vector bundle structures on the cores
of the Up face and the Down face, this yields another double vector bundle, with total
space E12,3, which we call the (U-D) core double vector bundle.
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Of course this can also be done for the other two pairs of parallel faces. So there
are three core double vector bundles, shown in (14).

E23,1 E23

E1 M,

E13,2 E13

E2 M,

E12,3 E12

E3 M.

(14)

Elements of the core of E12,3 project to zeros in the Down face. In the Up face they
project to zeros over the zero in E3. It follows that an element of the core of E12,3

projects to zero in every bundle structure. Equally the cores of the (B-F) and (L-R)
double vector bundles consist of the elements of E1,2,3 which project to zeros in every
bundle structure. Thus each double vector bundle in (14) has the same core. This is
denoted E123 (without commas) and called the ultracore of E .

From the interchange laws it follows that the three additions on E , namely +
1,2

, +
1,3

,

and +
2,3

, coincide on the ultracore and give it the structure of a vector bundle over M .

Notation for zero sections. The zero section of E1 is denoted by 0E1 : M → E1,
m → 0E1

m , with similar notations for E2 and E3.
The zero section of E1,2 → E1 is denoted by 0̃1,2 : E1 → E1,2, e1 → 0̃1,2

e1 . The
double zero of E1,2 is denoted by ⊙

1,2
m , with similar notations for the other vector

bundle structures.
The zero section of E → E1,2 is denoted by 0̂ : E1,2 → E , e1,2 → 0̂e1,2 . Note that

the subscripts of the element e1,2 are enough to indicate that this is the zero section of
E over E1,2; there is no need for superscripts on 0̂.

Finally, the triple zero of E is denoted by ⊙3
m . This is the zero of the ultracore

vector bundle.

Notation for projections. The superscripts of the projection maps of a cube of vector
bundles E denote the domain, and the subscripts denote the target, for example, q

1,2
2 :

E1,2 → E2. We omit the corresponding script when the domain is E , for example
q1,2 : E → E1,2, or the target is M , for example q2 : E2 → M .

Instances of the interchange law. As mentioned in the Introduction Eq. (3) is one of the
interchange laws for double vector bundles. In the triple vector bundle setting, since E

has three different vector bundle structures, we have interchange laws relating either
two, or all three vector bundle structures. In this paper we only need the interchange
laws that relate two of the three vector bundle structures.

Without loss of generality, focus on the Left face. This is a double vector bundle.
The interchange law in the Left face for four elements e, f, g, h ∈ E , over the same
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e2 ∈ E2 is the following,

(e +
2,3

f ) +
1,2

(g +
2,3

h) = (e +
1,2

g) +
2,3

( f +
1,2

h),

where the outlines of the four elements in question are:

e e2,3

e1,2 e2,

f e2,3

f1,2 e2,

g g2,3

e1,2 e2,

h g2,3

f1,2 e2.

Recall that the projection map from the Left to the Right face is a double vector
bundle morphism. Consequently, the interchange law in the Right face holds for the
projections of the four elements e, f, g, h ∈ E in E1,3: namely e1,3, f1,3, g1,3, and
h1,3:

(e1,3 +
E3

f1,3) +
E1

(g1,3 +
E3

h1,3) = (e1,3 +
E1

g1,3) +
E3

( f1,3 +
E1

h1,3),

with outlines

e1,3 e3

e1 m,

f1,3 e3

f1 m,

g1,3 g3

e1 m,

h1,3 g3

f1 m.

Result of Li-Bland and Ševera for cubes of vector bundles

In [13] Li-Bland and Ševera proved that the condition in the definition of a double
vector bundle D on page 2, that the double source map ♮ : D → A×M B is a surjective
submersion, actually follows from the other conditions.

We now prove the corresponding result for cubes of vector bundles. We first need
to show that the set that corresponds to A ×M B is a manifold.

Lemma 1 Given a cube of vector bundles E, write W for the set of all (e1,2, e2,3, e1,3)

in E1,2 × E2,3 × E1,3 such that

q
1,2
2 (e1,2) = q

2,3
2 (e2,3), q

2,3
3 (e2,3) = q

1,3
3 (e1,3), q

1,3
1 (e1,3) = q

1,2
1 (e1,2). (15)

Then W is a closed embedded submanifold of E1,2 × E2,3 × E1,3.

Note: This result is valid for three double vector bundles arranged as are the three
lower faces of E . In the terminology of [15], the result holds for cornerings.
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Proof First define F : E1,2 × E2,3 × E1,3 → E2 × E2 × E3 × E3 × E1 × E1 by

F(e1,2, e2,3, e1,3)

= (q
1,2
2 (e1,2), q

2,3
2 (e2,3), q

2,3
3 (e2,3), q

1,3
3 (e1,3), q

1,3
1 (e1,3), q

1,2
1 (e1,2)).

This is (a rearrangement of) the product of three surjective submersions. Define

Δ = {(e2, e2, e3, e3, e1, e1) | e2 ∈ E2, e3 ∈ E3, e1 ∈ E1}.

This Δ is a submanifold of the target of F and F is a surjective submersion, so F−1(Δ)

is a submanifold of E1,2 × E2,3 × E1,3.
We claim that F−1(Δ) = W . Note that if (e1,2, e2,3, e1,3) ∈ F−1(Δ) then all three

elements project to the same element of M . Given (e1,2, e2,3, e1,3) ∈ F−1(Δ), write
e1, e2, e3 as above and write m = q1(e1). Then

q3(e3) = q3(q
1,3
3 (e1,3)) = q1(q

1,3
1 (e1,3)) = q1(e1) = m.

Likewise q2(e2) = m. So (e1,2, e2,3, e1,3) ∈ W . This completes the proof of the
Lemma.

The triple source map of the cube of vector bundles E , denoted ♮̃, is the map
E → W formed from the bundle projections of E ; that is,

♮̃(e) = (q1,2(e), q2,3(e), q1,3(e)). (16)

Now let us denote by

♮B : E → E1,2 ×E1 E1,3, ♮F : E2,3 → E2 ×M E3

the double source maps for the Back face and for the Front face of E , respectively.

Proposition 1 If E is a cube of vector bundles as in (11), then the triple source map

♮̃ : E → W is a surjective submersion.

Proof The key to the proof is the following commutative diagram. Note that ♮B is a
morphism of vector bundles over ♮F; (17) is not a double structure.

E E1,2 ×
E1

E1,3

E2,3 E2 ×
M

E3.

♮B

q2,3
(q

1,2
2 , q

1,3
3 )

♮F

(17)
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Take any e2,3 ∈ E2,3, with ♮F(e2,3) = (e2, e3). Using the notation for the zero section

of E → E2,3 as introduced earlier, write 0̂e2,3 ∈ E

∣∣∣
e2,3

. The decompositions of the

following tangent spaces are a standard result of vector bundle theory:

T0̂e2,3
E = E

∣∣∣
e2,3

⊕ Te2,3(E2,3), (18)

T
(0̃1,2

e2 ,0̃1,3
e3 )

(E1,2 ×
E1

E1,3) = (E1,2 ×
E1

E1,3)

∣∣∣
(e2,e3)

⊕ T(e2,e3)(E2 ×
M

E3). (19)

Take the tangent of the vector bundle morphism (17) at point 0̂e2,3 . This decomposes
into

♮B

∣∣∣
e2,3

⊕ Te2,3(♮
F) : E

∣∣∣
e2,3

⊕ Te2,3(E2,3) → (E1,2 ×
E1

E1,3)

∣∣∣
(e2,e3)

⊕ T(e2,e3)(E2 ×
M

E3).

(20)
To see the first component of this decomposition, note that T0̂e2,3

(♮B) maps the vertical

tangent vectors of E at 0̂e2,3 , which can be canonically identified with E

∣∣∣
e2,3

, to the

vertical tangent vectors of E1,2 ×
E1

E1,3 at (0̃1,2
e2 , 0̃1,3

e3 ), which can likewise be identified

with (E1,2 ×
E1

E1,3)

∣∣∣
(e2,e3)

.

In other words, for a ξ ∈ T0̂e2,3
E with T0̂e2,3

(q2,3)(ξ) = 0
T (E2,3)
e2,3 , it follows that

T
(0̃1,2

e2 ,0̃1,3
e3 )

(q
1,2
2 , q

1,3
3 )

(
T0̂e2,3

(♮B)(ξ)
)

= (0T (E2)
e2

, 0T (E3)
e3

),

from the commutativity of the diagram (17). Here (0T (E2)
e2 , 0T (E3)

e3 ) denotes the zero
in T(e2,e3)(E2 ×

M
E3).

Map (20) is surjective since by hypothesis ♮B is a surjective submersion (as the Back
face is a double vector bundle). Therefore, the first component of (20) is surjective.

Consequently, for any (e1,2, e2,3, e1,3) ∈ W , there exists an e ∈ E

∣∣∣
e2,3

such that

q1,2(e) = e1,2, and q1,3(e) = e1,3.
By applying the tangent functor to (11) (we do not need to consider the hypercube

structure), and applying the same argument to the resulting structure, we see that the
triple source map is a submersion.

This completes the proof of Proposition 1.

The result of Li-Bland and Ševera on which Proposition 1 is based was established
for VB-Lie groupoids rather than double vector bundles. By combining the techniques
of their proof and that above, we could establish a similar result for VB-double Lie
groupoids.

We can now state the definition of a triple vector bundle.
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Definition 4 A triple vector bundle is a cube of vector bundles for which there exists
a morphism of cubes of vector bundles Σ̃ : W → E that is right-inverse to the triple
source map E → W .

It seems likely that the existence of sigma-maps follows from the definition of a
cube of vector bundles (compare [6]) or by using Proposition 1, but we prefer to state
it as an explicit assumption.

Grids on triple vector bundles. A grid in a double vector bundle constitutes two linear
sections. In a triple vector bundle the concept of grid requires what we call linear
double sections.

Definition 5 A down-up linear double section of E is a collection of sections

Z1,2 : E1,2 → E1,2,3, Z1 : E1 → E1,3, Z2 : E2 → E2,3, Z : M → E3,

which form a morphism of double vector bundles from the Down face to the Up face.

The core morphism of Z1,2 defines a vector bundle morphism from the core of the
Down face to the core of the Up face. We denote this by Z12 : E12 → E12,3. It is a
linear section over Z : M → E3.

In a similar fashion we define right-left and front-back linear double sections of E .

Definition 6 A grid on E is a set of three linear double sections, one in each direction,
as shown in (21).

E1,2,3 E1,3

E2,3 E3

E1,2 E1

E2 M.

Y1,3

X2,3
Z1,2

Z1

X3

Y3

Z
Y1

X2

X

Y

Z2
(21)

That nontrivial grids exist is guaranteed by the existence of sigma-maps; more
precisely, a grid exists for any given sections X , Y , Z .

We note the following equations for future reference. They follow from the fact
that the double sections are morphisms of double vector bundles.

For e1,2, e′
1,2 over the same point of E1,

Z1,2(e1,2 —
E1

e′
1,2) = Z1,2(e1,2) —

1,3
Z1,2(e

′
1,2). (22)

For e1,2, e′
1,2 over the same point of E2,

Z1,2(e1,2 —
E2

e′
1,2) = Z1,2(e1,2) —

2,3
Z1,2(e

′
1,2). (23)
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2.2 Formulation of the warp theorem

We now have everything we need in order to describe the original formulation of the
theorem, as given in [18].

Start with a grid on E . Focus on the Up face of the triple vector bundle. We see
that (Y1,3, Y3) and (X2,3, X3) define a grid on the Up face. Denote its warp by wup.
This is a section of the core vector bundle of the Up face, that is, wup : E3 → E12,3.
Similarly for the Down face, its warp wdown is a section of the core vector bundle of
the Down face, so wdown : M → E12. It follows that (wup, wdown) is a linear section of
the (U-D) core double vector bundle. Recall that the core morphism Z12 of the linear
double section Z1,2 defines another linear section of the (U-D) core double vector
bundle. Therefore, we have the following grid on E12,3:

E12,3 E12

E3 M.

Z12

wup wdown

Z

We call the warp of this grid the Up-Down ultrawarp and denote it by uUD. It is a
section of the ultracore E123.

Of course we can also build corresponding grids on the other two core double vector
bundles. We therefore have three ultrawarps, as shown in (24).

E23,1 E23

E1 M,

X23

wback wfront

X

E13,2 E13

E2 M,

Y13

wleft wright

Y

E12,3 E12

E3 M.

Z12

wup wdown

Z

(24)
We take the ultrawarps with the orientations opposite to (24); that is, using the ⊲

notation,

wback ◦X − X23 ◦ wfront ⊲ uBF,

wleft ◦Y − Y13 ◦ wright ⊲ uLR, (25)

wup ◦Z − Z12 ◦ wdown ⊲ uUD .

We can now state the main theorem about grids on triple vector bundles.
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Theorem 1 (Warp Theorem) Given a triple vector bundle E and a grid on E as in

(21),
uBF + uLR + uUD = 0. (26)

To give an intrinsic proof, we need to describe the ultrawarps in an alternative way.
So far, the only equation we have seen that describes the warp of a grid on a double

vector bundle is (8). Focus on the ultrawarp uUD. From the grid on the (U-D) core
double vector bundle, for m ∈ M , by (8) we have that

(wup ◦Z)(m) —
2,3

(Z12 ◦ wdown)(m) = 0̂Z(m) +
1,2

uUD(m). (27)

How can we express (wup ◦Z)(m) and (Z12 ◦ wdown)(m) in a more useful way?
About wup, for any e3 ∈ E3, again from (8) we have that

Y1,3(X3(e3)) —
1,3

X2,3(Y3(e3)) = 0̂X3(e3) +
2,3

wup(e3).

Putting e3 = Z(m), we have

Y1,3(X3(Z(m))) —
1,3

X2,3(Y3(Z(m))) = 0̂X3(Z(m)) +
2,3

wup(Z(m)). (28)

We introduce a more succinct notation, for use in calculations.

ZYX = Z1,2(Y1(X (m))), YZX = Y1,3(Z1(X (m))), XZY = X2,3(Z2(Y (m))),

ZXY = Z1,2(X2(Y (m))), YXZ = Y1,3(X3(Z(m))), XYZ = X2,3(Y3(Z(m))).

(29)
Now (28) becomes

YXZ —
1,3

XYZ = 0̂e′
1,3

+
2,3

λ3, (30)

where e′
1,3 = X3(Z(m)) and λ3 = wup(Z(m)). Note the following. In the case of a

double vector bundle, we can rewrite (8) as

w(ξ, η)(m) = ((ξ ◦ Y )(m) —
A

(η ◦ X)(m)) —
B

0D
X (m).

In the case of a triple vector bundle, this is also possible. If we tried a similar calculation
on (30), since 0̂e′

1,3
—
2,3

0̂e′
1,3

= 0̂e3 , we would have

(YXZ —
1,3

XYZ) —
2,3

0̂e′
1,3

= 0̂e3 +
2,3

λ3.

Since 0̂e3 is the double zero of the Up face over e3, we have 0̂e3 +
2,3

λ3 = λ3. So in

total, we can rewrite (30) as

λ3 = (YXZ —
1,3

XYZ) —
2,3

0̂e′
1,3

. (31)
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About (Z1,2 ◦ wdown)(m), first write wdown(m) out using (8) as

Y1(X (m)) —
E1

X2(Y (m)) = 0̃1,2
X (m)

+
E2

wdown(m).

Apply Z1,2 to this, and using (22) and (23) it follows that

Z1,2(Y1(X (m))) —
1,3

Z1,2(X2(Y (m))) = 0̂Z1(X (m)) +
2,3

Z12(wdown(m))

Again, for reasons of economy of space, rewrite this as

ZYX —
1,3

ZXY = 0̂e1,3 +
2,3

k3,

where e1,3 = Z1(X (m)) and k3 = Z12(wdown(m)). Alternatively, as in the case of λ3,

k3 = (ZYX —
1,3

ZXY) —
2,3

0̂e1,3 . (32)

Let us go back to (27). We can rewrite this as

λ3 —
2,3

k3 = 0̂e3 +
1,2

uUD(m),

and using (31) and (32), we have that

(
(YXZ —

1,3
XYZ) —

2,3
0̂e′

1,3

)
—
2,3

(
(ZYX —

1,3
ZXY) —

2,3
0̂e1,3

)
= 0̂e3 +

1,2
uUD(m)

or, more elegantly, using interchange laws,

(YXZ —
1,3

XYZ) —
2,3

(ZYX —
1,3

ZXY) = (0̂e′
1,3

+
2,3

λ3) —
2,3

(0̂e1,3 +
2,3

k3)

= (0̂e′
1,3

—
2,3

0̂e1,3) +
2,3

(λ3 —
2,3

k3) = (0̂e′
1,3

—
2,3

0̂e1,3) +
2,3

(0̂e3 +
1,2

uUD(m)). (33)

In calculations it is generally preferable to use equations of the form (30), and to
avoid equations of the form (31).

Therefore, in order to describe ultrawarps such as uUD(m), we will use equations
of the form (33), and in abbreviated notation,

(YXZ − XYZ) − (ZYX − ZXY) ⊲ uUD(m),

as introduced after (4).
It is worth emphasizing that the above arguments rely on the fact that core and

ultracore elements are uniquely determined by equations such as (8).
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There are similar abbreviated equations for the other two ultrawarps. Altogether
we have

(ZYX − YZX) − (XZY − XYZ) ⊲ uBF(m), (34a)

(XZY − ZXY) − (YXZ − YZX) ⊲ uLR(m), (34b)

(YXZ − XYZ) − (ZYX − ZXY) ⊲ uUD(m), (34c)

and from now on we will use a further shortening of the notation,

uBF(m) = u1, uLR(m) = u2, uUD(m) = u3.

The main difficulty in proving (26) is that we cannot simply add and subtract the
expressions in (34), since the operations are in different vector bundle structures. The
apparatus of the next section overcomes this difficulty.

Orientation. A further problem arises from the fact that the warp of a grid on a double
vector bundle is only defined up to sign. We now need to consider how to choose
these signs consistently for a grid on a triple vector bundle. This is a question of fixing
orientations.

We choose to orient each upper face so that the positive term in the formula for the
warp defines the outward normal by the right-hand rule. We then take the positive and
negative terms in the opposite lower face to match those in the upper face; that is, we
orient the lower faces so that the positive term in the warp defines the inward normal.

Thus the orientation of the Up face determines the signs in the first subtraction in
(34c) below and the orientation of the Down face determines the signs in the second
subtraction.

The “middle subtractions” in (34), that is, the orientations of the core double vector
bundles, is an independent choice, equivalent to the choice of signs in (25). What
matters here is consistency: if we took all three ultrawarps with the opposite signs,
that would also be fine.

3 Preliminaries for the proof of the warp theorem

This section contains the main technical work needed for the proof of the warp theorem.
We first describe our approach.

We want to find how the three ultrawarps are related, more specifically, for m ∈ M ,
we want to find a relation between three ultracore elements, u1, u2, u3. The best way to
do this, where slightly easier calculations are involved, is to manipulate the differences
of the six elements, (34a), (34b), and (34c). That is exactly what we do in this and the
following section. In this section we obtain formulas expressing the difference of two
elements of a triple vector bundle in terms of core elements and zeros. If two elements
of a triple vector bundle can be subtracted, then their outlines must have at least one
face in common. Cases where the outlines have two or more faces in common arise
repeatedly in the rest of the paper. Each of these cases needs individual treatment.
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Looked at from another point of view, two elements of a triple vector bundle which
can be subtracted may admit exactly one, or two, or all three, of the subtractions —

1,2
,

—
1,3

, and —
2,3

.

3.1 First case: two elements that have the same outline

Let e and e′ have exactly the same outline

e e1,3

e2,3 e3

e1,2 e1

e2 m,

e′ e1,3

e2,3 e3

e1,2 e1

e2 m.

All three differences e —
1,2

e′, e —
1,3

e′, e —
2,3

e′ are defined.

Step 1. Focus on the Back faces of e and e′

e, e′ e1,3

e1,2 e1.

Then, from double vector bundle theory, we can write

e —
1,2

e′ = k1 +
1,3

0̂e1,2 , e —
1,3

e′ = k1 +
1,2

0̂e1,3 ,

where k1 ∈ E23,1, the core of the Back face, with outline

E23,1 ∋ k1 w23 ∈ E23

e1 m.

Step 2. Show that w23 = ⊙
2,3
m .
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Use the morphism q2,3 : E → E2,3. We know that q2,3(e —
1,3

e′) = 0̃2,3
e3 and

q2,3(k1 +
1,2

0̂e1,3) = q2,3(k1) +
E2

q2,3(0̂e1,3) = w23 +
E2

0̃2,3
e3

.

Therefore

w23 +
E2

0̃2,3
e3

= 0̃2,3
e3

,

and, from double vector bundle theory, we have that w23 = 0̃2,3

0
E2
m

= ⊙
2,3
m . So k1 has

the outline

k1 ⊙
2,3
m

e1 m.

Step 3. Applying double vector bundle theory again, we get

k1 = u1 +
2,3

0̂e1 ,

where u1 is an ultracore element.
Step 4. Apply the same procedure to Left and Up faces of e and e′.
Focus on the Left faces of e and e′

e —
2,3

e′ = k2 +
1,2

0̂e2,3 , e —
1,2

e′ = k2 +
2,3

0̂e1,2 ,

where k2 ∈ E13,2, core of the Left face, with outline

k2 ⊙
1,3
m

e2 m.

So, we can write
k2 = u2 +

1,3
0̂e2 ,

where u2 is an ultracore element. Similarly for the Up faces, we have

e —
1,3

e′ = k3 +
2,3

0̂e1,3 , e —
2,3

e′ = k3 +
1,3

0̂e2,3 ,
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where k3 ∈ E12,3, core of the Up face, with outline

k3 ⊙
1,2
m

e3 m,

so k3 = u3 +
1,2

0̂e3 with u3 an ultracore element.

Step 5. Show that u1 = u2 = u3.
We show that u1 = u3. So far, we have two expressions for e —

1,3
e′, namely:

k1 +
1,2

0̂e1,3 = k3 +
2,3

0̂e1,3 . (35)

Expand the left-hand side of (35), mimicking the double vector bundle case:

0̂e1,3 +
1,2

(0̂e1 +
2,3

u1) = (0̂e1,3 +
2,3

0̂e3) +
1,2

(0̂e1 +
2,3

u1)

= (0̂e1,3 +
1,2

0̂e1) +
2,3

(0̂e3 +
1,2

u1) = 0̂e1,3 +
2,3

(0̂e3 +
1,2

u1).

Therefore, we see that (35) can be rewritten as:

0̂e1,3 +
2,3

(0̂e3 +
1,2

u1) = 0̂e1,3 +
2,3

(0̂e3 +
1,2

u3),

from where it follows that u1 = u3. Similarly, we can show that u2 = u3.
At this point write u1 = u2 = u3 to be u.
Step 6. We obtain six formulas for the differences between e and e′.

Proposition 2 With the above notation, two elements e and e′ which have the same

outline are related by

e —
1,3

e′ = 0̂e1,3 +
1,2

(0̂e1 +
2,3

u) = 0̂e1,3 +
2,3

(0̂e3 +
1,2

u),

e —
1,2

e′ = 0̂e1,2 +
1,3

(0̂e1 +
2,3

u) = 0̂e1,2 +
2,3

(0̂e2 +
1,3

u), (36)

e —
2,3

e′ = 0̂e2,3 +
1,3

(0̂e3 +
1,2

u) = 0̂e2,3 +
1,2

(0̂e2 +
1,3

u).

What is important here is that the subtraction with respect to each structure results
in the same ultracore element u.

We will use the following special case later on.
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Example 3 If e, e′ are in one of the core double vector bundles, for example if e, e′ ∈

E23,1, with outline

e, e′ 0̂1,3
e1

w23 0E3
m

0̂1,2
e1 e1

0E2
m m,

then from (36) we have

e —
2,3

e′ = 0̂w23 +
1,3

(0̂
0

E3
m

+
1,2

u) = 0̂w23 +
1,3

(⊙3
m +

1,2
u) = 0̂w23 +

1,3
u

and
e —

2,3
e′ = 0̂w23 +

1,2
(0̂

0
E2
m

+
1,3

u) = 0̂w23 +
1,2

(⊙3
m +

1,3
u) = 0̂w23 +

1,2
u,

and therefore
0̂w23 +

1,3
u = 0̂w23 +

1,2
u. (37)

3.2 Second case: two elements that have two lower faces in common

What happens if e and e′ have only two of the lower faces in common? Then only two
of the three subtractions are defined. There are three cases to consider, each of which
arises later.

If e and e′ have the same Front and Right face. Since e and e′ have the same e1,3 and
e2,3, it follows that they have the same e1, e2 and e3. However e and e′ will differ at
e1,2 and e′

1,2, and these will differ by a core element w12 ∈ E12 of the core of the
Down face, that is

e1,2 —
E1

e′
1,2 = w12 +

E2

0̃1,2
e1

, e1,2 —
E2

e′
1,2 = w12 +

E1

0̃1,2
e2

.
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It is useful to write out the outlines of these differences

e —
1,3

e′ e1,3

0̃2,3
e3 e3

e1,2 —
E1

e′
1,2 e1

0E2
m m,

e —
2,3

e′ 0̃1,3
e3

e2,3 e3

e1,2 —
E2

e′
1,2 0E1

m

e2 m.

Since e and e′ have the same Up face, again by applying double vector bundle theory,
we can write

e —
1,3

e′ = k +
2,3

0̂e1,3 , e —
2,3

e′ = k +
1,3

0̂e2,3 , (38)

where k ∈ E23,1, the core of the Up face.
Also, using the morphism q1,2 : E → E1,2, we show that q1,2(k) = w12. First,

q1,2(e —
1,3

e′) = e1,2 —
E1

e′
1,2 = w12 +

E2

0̃1,2
e1

,

and
q1,2(k +

2,3
0̂e1,3) = q1,2(k) +

E2

0̃1,2
e1

,

hence q1,2(k) = w12, where k has outline

E12,3 ∋ k w12 ∈ E12

e3 m.

If e and e′ have the same Front and Down face. In this case, the elements e1,3 and
e′

1,3 differ by a core element w13 of E13

e1,3 —
E1

e′
1,3 = w13 +

E3

0̃1,3
e1

, e1,3 —
E3

e′
1,3 = w13 +

E1

0̃1,3
e3

.

As before, we can write

e —
1,2

e′ = k +
2,3

0̂e1,2 , e —
2,3

e′ = k +
1,2

0̂e2,3 , (39)
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with k an element of the core of the Left face with outline

E13,2 ∋ k w13 ∈ E13

e2 m.

If e and e′ have the same Right and Down face. In this case, e2,3 and e′
2,3 will differ

by an element w23 ∈ E23 of the core of the Front face

e2,3 —
E2

e′
2,3 = w23 +

E3

0̃2,3
e2

, e2,3 —
E3

e′
2,3 = w23 +

E2

0̃2,3
e3

,

and as before
e —

1,2
e′ = k +

1,3
0̂e1,2 , e —

1,3
e′ = k +

1,2
0̂e1,3 , (40)

where k is an element of the core of the Back face with outline

E23,1 ∋ k w23 ∈ E23

e1 m.

3.3 Special case: differences between zero elements

Using the fact that 0̂ is the zero section

0̂e2,3 +
1,3

0̂e′
2,3

= 0̂e2,3 +
E3

e′
2,3

, 0̂e2,3 +
1,2

0̂e′
2,3

= 0̂e2,3 +
E2

e′
2,3

,

and (−1) ·
1,3

0̂e2,3 = 0̂ f2,3 where f2,3 = —
E3

e2,3.

If we have two elements e2,3 and e′
2,3 of E2,3 that differ by a core element w23 ∈ E23,

then
e2,3 —

E2
e′

2,3 = w23 +
E3

0̃2,3
e2

, e2,3 —
E3

e′
2,3 = w23 +

E2

0̃2,3
e3

, (41)

and the differences we are interested in are

0̂e2,3 —
1,2

0̂e′
2,3

= 0̂e2,3 +
1,2

0̂—
E2

e′
2,3

= 0̂e2,3 —
E2

e′
2,3

= 0̂
w23 +

E3
0̃2,3

e2
= 0̂w23 +

1,3
0̂e2 , (42)
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and

0̂e2,3 —
1,3

0̂e′
2,3

= 0̂e2,3 +
1,3

0̂—
E3

e′
2,3

= 0̂e2,3 —
E3

e′
2,3

= 0̂
w23 +

E2
0̃2,3

e3
= 0̂w23 +

1,2
0̂e3 . (43)

There are similar formulas in the other two cases.

3.4 Summary of Sect. 3

– Given two elements e, e′ ∈ E with the same outline, then they differ by a unique
ultracore element u ∈ E123:

e — e′ ⊲ u.

– Given two elements e, e′ ∈ E with two lower faces in common, then their differ-
ence

e — e′ ⊲ k,

defines a k in one of the core double vector bundles:
– if e, e′ have the same Right and Down face, then k ∈ E23,1,
– if e, e′ have the same Front and Down face, then k ∈ E13,2,
– if e, e′ have the same Front and Right face, then k ∈ E12,3.

4 Proof of the warp theorem

4.1 Notation

In this section we prove Theorem 1. We will use the notation of (29). We further
simplify the notation for elements of the lower faces and edges, as follows

X (m) := e1, Y (m) := e2, Z(m) := e3,

Z1(X (m)) := e1,3, X3(Z(m)) := e′
1,3, Z2(Y (m)) := e2,3,

Y3(Z(m)) := e′
2,3, Y1(X (m)) := e1,2, X2(Y (m)) := e′

1,2.

The outlines of the elements in (29) are now written as follows

ZYX e1,3

e2,3 e3

e1,2 e1

e2 m,

YZX e1,3

e′
2,3 e3

e1,2 e1

e2 m,

XZY e′
1,3

e2,3 e3

e′
1,2 e1

e2 m,
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ZXY e1,3

e2,3 e3

e′
1,2 e1

e2 m,

YXZ e′
1,3

e′
2,3 e3

e1,2 e1

e2 m,

XYZ e′
1,3

e′
2,3 e3

e′
1,2 e1

e2 m.

We will need the following relations for the core elements of the lower faces in detailed
form.

e2,3 —
E2

e′
2,3 = 0̃2,3

e2
+
E3

w23, e2,3 —
E3

e′
2,3 = 0̃2,3

e3
+
E2

w23, (44)

e′
1,3 —

E1
e1,3 = 0̃1,3

e1
+
E3

w13, e′
1,3 —

E3
e1,3 = 0̃1,3

e3
+
E1

w13, (45)

e1,2 —
E1

e′
1,2 = 0̃1,2

e1
+
E2

w12, e1,2 —
E2

e′
1,2 = 0̃1,2

e2
+
E1

w12, (46)

where w23 ∈ E23, w13 ∈ E13 and w12 ∈ E12.
For the zeros of these w elements, the diagrams are

0̂w23 ⊙
1,3
m

w23 0E3
m

⊙
1,2
m 0E1

m

0E2
m m,

0̂w13 w13

⊙
2,3
m 0E3

m

⊙
1,2
m 0E1

m

0E2
m m,

0̂w12 ⊙
1,3
m

⊙
2,3
m 0E3

m

w12 0E1
m

0E2
m m.

4.2 Core and ultracore elements arising from the grid

We collect here for reference the definitions and outlines of the core and ultracore
elements arising from the grid.

• λ1, k1 and u1. The elements ZYX and YZX have the same Right and Back faces,
and so their differences define an element λ1 ∈ E23,1 with outline

λ1 0̃1,3
e1

w23 0E3
m

0̃1,2
e1 e1

0E2
m m.
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Using (40) the defining equations are

ZYX —
1,2

YZX = 0̂e1,2 +
1,3

λ1, ZYX —
1,3

YZX = 0̂e1,3 +
1,2

λ1. (47)

If we look at XZY and XYZ, we see that they also have two faces in common, and
their differences define a k1 ∈ E23,1, with outline

k1 0̃1,3
e1

w23 0E3
m

0̃1,2
e1 e1

0E2
m m.

The two differences are, again using (40),

XZY —
1,2

XYZ = 0̂e′
1,2

+
1,3

k1, XZY —
1,3

XYZ = 0̂e′
1,3

+
1,2

k1.

We see that λ1 and k1 have the same outlines so they differ by an ultracore element
u1 ∈ E123,

λ1 —
1,3

k1 = 0̂e1 +
2,3

u1, (48a)

λ1 —
1,2

k1 = 0̂e1 +
2,3

u1, (48b)

λ1 —
2,3

k1 = 0̂w23 +
1,3

u1 = 0̂w23 +
1,2

u1. (48c)

There are four ways of describing the warp

(ZYX —
1,2

YZX) —
1,3

(XZY —
1,2

XYZ) = 0̂e1 +
2,3

(0̂w12 +
1,3/2,3

u1), (49a)

(ZYX —
1,2

YZX) —
2,3

(XZY —
1,2

XYZ) = (0̂w12 +
1,3

0̂w23) +
1,3

(0̂e2 +
1,3

u1), (49b)

(ZYX —
1,3

YZX) —
1,2

(XZY —
1,3

XYZ) = 0̂e1 +
2,3

(0̂−w13 +
1,2/2,3

u1), (49c)

(ZYX —
1,3

YZX) —
2,3

(XZY —
1,3

XYZ) = (0̂−w13 +
1,2

0̂w23) +
1,2

(0̂e3 +
1,2

u1). (49d)

Here we write 0̂w12 +
1,3/2,3

u1 to denote 0̂w12 +
1,3

u1 = 0̂w12 +
2,3

u1.
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• λ2, k2 and u2. The same procedure can be applied to XZY and ZXY; they have the
same Front and Down faces, so their differences will define an element λ2 ∈ E13,2

λ2 w13

0̃2,3
e2 0E3

m

0̃1,2
e2 0E1

m

e2 m.

The corresponding equations, using (39), are

XZY —
1,2

ZXY = 0̂e′
1,2

+
2,3

λ2, XZY —
2,3

ZXY = 0̂e2,3 +
1,2

λ2.

If we look at YXZ and YZX, their differences define a k2 ∈ E13,2, with outline

k2 w13

0̃2,3
e2 0E3

m

0̃1,2
e2 0E1

m

e2 m,

and the differences defined are, due to (39),

YXZ —
1,2

YZX = 0̂e1,2 +
2,3

k2, YXZ —
2,3

YZX = 0̂e′
2,3

+
1,2

k2.

Since λ2 and k2 have the same outlines, they differ by an ultracore element u2 ∈ E123,

λ2 —
1,3

k2 = 0̂w13 +
1,2/2,3

u2, (50a)

λ2 —
1,2

k2 = 0̂e2 +
1,3

u2, (50b)

λ2 —
2,3

k2 = 0̂e2 +
1,3

u2. (50c)

Again there are four ways of describing the warp

(XZY —
1,2

ZXY) —
2,3

(YXZ —
1,2

YZX) = 0̂e2 +
1,3

(0̂−w12 +
1,3/2,3

u2), (51a)

(XZY —
1,2

ZXY) —
1,3

(YXZ —
1,2

YZX) = (0̂w13 +
2,3

0̂−w12) +
2,3

(0̂e1 +
2,3

u2), (51b)
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(XZY —
2,3

ZXY) —
1,2

(YXZ —
2,3

YZX) = 0̂e2 +
1,3

(0̂w23 +
1,2/1,3

u2), (51c)

(XZY —
2,3

ZXY) —
1,3

(YXZ —
2,3

YZX) = (0̂w23 +
1,2

0̂w13) +
1,2

(0̂e3 +
1,2

u2). (51d)

• λ3, k3 and u3. Likewise YXZ and XYZ define λ3 ∈ E12,3 with outline

λ3 0̃1,3
e3

0̃2,3
e3 e3

w12 0E1
m .

0E2
m m.

The corresponding relations are, due to (38),

YXZ —
1,3

XYZ = 0̂e′
1,3

+
2,3

λ3, YXZ —
2,3

XYZ = 0̂e′
2,3

+
1,3

λ3.

Likewise ZYX and ZXY define a k3 ∈ E12,3 with outline

k3 0̃1,3
e3

0̃2,3
e3 e3

w12 0E1
m

0E2
m m.

The differences defined are, due to (38),

ZYX —
1,3

ZXY = 0̂e1,3 +
2,3

k3, ZYX —
2,3

ZXY = 0̂e2,3 +
1,3

k3.

The ultracore element u3 ∈ E123 defined by λ3 and k3 satisfies

λ3 —
1,3

k3 = 0̂e3 +
1,2

u3, (52a)

λ3 —
1,2

k3 = 0̂w12 +
1,3/2,3

u3, (52b)

λ3 —
2,3

k3 = 0̂e3 +
1,2

u3. (52c)
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The four relations in this case are

(YXZ —
1,3

XYZ) —
2,3

(ZYX —
1,3

ZXY) = 0̂e3 +
1,2

(0̂w13 +
1,2/2,3

u3), (53a)

(YXZ —
1,3

XYZ) —
1,2

(ZYX —
1,3

ZXY) = (0̂w13 +
2,3

0̂w12) +
2,3

(0̂e1 +
2,3

u3), (53b)

(YXZ —
2,3

XYZ) —
1,3

(ZYX —
2,3

ZXY) = 0̂e3 +
1,2

(0̂−w23 +
1,2/1,3

u3), (53c)

(YXZ —
2,3

XYZ) —
1,2

(ZYX —
2,3

ZXY) = (0̂−w23 +
1,3

0̂w12) +
1,3

(0̂e2 +
1,3

u3). (53d)

4.3 Proof of the warp theorem

We will show that u1 + u2 + u3 = ⊙3
m by showing that u1 = −u2 − u3. There are

four steps.
Step 1. Rewrite (49b),

(ZYX —
1,2

YZX) —
2,3

(XZY —
1,2

XYZ) as (ZYX —
2,3

XZY) —
1,2

(YZX —
2,3

XYZ),

using the double vector bundle interchange law in the Left face. We know from (49b)
that the ultracore element defined by the first expression is u1, therefore, the ultracore
element of the latter expression will also be u1. We will show that the second expression
has −u2 − u3 as its ultracore element, and this will show that u1 = −u2 − u3.

Step 2. First, write ZYX —
2,3

XZY as

ZYX —
2,3

XZY = (ZYX —
2,3

ZXY) —
2,3

(XZY —
2,3

ZXY),

where we have that

ZYX —
2,3

ZXY = 0̂e2,3 +
1,3

k3, XZY —
2,3

ZXY = 0̂e2,3 +
1,2

λ2. (54)

Step 3. Similarly, write YZX —
2,3

XYZ as

YZX —
2,3

XYZ = (YXZ —
2,3

XYZ) —
2,3

(YXZ —
2,3

YZX),

and we have

YXZ —
2,3

XYZ = 0̂e′
2,3

+
1,3

λ3, YXZ —
2,3

YZX = 0̂e′
2,3

+
1,2

k2. (55)

Step 4. Since our convention is that λ3 − k3 defines u3, it follows that k3 − λ3

defines −u3. It is essential to follow these conventions.
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We are finally able to complete the proof of Theorem 1. First, using operations in
E → E2,3, we have

(ZYX —
2,3

XZY) —
1,2

(YZX —
2,3

XYZ)

= [(ZYX —
2,3

ZXY) —
2,3

(XZY —
2,3

ZXY)] —
1,2

[(YXZ —
2,3

XYZ) —
2,3

(YXZ —
2,3

YZX)].

Now, using (54) and (55), this is equal to

[(0̂e2,3 +
1,3

k3) —
2,3

(0̂e2,3 +
1,2

λ2)] —
1,2

[(0̂e′
2,3

+
1,3

λ3) —
2,3

(0̂e′
2,3

+
1,2

k2)].

Applying the interchange law in the Left face to the outer operations, this becomes

[(0̂e2,3 +
1,3

k3) —
1,2

(0̂e′
2,3

+
1,3

λ3)] —
2,3

[(0̂e2,3 +
1,2

λ2) —
1,2

(0̂e′
2,3

+
1,2

k2)].

Applying the interchange law in the Back face, in each [ ], we have

[(0̂e2,3 —
1,2

0̂e′
2,3

) +
1,3

(k3 —
1,2

λ3)] —
2,3

[(0̂e2,3 —
1,2

0̂e′
2,3

) +
1,2

(λ2 —
1,2

k2)].

Now apply (42) to the first term in each [ ]. Then use (52b) and (50b), remembering
that k3 − λ3 defines −u3. This gives

[(0̂w23 +
1,3

0̂e2) +
1,3

(0̂w12 —
1,3

u3)] —
2,3

[(0̂w23 +
1,3

0̂e2) +
1,2

(0̂e2 +
1,3

u2)].

Now apply the interchange law in the Back face to the second [ ] :

[0̂w23 +
1,3

(0̂e2 +
1,3

0̂w12 —
1,3

u3)] —
2,3

[(0̂w23 +
1,2

u2) +
1,3

(0̂e2 +
1,2

0̂e2)].

Using (37) in the first ( ) of the second [ ], and noting that the zeros in the last ( ) are
zeros over E1,2, this in turn is equal to

[0̂w23 +
1,3

(0̂e2 +
1,3

0̂w12 —
1,3

u3)] —
2,3

[(0̂w23 +
1,3

u2) +
1,3

0̂e2 ].

Rewrite this as :

[0̂w23 +
1,3

(0̂e2 +
1,3

0̂w12 —
1,3

u3)] —
2,3

[0̂w23 +
1,3

(0̂e2 +
1,3

u2)];

note that the second [ ] is in an ordinary vector bundle. Now use the interchange law
in the Up face :

[0̂w23 —
2,3

0̂w23 ] +
1,3

[(0̂e2 +
1,3

0̂w12 —
1,3

u3) —
2,3

(0̂e2 +
1,3

u2)]
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and this is equal to

0̂w23 +
1,3

[0̂e2 —
2,3

0̂e2 ] +
1,3

[(0̂w12 —
1,3

u3) —
2,3

u2],

using the facts that the zeros 0̂w23 in the first [ ] are zeros over E2,3, and then the
interchange law in the Up face. Likewise, using the fact that the zeros 0̂e2 are zeros
over E2,3, this is equal to

0̂w23 +
1,3

0̂e2 +
1,3

[(0̂w12 —
2,3

u3) —
2,3

u2].

Finally, using an equation of the form (37), this becomes

0̂w23 +
1,3

0̂e2 +
1,3

[0̂w12 —
2,3

(u3 +
2,3

u2)] = 0̂w23 +
1,3

0̂e2 +
1,3

0̂w12 —
1,3

(u3 +
1,3

u2),

from which we obtain −(u3 + u2) as the ultracore element.
Comparing this with (49b),

(ZYX —
1,2

YZX) —
2,3

(XZY —
1,2

XYZ) = (0̂w12 +
1,3

0̂w23) +
1,3

(0̂e2 +
1,3

u1),

we have u1 = −(u3 + u2) as desired.
This completes the proof of the warp theorem.

4.4 Summary of Sect. 4

A grid on E , for m ∈ M , defines six elements, ZYX, YZX, XZY, ZXY, YXZ, XYZ.
These elements define the following core and ultracore elements:

ZYX — YZX ⊲ λ1 ∈ E23,1, XZY — XYZ ⊲ k1 ∈ E23,1, λ1 — k1 ⊲ u1,

XZY — ZXY ⊲ λ2 ∈ E13,2, YXZ — YZX ⊲ k2 ∈ E13,2, λ2 — k2 ⊲ u2,

YXZ — XYZ ⊲ λ3 ∈ E12,3, ZYX — ZXY ⊲ k3 ∈ E12,3, λ3 — k3 ⊲ u3.

In the final step of the proof we showed that

(ZYX — YZX) − (XZY — XYZ) ⊲ u1,

[(ZYX − ZXY) − (XZY − ZXY)] − [(YXZ − XYZ) − (YXZ − YZX)] ⊲ −(u2 + u3),

and since the left-hand sides are equal, it follows that u1 = −u2 − u3.

Remark 1 The strategy of this proof deserves some commentary.
What should the warp of a grid on a triple vector bundle be? Or, in other words,

why are we interested in the ultrawarps of a grid of a triple vector bundle?
The warp of a grid in the double case is a section of the core vector bundle, and

measures the non-commutativity of the two routes defined by the grid.
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So far, we have seen that all operations on a triple vector bundle are iterations of
operations defined in double vector bundles. The ultracore, for example, is the core of
the core double vector bundles.

For these reasons, we would want the warp of a grid in the triple case to be a section
of the ultracore vector bundle, and to measure the non-commutativity of routes defined
by the grid.

Pick an upper face of E , for example the Up face. If we compare the two routes
defined by the grid in this face, then we obtain an element of the (U-D) core dou-
ble vector bundle, which we denoted by λ3. Similarly for the other upper faces, the
non-commutativity of the corresponding routes defines λ1 and λ2. The three λ’s are
elements of different spaces; therefore, if we tried to compare them, or indeed per-
form any sort of operation with them (such as adding them or subtracting them), we
would see that such an operation could be algebraically possible but would not be
geometrically meaningful.

The same applies for the three ki defined by the comparison of the routes for the
lower faces.

The λi ’s and the corresponding ki ’s, however, are elements of the same spaces, and
so comparing them is a possibility, and indeed the only sensible operation. And by
comparing them, we measure the non-commutativity of four routes, instead of two.

This can be done for the three pairs of λi and ki , and so we obtain the three
ultrawarps.

So what does the warp theorem tell us?
Each ultrawarp measures the non-commutativity of four routes. In total, a grid on

a triple vector bundle provides six different routes from M to E . The sum of the three
ultrawarps takes into account each route twice, once with a positive and once with a
negative sign. (Compare the description of curvature identities in terms of paths around
oriented faces in cubes and hypercubes given by [20, Chap. 15].) The warp theorem
tells us that these add up to zero, a result that seems reasonable. The different vector
bundle structures over which the operations take place, however, are the main obstacle
here—as soon as one realizes that simple operations like addition and subtraction in
the triple vector bundle setting are no longer simple. Further analysis of grids in triple
vector bundles is given in [5].

5 The triple vector bundle T
2

A and connections in A

In Example 1 of the Introduction we started with a vector bundle A → M

and a connection in A, and we saw that the warp of the grid (9) is ∇Zμ, the
covariant derivative of μ with respect to Z . In this section, starting with a vec-
tor bundle A → M and a connection in A, we will build a grid on the triple
vector bundle T 2 A. We now apply the warp theorem to this grid, and we thereby
obtain a new proof of the equivalence of the definition of curvature in terms of
horizontal lifts and the definition in terms of covariant derivatives (see Theorem
2).
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For a vector bundle (A, q, M) there is a triple vector bundle structure on T 2 A as
shown in (56).

T 2 A T 2 M

T A T M

T A T M

A M.

T 2(q)

T (pA)

pT A

pT M

T (p)

T (q)

p
T (q)

pA p
q

pA

(56)

Here the Down face is the usual double vector bundle T A and the Up face is the
tangent prolongation of this; that is, it is obtained by applying the tangent functor to
each structure in T A. Each vertical vector bundle in (56) is a standard tangent bundle.

In the first subsection we describe in detail the core double vector bundles of T 2 A.
In the second subsection we investigate JA : T 2 A → T 2 A, the canonical involution
of the manifold A, as a morphism of triple vector bundles. In the third subsection
we build the aforementioned grid on T 2 A, and in the two remaining subsections we
calculate the three ultrawarps induced by this grid.

5.1 The core double vector bundles of T
2

A

The three core double vector bundles of (56) are shown in (57), in the usual order
(B-F), (L-R), and (U-D), and arranged as in (14).

T A A

T M M,

pA

T (q) q

p

T A T M

A M,

T (q)

pA p

q

T A A

T M M.

pA

T (q) q

p

(57)

These core double vector bundles are the same as abstract double vector bundles but
are embedded differently in T 2 A.

An element ξ ∈ T A determines core elements of the Back, Left and Up faces. We

denote these by ξ
B

, ξ
L

and ξ
U

, respectively. Since they are elements of T (T A), they
can be represented as tangent vectors to curves in T A.

The Back face is the tangent double vector bundle for the tangent prolongation
bundle T (q) : T A → T M . For the core of the Back face we have

ξ
B

=
d

dt
(t ·

T M
ξ)

∣∣∣
t=0

, (58)

where t ·
T M

ξ denotes scalar multiplication in T (q) : T A → T M .
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The Left face is the double tangent bundle of the manifold A. Given ξ ∈ T A the
core element is

ξ
L

=
d

dt
(tξ)

∣∣∣
t=0

, (59)

where the scalar multiplication is in the usual tangent bundle T A → A.
For the core of the Up face, first write ξ = d

dt
at

∣∣
t=0 where at is a curve in A. Write

at ∈ T A for the core element corresponding to at . Then

ξ
U

=
d

dt
(at )

∣∣∣
t=0

. (60)

5.2 The canonical involution on T
2

A

The canonical involution JA : T 2 A → T 2 A for the manifold A is an isomorphism
from the double vector bundle T 2 A to its flip. In what follows we will need to use it
as a map of triple vector bundles.

Proposition 3 The map JA is an isomorphism of the triple vector bundles shown in

(61).

T 2 A T 2 M

T A T M

T A T M

A M,

T 2(q)

T (pA)

pT A

pT M

T (p)

T (q)

p
T (q)

pA p
q

pA

T 2 A T 2 M

T A T M

T A T M

A M.

T 2(q)

pT A

T (pA)

T (p)

pT M

T (q)

p
T (q)

pA p
q

pA

(61)
In (61) the Left faces are the double tangent bundles of the manifold A and JA maps
the Left face of the domain to its flip. It interchanges the Up and Back faces. The
Right faces are the double tangent bundles of M and JA induces JM : T 2 M → T 2 M

which maps the Right face of the domain to its flip. The Front and Down faces are
interchanged.

The proof of Proposition 3 relies on the following two lemmas. The first is the
naturality property of the canonical involution.

Lemma 2 Let M and N be smooth manifolds, and F : M → N a smooth map. Then

T 2(F) ◦ JM = JN ◦ T 2(F), where T 2(F) = T (T (F)) is the tangent of the tangent

map T (F).

Lemma 3 Given Φ1, Φ2 ∈ T 2 A, over the same ξ ∈ T 2 M, we have

JA

(
Φ1 +

T 2(q)

Φ2

)
= JA(Φ1) +

T 2(q)

JA(Φ2).
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Consider now the maps which JA induces on the cores.
Take an element ξ ∈ T A in the core of the Back face. Regarded as an element of

T 2 A this is ξ
B

, with outline shown on the left of (62).

ξ
B

0T 2 M
x

a 0T M
m

T (0A)(x) x

0A
m m,

T 2(q)

T (pA)pT A

ξ
U

T (0T M )(x)

T (0A)(x) x

a 0T M
m

0A
m m.

T 2(q)

T (pA)

pT A

(62)

It follows from (58) and (60) that

JA(ξ
B
) = ξ

U
and JA(ξ

U
) = ξ

B
, (63)

since J 2
A is the identity.

Since the Left faces in (61) are the double tangent bundle T 2 A, the map on the
cores of the Left faces is the identity and so

JA(ξ
L
) = ξ

L
. (64)

5.3 Grids on T
2

A

Now consider a connection ∇ in A. Example 1 gave a construction of a grid in T A

for which the warp is ∇Xμ. We now extend this idea to define a grid in T 2 A.
Let X, Z ∈ X(M), and μ ∈ Γ A. Define the following three linear double sections:

– From Front to Back face: (T (X H ); X H , T (X); X).
– From Right to Left face: (T 2(μ); T (μ), T (μ);μ).

– From Down to Up face: (Z̃ H
A
; Z̃ , Z H ; Z).

Here Z̃ = JM ◦ T (Z) is the complete (or tangent) lift of Z to a vector field on T M .

Likewise Z̃ H
A

is the complete lift of Z H ∈ X(A) to a vector field on T A. The grid is
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shown in (65).

T 2 A T 2 M

T A T M

T A T M

A M.

T 2(μ)

T (X H )

Z̃ H
A

Z̃

T (X)

T (μ)

Z
T (μ)

X H

X

μ

Z H
(65)

The core morphisms of the linear double sections will be needed later:

– For (T (X H ); X H , T (X); X) the core morphism is (X H , X).
– For (T 2(μ); T (μ), T (μ);μ) the core morphism is (T (μ), μ).

– For (Z̃ H
A
; Z̃ , Z H ; Z) the core morphism is (Z H , Z).

The first two cases are instances of the general fact that given a morphism (ϕ, f ) of vec-
tor bundles, the core morphism of the double vector bundle map (T (ϕ);ϕ, T ( f ); f )

is (ϕ, f ).

To calculate the core morphism of (Z̃ H
A
; Z̃ , Z H ; Z), focus on (66). At this point

we investigate this linear double section further; it is a double vector bundle morphism
from the Down face to the Up face of T 2 A. Note that (66) is not a triple vector bundle.

T 2 A T 2 M

T A T M

T A T M

A M.

T 2(q)

T (pA)

Z̃ H
A

Z̃

T (p)

T (q)

Z
T (q)

pA

p

q

Z H
(66)

Take an element a ∈ A. As an element of the core of the Down face of (65) it is

a = d
dt

ta

∣∣∣
t=0

∈ T A. Using the fact that (Z̃ , Z) is a vector bundle map, we have that

Z̃(0T M
m ) = T (0T M )(Z(m)).

Similarly, using the fact that (Z H , Z) is a vector bundle map, we have that
Z H (0A

m) = T (0A)(Z(m)). Finally,

Z̃ H
A
(a) = JA

(
T (Z H )(a)

)
= JA

(
d

dt
Z H (ta)

∣∣∣
t=0

)

= JA

(
d

dt
t Z H (a)

∣∣∣
t=0

)
= JA

(
Z H (a)

B
)

.
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Table 1 Warps of grids of each face of T 2 A

wback wfront

Z̃ H
A

◦ T (μ) − T 2(μ) ◦ Z̃ ⊲ −T (∇Z μ) Z H ◦ μ − T (μ) ◦ Z ⊲ −∇Z μ

wleft wright

T (X H ) ◦ Z H − Z̃ H
A

◦ X H ⊲ [Z H , X H ] T (X) ◦ Z − Z̃ ◦ X ⊲ [Z , X ]

wup wdown

T 2(μ) ◦ T (X) − T (X H ) ◦ T (μ) ⊲ T (∇X μ) T (μ) ◦ X − X H ◦ μ ⊲ ∇X μ

Note the following. Initially, a ∈ T A is in the core of the Down face of T 2 A.
The canonical involution JA maps the Down face to the Front face (see (61)).
Therefore, in T (Z H )(a), a is now an element of the core of the Front face. The
maps (T (Z H ); Z H , T (Z); Z) form a double vector bundle morphism from the
Front to the Back face of (56), with core morphism (Z H , Z) as usual. Therefore,

T (Z H )(a) = Z H (a)
B

is now in the core of the Back face. And by (63), it follows that

JA

(
Z H (a)

B
)

= Z H (a)
U

.

This completes the proof that the core morphism of (Z̃ H
A
; Z̃ , Z H ; Z) is (Z H , Z).

5.4 The six warps of grid (65)

The first step in applying the warp theorem to the grid (65) on T 2 A was to calculate
the core morphisms of the linear double sections of the grid; we have done this in the
previous subsection. Now, for each face of T 2 A, we find the warp of the grid defined
by (65). We present the six warps in Table 1, using the ⊲ notation introduced directly
after Eq. (4), on page 3.

The three warps wfront, wright, and wdown of the lower faces follow directly from
Example 1 and Eq. (5). The warps of the upper faces are a bit trickier.

We begin with the warp of the Up face. For this, we need the following proposition
which states that the warp of the tangent of a grid is the tangent of the warp of the
grid.

Proposition 4 Let (ξ, X) and (η, Y ) be a grid on a double vector bundle D with warp

w(ξ, η) ∈ Γ C. Then (T (ξ), T (X)) and (T (η), T (Y )) form a grid on the double vector

bundle T D in (67) below and the warp of the tangent grid (T (ξ), T (X)), (T (η), T (Y ))

is T (w(ξ, η)) ∈ ΓT M (T C).
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D B

A M,

ξ

η Y

X

T D T B

T A T M.

T (ξ)

T (η) T (Y )

T (X)

(67)

Proof We leave the verification that T D is a double vector bundle and that
(T (ξ), T (X)) and (T (η), T (Y )) are linear sections of T D to the reader.

The warp w(ξ, η) ∈ Γ C of (ξ, X), (η, Y ) is given as usual by (8). We calculate the
warp of the tangent grid. From the definition of a warp, for x ∈ Tm M ,

(T (ξ) ◦ T (Y ))(x) —
T A

(T (η) ◦ T (X))(x) = T (0D ◦ X)(x) +
T B

w(T (ξ), T (η))(x).

Write x = d
dt

mt

∣∣∣
t=0

, for mt a curve in M with tangent vector x at t = 0. Then, for

F ∈ C∞(D),

(
(T (ξ) ◦ T (Y )) —

T A
(T (η) ◦ T (X))

)
(x)(F)

=
d

dt
F

(
(ξ ◦ Y )(mt ) —

A
(η ◦ X)(mt )

) ∣∣∣
t=0

=
d

dt
F

(
0D

X (mt )
+
B

w(ξ, η)(mt )

) ∣∣∣
t=0

=
d

dt
F

(
(0D ◦ X)(mt )+

B
w(ξ, η)(mt )

) ∣∣∣
t=0

=

(
T (0D ◦ X)(x) +

T B
T (w(ξ, η))(x)

)
(F). (68)

Here we used the formula

(T (ξ)(Φ1) +
T A

T (ξ)(Φ2))(F) =
d

dt
F(ξ ◦ ϕ1

t +
A

ξ ◦ ϕ2
t )

∣∣∣
t=0

(69)

for the addition in T D → T A, and the corresponding formula for scalar multiplication.
In (69), where F ∈ C∞(D), the Φi are elements of T B and the ϕi

t are curves in B

with

Φi =
d

dt
ϕi

t

∣∣∣
t=0

, i = 1, 2.
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Given T (qB)(Φ1) = T (qB)(Φ2) we can arrange that qB(ϕ1
t ) = qB(ϕ2

t ) for t near
zero. By uniqueness of the core element, it follows from (68) that

w(T (ξ), T (η))(x) = T (w(ξ, η))(x).

Applying Propositition 4 to the grid on the Up face of (65) it follows that

wup = T (∇Xμ) ∈ ΓT M (T A).

To calculate the warp of the Back face, we need to use the canonical involution JA.
The warp of the Back face is given by

T 2(μ)(Z̃(X (m))) —
pT A

Z̃ H
A
(T (μ)(X (m))).

The outlines of the two elements are

T 2(μ)(Z̃(X (m))) Z̃(X (m))

T (μ)(Z(m)) Z(m)

T (μ)(X (m)) X (m)

μ(m) m,

Z̃ H
A
(T (μ)(X (m))) Z̃(X (m))

Z H (μ(m)) Z(m)

T (μ)(X (m)) X (m)

μ(m) m,

(compare with the general triple outlines of the elements YZX and ZYX, of Sect. 4.1).

Writing the complete lifts as Z̃ H
A

= JA ◦ T (Z H ) and Z̃ = JM ◦ T (Z), and using
the naturality of J -maps (Lemma 2), we have that

T 2(μ)(Z̃(X (m))) —
pT A

Z̃ H
A
(T (μ)(X (m)))

= T 2(μ) (JM (T (Z)(X (m)))) —
pT A

JA

(
T (Z H )(T (μ)(X (m)))

)

= JA(T 2(μ)(T (Z)(X (m)))) —
pT A

JA(T (Z H )(T (μ)(X (m)))). (70)
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Since JA interchanges the structures pT A and T (pA), we can rewrite the last expression
in (70) as

JA

(
T 2(μ)(T (Z)(X (m))) —

T (pA)
T (Z H )(T (μ)(X (m)))

)
.

Focus on T 2(μ)(T (Z)(X (m))) —
T (pA)

T (Z H )(T (μ)(X (m))). We can rewrite this as

T (T (μ) ◦ Z)(X (m)) —
T (pA)

T (Z H ◦ μ)(X (m)). (71)

At this point, we apply Proposition 4 to the following grid,

T 2 A T 2 M

T A T M,

T 2(q)

T 2(μ)

T (pA)T (Z H ) T (p) T (Z)

T (q)

T (μ)

which is precisely the tangent of the grid (9). The warp of the latter is ∇Zμ. Therefore,
by Proposition 4, the warp of the tangent of (9) is given, for any x ∈ Tm M , by

(T 2(μ) ◦ T (Z))(x) —
T (pA)

(T (Z H ) ◦ T (μ))(x)

= T (∇Zμ)(x)
U

+
T 2(q)

T (0̃T A)(T (μ)(x)). (72)

Here we have denoted by 0̃T A the zero section of T A
pA
−→ A. For x = X (m), the

right-hand side of (72) is equal to (71). Therefore, (71) is equal to

T (∇Zμ)(X (m))
U

+
T 2(q)

T (0̃T A)(T (μ)(X (m))). (73)

We return now to our calculation of (70). Applying JA to (73), we have that (70) is

JA

(
T (∇Zμ)(X (m))

U
)

+
T 2(q)

JA

(
T (0̃T A)(T (μ)(X (m)))

)
.

The addition over T 2(q) does not change under JA, by Lemma 3. From (63) we have
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JA

(
T (∇Zμ)(X (m))

U
)

+
T 2(q)

JA

(
T (0̃T A)(T (μ)(X (m)))

)

= T (∇Zμ)(X (m))
B

+
T 2(q)

0T 2 A
T (μ)(X (m)).

This completes the calculation of the warp of the Back face; taking into consideration
the orientation of the Back face, the warp is wback = −T (∇Zμ) ∈ ΓT M T A.

Finally, the warp of the Left face is the crux of this example. The Left face is the
double tangent vector bundle T 2 A for the manifold A. We therefore apply (5). Taking
into account the orientation of the Left face, we have

T (X H ) ◦ Z H − Z̃ H
A

◦ X H ⊲ [Z H , X H ].

What is [Z H , X H ]? When a connection in a vector bundle is formulated in terms of a
lifting of vector fields from the base to the total space, as in Example 1, the difference
[Z H , X H ] − [Z , X ]H is one formulation of the curvature of the connection.

Using the warp theorem, we now show that the warp [Z H , X H ], combined with
the other warp terms from the grid (65), yields the standard formula for curvature in
terms of covariant derivatives. For the full statement see Theorem 2.

To begin, note that both [Z H , X H ] and [Z , X ]H project to [Z , X ] and therefore
their difference is a linear and vertical vector field on A.

At this point we take a closer look at linear sections (η, 0B), where η ∈ ΓA D and
0B ∈ Γ B, of a general double vector bundle D.

Lemma 4 Let ϕ : A → C be a vector bundle map over M. Define ϕ� : A → D by

ϕ�(a) = ϕ(a)+
B

0D
a .

Then (ϕ�, 0B) is a linear section. Every linear section (η, 0B) is of this form for a

unique ϕ : A → C.

We call (ϕ�, 0B) the bolt of ϕ; in [7] they are called core-linear sections.

Proof That (ϕ�, 0B) is a linear section follows immediately from the definition of ϕ�.
Take a1, a2 ∈ Am . Then

ϕ�(a1 + a2) = ϕ(a1 + a2)+
B

0D
a1+a2

= (ϕ(a1)+
B

ϕ(a2))+
B
(0D

a1
+
B

0D
a2

)

= (ϕ(a1)+
B

0D
a1

)+
B
(ϕ(a2)+

B
0D

a2
) = ϕ�(a1)+

B
ϕ�(a2),

and similarly for the scalar multiplication.
Suppose now that (η, 0B) is a linear section. For a ∈ Am , η(a) has the following

outline:
η(a) 0B

m

a m.
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Therefore, we can write η(a) = c +
B

0D
a , for a unique c ∈ Cm . Define ϕ(a) = c. Then

η(a) = ϕ(a)+
B

0D
a .

To show that ϕ is a vector bundle morphism, take a1, a2 ∈ Am . Then

ϕ(a1 + a2) = ϕ(a1) + ϕ(a2)

follows immediately from the linearity of η. And of course, similarly for the scalar
multiplication. Finally, we easily see that ϕ� = η.

The following notation prepares the way for Theorem 2.

Definition 7 With the above notation, write R : A → A for the vector bundle map
such that

[Z , X ]H − [Z H , X H ] = R�. (74)

It will take us until the end of the section to show that this definition leads to the
usual concept of curvature.

5.5 The three ultrawarps

The second and final step in applying the warp theorem to the grid (65) on T 2 A consists
of calculating the ultrawarps of the induced grids on the core double vector bundles
of T 2 A.

In Table 2 we present the induced grids and the ultrawarps, and we explain the
calculations in the remainder of the section.

The ultrawarps for the (B-F) and the (U-D) core double vector bundles (first and
third row of Table 2) follow directly from Example 1, taking of course into account
the orientation of the core double vector bundles.

What requires some work is the ultrawarp of the induced grid on the (L-R) core
double vector bundle (second row of Table 2). Taking into account the orientation of
the (L-R) core double vector bundle, this ultrawarp is defined by

[Z H , X H ] ◦ μ − T (μ) ◦ [Z , X ]. (75)

This grid is of a new type; we encounter it here for the first time. Using Definition 7,
we rearrange it as

[Z H , X H ] = [Z , X ]H − R�.

We need a small parenthesis on bolts and warps. It is easily seen that the warp of a
horizontal linear section (ξ, X) and a bolt (ϕ�, 0B) is

w(ξ, ϕ�) = −ϕ ◦ X. (76)

In addition, we have the following proposition.
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Table 2 Induced grids and ultrawarps in T 2 A

Induced grid on (B-F) core dvb uBF

TA A

TM M

XH

−T (∇Z µ) −∇Z (µ)

X

−T (∇Zµ) ◦ X + XH(∇Zµ) −∇X∇Zµ

Induced grid on (L-R) core dvb uLR

TA TM

A M

T (µ)

[ZH , XH ] [Z , X]

µ

[Z,X]H ◦ µ − T (µ) ◦ [Z, X] + (—
A

R ◦ µ − T (µ) ◦ 0TM )

−∇[Z,X]µ − R(µ)

Induced grid on (U-D) core dvb uUD

TA A

TM M

ZH

T (∇X µ) ∇X µ

Z

T (∇Xµ) ◦ Z − ZH ◦ ∇X ∇Z∇Xµ

Proposition 5 Given two grids (ξ, X), (η, Y ), and (ξ, X), (ϕ�, 0B) on a double vector

bundle D,

D B

A M

ξ

η Y

X

and

D B

A M,

ξ

ϕ� 0B

X

with warps w(ξ, η) and w(ξ, ϕ�), then

w(ξ, η +
A

ϕ�) = w(ξ, η) + w(ξ, ϕ�).
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We leave the proof to the reader.
Using Proposition 5, we can rewrite the induced grid on the (L-R) core double

vector bundle as the sum of

T A T M

A M

T (μ)

[Z , X ]H [Z , X ]

μ

and

T A T M

A M,

T (μ)

—
A

R�
0T M

μ

(77)

so (75) is now, from Proposition 5,

(
[Z , X ]H ◦ μ − T (μ) ◦ [Z , X ]

)
+

(
(—

A
R�) ◦ μ − T (μ) ◦ 0T M

)
.

The warp of the first grid of (77) is −∇[Z ,X ]μ (see Example 1). The warp of the second
grid of (77), using (76), is −R(μ). So in total, the warp of the induced grid on the
(L-R) core double vector bundle is

−∇[Z ,X ]μ − R(μ).

The warp theorem now gives us that

− ∇X∇Zμ − ∇[Z ,X ]μ − R(μ) + ∇Z∇Xμ = 0. (78)

Rearranging, we have the standard formula for curvature in terms of covariant deriva-
tives.

The use of covariant derivatives and the use of horizontal lifts are the two usual meth-
ods for working globally with connections in vector bundles. The covariant derivative
formulation was a natural development from the special cases of surface theory and
Riemannian geometry. It is our impression that the use of horizontal lifts emerged
from comparison with the connection theory of principal bundles.

As noted on page 7, Kobayashi and Nomizu [11] gave two equivalent global for-
mulations of the concept of connection in a principal bundle P(M, G): as a suitable
g-valued 1-form on P and as an invariant horizontal distribution H on P . They con-
centrated on the first of these, and its local version. It was noticed early on that a
connection was flat if and only if the corresponding H was involutive, and that the
choice of H was equivalent to a lifting of vector fields on M to invariant vector fields
on P: putting these together led to a definition of curvature by precisely the formula
(74) above. It was then easy to transfer this principal bundle formulation to vector
bundles.

Both Dieudonné [4, 17.20] and Greub et al. [10, VII,§4] obtained (78) by iterating
the covariant exterior derivative. What we have done is obtain (78) independently of
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earlier treatments, as a consequence of the warp theorem; if we start with the concept
of a connection ∇, and apply the warp theorem to the grid (65) on T 2 A, we obtain
(78) for R(μ). In other words, we have the following theorem.

Theorem 2 Given a connection ∇ in (A, q, M) and the equivalent horizontal lifting

Z → Z H as defined in (9), the vector bundle map R : A → A for which the bolt R�

is given by (74) is the curvature R∇(Z , X) as defined in (78).

6 The triple tangent bundle T
3

M and the Jacobi identity

In this section we consider the triple tangent bundle T 3 M of a manifold M and con-
struct a grid on it, for which the Jacobi identity emerges as a consequence of the warp
theorem. A version of this approach was given by Mackenzie [18]. We present here a
clearer and more detailed calculation.

Take E to be T 3 M , the triple tangent bundle. This is a special case of T 2 A, for
A = T M :

T 3 M T 2 M

T 2 M T M

T 2 M T M

T M M.

T 2(p)

T (pT M )
p

T 2 M

pT M

T (p)

T (p)

pT (p)

pT M p
p

pT M

The three lower faces are copies of T 2 M . The Left face is the double tangent bundle
of the manifold T M . The Back face is not a double tangent bundle; it is the tangent

double vector bundle of T 2 M
T (p)
−−→ T M . The Up face is obtained by applying the

tangent functor to T 2 M .
Starting with three vector fields X , Y , and Z , each a section of one of the three

copies of T M , one can build a grid on T 3 M as follows; see (79) below.

– The front-back linear double section (T (X̃); X̃ , T (X); X). Take the complete lift
of X across the Down face, and apply the tangent functor to the linear section
(X̃ , X).

– The right-left linear double section (T 2(Y ); T (Y ), T (Y ); Y ). Apply the tangent
functor to Y and then to T (Y ).

– The down-up linear double section (˜̃Z ; Z̃ , Z̃; Z). Take the complete lift of Z across
the Front face, and the complete lift of this across the Left face. Likewise take the

complete lift of Z across the Right face. One does need to check that (˜̃Z , Z̃) is
indeed a linear section of the Back face.
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The diagram in (79) shows the entire grid.

T 3 M T 2 M

T 2 M T M

T 2 M T M

T M M.

T 2(Y )

T (X̃)˜̃Z
Z̃

T (X)

T (Y )

Z
T (Y )

X̃

X

Y

Z̃
(79)

We now calculate the three ultrawarps defined by this grid. To do this, we calculate
the core morphisms of the three linear double sections, and the warps of the six faces.

First, the core morphisms. These follow in an analogous way as in the example of
T 2 A,

– The core morphism of (T (X̃); X̃ , T (X); X) is (X̃ , X).
– The core morphism of (T 2(Y ); T (Y ), T (Y ); Y ) is (T (Y ), Y ).

– The core morphism of (˜̃Z; Z̃ , Z̃; Z) is (Z̃ , Z).

To calculate the warps of the six faces, we take into consideration the orientation
of the faces of a triple vector bundle. For the lower faces, by (5):

– For the Front face: Z̃(Y ) — T (Y )(Z) ⊲ [Y, Z ].
– For the Right face: T (X)(Z) — Z̃(X) ⊲ [Z , X ].
– For the Down face: T (Y )(X) — X̃(Y ) ⊲ [X, Y ].

We now calculate the warps of the upper faces.

Back face. The warp of the Back face, for x ∈ T M , is given by

˜̃Z ◦ T (Y )(x) —
T 2(p)

T 2(Y ) ◦ Z̃(x) = wback(x) +
p

T 2 M

0̂Z̃(x). (80)

As noted, the Back face is the tangent double vector bundle of T 2 M
T (p)
−−→ T M . Apply

T (J ) to it, the tangent of the canonical involution J : T 2 M → T 2 M . The resulting
double vector bundle is now the double tangent bundle of T M . In fact, T (J ) is a triple
vector bundle morphism, and maps the Back face of T 3 M to the double tangent bundle
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of T M as shown in (81).

T 3 M T 2 M

T 3 M T 2 M

T 2 M T M

T 2 M T M.

T 2(p)

T (J )

p
T 2 M

pT M

id

T (pT M )

pT M
T (p)

J id
pT M

p
T 2 M

(81)

Also, the core morphism of (81) is (J, id). Hence, applying T (J ) to (80),

T (J )

(
˜̃Z ◦ T (Y )(x) —

T 2(p)
T 2(Y ) ◦ Z̃(x)

)
= J (wback(x)) +

p
T 2 M

0̂Z̃(x). (82)

Note that T (J ) changes the vector bundle structure over which the subtraction of the
left-hand side takes place, and —

T 2(p)
will become —

T (pT M )
. Applying T (J ) to the grid

of the Back face yields the following grid on the double tangent bundle of T M .

T 3 M T 2 M

T 2 M T M.

T (pT M )

T (Ỹ )

p
T 2 M˜̃Z pT M Z̃

pT M

Ỹ

Therefore, expanding the left-hand side of (82),

T (J )

(
˜̃Z ◦ T (Y )(x) —

T 2(p)
T 2(Y ) ◦ Z̃(x)

)

= T (J )((˜̃Z ◦ T (Y ))(x)) —
T (pT M )

T (J )((T 2(Y ) ◦ Z̃)(x))

= (˜̃Z ◦ Ỹ )(x) —
T (pT M )

(T (Ỹ ) ◦ Z̃)(x)

(5)
= −[Z̃ , Ỹ ](x) +

p
T 2 M

0̂Z̃(x) = [̃Y, Z ](x) +
p

T 2 M

0̂Z̃(x).
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Substituting this into (82),

[̃Y, Z ](x) +
p

T 2 M

0̂Z̃(x) = J (wback(x)) +
p

T 2 M

0̂Z̃(x),

and using that J 2 = id, we obtain

wback = T ([Y, Z ]).

Left face. The Left face is the double tangent bundle of T M , so we simply apply (5)

to the grid (T (X̃), X̃), (˜̃Z , Z̃), and obtain

T (X̃) ◦ Z̃ − ˜̃Z ◦ X̃ ⊲ [Z̃ , X̃ ] = [̃Z , X ],

so wleft = [̃Z , X ].

Up face. For the Up face, using Proposition 4, wup = T ([X, Y ]) follows directly.

The three ultrawarps. The three core double vector bundles are all copies of T 2 M ,
and their ultracore is T M → M .

The three core double vector bundles in the usual order (B-F), (L-R), and (U-D),
with the induced grids from the original grid on T 3 M ,

T 2 M T M

T M M,

X̃

wback wfront

X

T 2 M T M

T M M,

T (Y )

wleft wright

Y

T 2 M T M

T M M.

Z̃

wup wdown

Z

Finally, by (5), the ultracore elements are

wback ◦X − X̃ ◦ wfront = T ([Y, Z ]) ◦ X − X̃ ◦ [Y, Z ] ⊲ [X, [Y, Z ]],

wleft ◦Y − T (Y ) ◦ wright = [̃Z , X ] ◦ Y − T (Y ) ◦ [Z , X ] ⊲ [Y, [Z , X ]],

wup ◦Z − Z̃ ◦ wdown = T ([X, Y ]) ◦ Z − Z̃ ◦ [X, Y ] ⊲ [Z , [X, Y ]].

We see that in this way we have formulated the three terms of the Jacobi identity. And
applying the warp theorem, we obtain a diagrammatic proof of the Jacobi identity.

Concluding remarks

The statement of the warp theorem is easy to describe and needs only minimal notation
(in fact it reminds us of the “boundary of the boundary is zero” for cochains), but to
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prove it globally we have had to introduce a considerable arsenal of background
techniques, and make a number of intricate calculations. This is an instance of the
great difference between geometric intuition and rigor.

It is natural to consider whether the horizontal lifting process of Sect. 5 and the
complete lifting of Sect. 6 can be unified by a general process of lifting. This seems
to us unlikely, since complete and horizontal lifts differ in many respects. The warp
theorem applies to both cases and can be regarded as providing as much unification
as is possible.

In a future paper we will consider in detail the application of the warp theorem to
triple vector bundles with compatible bracket structures.
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