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Compact Deep Neural Networks for Computationally Efficient Gesture

Classification From Electromyography Signals

Adam Hartwell, Visakan Kadirkamanathan, and Sean R. Anderson

Abstract— Machine learning classifiers using surface elec-
tromyography are important for human-machine interfacing
and device control. Conventional classifiers such as support
vector machines (SVMs) use manually extracted features based
on e.g. wavelets. These features tend to be fixed and non-person
specific, which is a key limitation due to high person-to-person
variability of myography signals. Deep neural networks, by
contrast, can automatically extract person specific features - an
important advantage. However, deep neural networks typically
have the drawback of large numbers of parameters, requiring
large training data sets and powerful hardware not suited
to embedded systems. This paper solves these problems by
introducing a compact deep neural network architecture that
is much smaller than existing counterparts. The performance
of the compact deep net is benchmarked against an SVM and
compared to other contemporary architectures across 10 human
subjects, comparing Myo and Delsys Trigno electrode sets. The
accuracy of the compact deep net was found to be 84.2±0.06%

versus 70.5±0.07% for the SVM on the Myo, and 80.3±0.07%

versus 67.8 ± 0.09% for the Delsys system, demonstrating the
superior effectiveness of the proposed compact network, which
had just 5,889 parameters - orders of magnitude less than some
contemporary alternatives in this domain while maintaining
better performance.

I. INTRODUCTION

Machine learning is an essential tool for extracting user

intention from bio-electric signals for control of devices

[1], [2]. In the domain of hand movements, classification

from surface electromyography (sEMG) has been performed

using methods such as support vector machines (SVMs) [3]–

[6], neural networks [3], [4], [7], neurofuzzy [8], [9] and

mixtures of experts [10]. Typically, for these conventional

classifiers, feature extraction is performed using manually

chosen features e.g. wavelets or Fourier transforms [11], [12].

This approach to feature extraction is limited because the

features are not person-specific. This is important because

there is a large variability of myoelectric activity from

person-to-person, suggesting that features should be tuned

specifically to each individual.

Deep neural networks [13], [14] are potentially advan-

tageous for gesture recognition because they can perform

person-specific feature extraction. The networks can be

trained from raw sEMG data which allows learning of

features tailored to each subject during feature extraction

in the early layers which contrasts hand designed features

which are generally computed in the same manner on all

subjects.
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There are now a few instances of deep neural networks

used in hand movement classification from sEMG [15]–

[18]. However, one of the barriers to the wider uptake of

deep neural networks is the typical large network size and

associated large number of parameters. This makes it difficult

to ensure good generalisation of the trained network, and also

sets out a requirement for large training data sets, which can

be difficult and time-consuming to obtain. In addition, large

networks are not well suited to real-time implementation in

embedded systems using portable GPUs with relatively few

cores (e.g. 256 CUDA cores on the NVIDIA Jetson TX2 for

embedded systems, compared to 3,500 CUDA cores on the

NVIDIA GeForce GTX 1080 Ti desktop GPU).

In this paper, we propose the use of compact deep con-

volutional neural networks (CNNs) for gesture recognition,

in order to solve the problems associated with large deep

networks. Recently, model compression techniques have

been developed for deep nets to massively reduce their size,

using singular value decomposition [19], network pruning

[20] and deep compression [21]. One method, SqueezeNet,

has produced state-of-the-art results compared to those tech-

niques in image processing [22]. We modify the SqueezeNet

architecture here and encode a spatial-reduction strategy into

the network to produce a novel CNN architecture that has far

fewer parameters than those used previously in this domain

(Fig. 1). This solves a number of problems associated with

large network size, thus opening up wider potential for

person-specific machine learning algorithms for recognition

problems.

To evaluate the compact CNN, we benchmarked against

an SVM with wavelet features on a hand movement classi-

fication task using sEMG data. The experimental data was

obtained from 10 human subjects. We also compared high

grade sEMG electrodes from Delsys against the low cost

Myo armband (Fig. 2). The number of hand movement

gestures classified was 15 (Fig. 2). The results demonstrate

that the compact deep net outperforms the SVM for all

human subjects, for each electrode type.

Further we compared our compact deep neural network

to other contemporary deep neural network architectures

in terms of accuracy, number of parameters and run-time

performance on both an NVIDIA Jetson TX2 GPU and an

NVIDIA GeForce GTX 1080 Ti. Our results demonstrate that

we maintain high performance (better than contemporary,

large, deep neural network architectures) whilst significantly

reducing run-times on embedded hardware.



Fig. 1: Neural network architecture for Myo and Delsys data
respectively. Note that the Temporal Convolution stage has 3 × 1

size filters for the Myo electrodes and 50 × 1 for the Delsys
Trigno electrodes (due to the higher sample frequency of the Delsys
system). The Spatial Reduction Convolution is 1x8 for the Myo data
and 1x5 for the Delsys data due to the number of input channels.

II. METHODOLOGY

In this section we describe the compact deep neural

network, the SVM, the performance evaluation (including

cross validation approach), experimental data collection and

our runtime evaluation strategy.

A. Deep Convolutional Neural Network

The input to the CNN is a window of sEMG data, X ∈
R

ns×nc , where ns is the number of samples and nc the

number of sEMG channels. The main building block of the

CNN is the convolutional layer, where a 2D convolution is a

single 2D map, indexed by k, in layer l, is Z(l,k) ∈ R
rl×cl ,

where Z0,1 = X . At each layer there is a stack of dl maps,

i.e. a 3D volume of dimension rl × cl × dl. The value of a

unit, z
(l,k)
r,c , at location (r, c), in the map Z(l,k), is given by

z(l,k)r,c = ha









dl−1
∑

m=1

Rl
∑

i=1

Cl
∑

j=1

w
(l,k,m)
i,j z
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
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



(1)

where z
(l,k)
r,c is the neuron output at location (r, c), for r =

1, . . . , rl, c = 1, . . . , cl, Rl × Cl is the convolution filter

size, the convolution filter indexed by k, for k = 1, . . . , dl,

is composed of the adjustable CNN weights w
(l,k,m)
i,j , b(l,k)

is a bias term, and r̃ = r − ⌈Rl/2⌉ and c̃ = c− ⌈Cl/2⌉ for

odd valued Rl and Cl. ha(.) is the activation function of the

neuron, defined here, for all but the final layer, as the leaky

rectified linear unit (LReLU) [23], [24], where

ha(x) =

{

x, x ≥ 0

αx, x < 0
(2)

where 0 < α < 1 but is generally a small value such as 0.1
which is used here.

The final layer, which performs the classification, is a

dense layer with softmax activation function,

z∗j = exp
(

z̃
(l)
j

)

×

(

M−1
∑

k=0

exp
(

z̃
(l)
k

)

)−1

(3)

for class j = 1, . . . ,M − 1, where M is the number of

classes, z∗j is the normalised output of the softmax layer for

class j and

z̃(l)r =





dl−1
∑

m=1

rl−1
∑

j=1

cl−1
∑

i=1

w
(l,m)
i,j z

(l−1,m)
i,j



+ b(l,r) (4)

for r = 1, . . . ,M − 1.

The network weights were trained using the following

cross-entropy loss function, for N data samples and M
classes,

L(Θ) = −

N
∑

i=1

M−1
∑

j=0

1{y(i) = j} log z∗ij (5)

where Θ is the set of all CNN parameters, including weights

and biases from all layers, z∗ij is the softmax output for

data sample i and prediction of class j, y(i) is the true

class label for data sample i, 1{.} is the indicator function,

i.e. 1{.} = 1 for true and 1{.} = 0 for false. The cross-

entropy was minimised using the Adam algorithm, which

is a variant of first order stochastic gradient descent with

momentum [25]. The weight parameters were randomly

initialised using the Glorot uniform kernel [26], and bias

parameters were initialised to zero. To prevent overfitting,

dropout regularisation was used (Fig. 1) and early stopping

on validation data via a minimum improvement threshold of

0.5% for 5 iterations.

A key novel feature here is the architecture based on

SqueezeNet. The “Temporal Fire Module” indicated in Fig-

ure 1 is a customisation of the “Fire Module” used in the

SqueezeNet network design [22], which allows high perfor-

mance classification while keeping the number of parameters

low. Our variant expands only in the temporal direction

of the sEMG data enforcing the extraction of low-level

temporal features, whilst maintaining a high performance-to-

parameters ratio. This design was found to produce results

significantly better than a less constrained approach which

allows early features to be spatial-temporal or only spatial

in nature.

The other key novel architecture choice is the spatial

reduction convolution placed late in the network (Fig. 1).

This spatial convolution uses only 2 filters thus explicitly

encoding that we expect there to be few spatial combinations

that are meaningful for determining the gesture classes. This

allows a significant reduction in the number of parameters

but again with only minimal performance loss.

The intuition behind the spatial reduction is that different

sensors will be more important on different subjects due to

physical and biological differences as well as issues such



as cross-talk and so this layer acts a filter selecting which

channels are most important to the classification task.

We implemented the CNN in Keras [27], which is a Python

front-end for designing deep neural networks, which here

was used with the Python library Tensorflow [28] for compu-

tational implementation. Parameter estimation (training) for

the CNNs was performed using an NVIDIA Tesla K40 GPU

with 12 GB RAM. Note that although a high performance

GPU was used here for rapid training, implementation was

evaluated on a NVIDIA Jetson TX2 GPU (256 CUDA cores)

designed for embedded systems and an NVIDIA GeForce

GTX 1080 Ti (3,500 CUDA cores).

B. Support Vector Machine

The SVM was designed using a Radial Basis Function

kernel, a one-vs-all approach was used to hand the multiple

classes, the gamma factor was set to the reciprocal of the

number of features and class weighting was inversely propor-

tional to number of examples, no probability estimates were

used. The marginal Discrete Wavelet Transform (mDWT)

[5] down to the 3rd level of decomposition was used as the

feature representation due to its previously good performance

in similar studies [3].

C. Generic CNN Benchmark

A generic CNN with no domain-based optimisations was

also evaluated to give a baseline in terms of macro accuracy

potential and run-time performance. This CNN represented

a naive, large, deep neural network solution without the

compactness offered by the SqueezeNet architecture.

This CNN was structured as 12 convolutional blocks:

each block consisted of a 1x1 or 3x3 convolution with 32

filters and a stride of 1, followed by batch normalisation and

finished with a Leaky ReLU with α = 0.1. The block order

was 3x3, 3x3, 3x3, 1x1 and this order was then repeated

twice more creating an architecture made of 12 blocks. After

the 12th block a dense layer was connected using a softmax

activation to generate the final classification output. The same

early stopping criteria and initialisation scheme was used as

described in Section II-A to guard against overfitting.

D. Experimental Data

1) Overview: All data were collected under approval of

the University of Sheffield ethics board. Our study gathered

data from the dominant hand of 10 healthy subjects using

both a Myo Armband (8 surface electrodes) [29] and 5

Delsys Trigno [30] wireless surface electrodes. The Myo and

Delsys electrodes were worn simultaneously to record ex-

actly the same movement signals. This had the consequence

that the electrode sets could not be placed in the same spatial

location. However, we judged that the advantage of recording

the same movement out-weighed this drawback. In addition,

the Myo armband is limited in its placement, whilst the

Delsys electrodes are much more flexible and can arguably

be more effectively targeted to specific muscle groups useful

for hand movement classification.

Each subject performed 6 repetitions of 14 gestures (+rest)

holding each for 10 seconds. A strong timing delimitation

was used to ensure all data labelled for a gesture only

contained the gesture itself and not the movement into or

out of the gesture. This was found to produce a much more

reliable online classification result than attempting to train a

classifier that attempted to learn these edge effects.

2) Electrode placement: The Myo Armband was placed

2/3s of the way up the forearm (measured from lower elec-

trode edge) with main electrode block directly on top, status

LED closest to the wrist, band perpendicular to forearm as

this is the placement recommended by the manufacturer.

The Delsys Trigno electrodes were placed using the sticky

patches recommended by the manufacturer. These positions

were selected to target both specific muscles and general

areas of interest. Electrode E1 was placed just behind the

wrist along the Abductor Pollicis Longus muscle. E2 was

placed similarly behind the wrist along the Flexor Digitorum

Superficialis. E3 was set behind the wrist along the Extensor

Carpi Ulnaris. E4 was placed further up the forearm, but in

front of the Myo Armband along the Flexor Carpi Radialis.

Lastly, electrode E5 was placed in-line with E4 up the

forearm but along the Flexor Carpi Ulnaris (Fig. 2).

Timestamps were used to synchronise data streams for

labelling and a sliding window of length ∼ 150ms (due to

changing sampling rates) with an increment of ∼ 5ms was

used. An exception is made for re-implementation of the

Geng et al. [16] network as it performs instantaneous clas-

sification therefore requiring a window length of 1 sample.

3) Gesture set selection: The set of gestures used were

selected from a large pool of candidates based on the hand

taxonomy literature, recognisable gestures (such as from sign

languages) and commercial sEMG work. Selection criteria

was based on preliminary trials conducted on subject 1.

These trials involved gathering data on each of these differ-

ent gestures and quantitatively comparing the performance

achieved by the Neural Network and SVM classifiers on

offline data with various combinations of these gestures as

well as a qualitative comparison of the classification potential

in an online context using the Myo Armband.

4) Gesture movement: A stationary hold of a gesture

for 10 seconds was chosen over a more rapid movement

into and out of a gesture to avoid the issue of inaccurate

ground truth caused by movement. When a subject performs

a movement as opposed to a hold the classification algorithm

must account for the movement into, hold of the gesture and

movement out of the gesture back to rest (typically) which

is highly likely to violate the explicit assumption in most

classification algorithms that each class is unique in some

way because the movements into and out of each gesture

are likely to be similar.

E. Performance Evaluation

We use the macro average accuracy as our keystone

performance metric [31], which weights all classes equally,

āma =
1

G

G
∑

i=1

TPi

TPi + FNi

(6)



Fig. 2: Position of electrodes on the forearm of subject 1 (top) and
the 14 gestures (+ rest) included in the study and their associated
labels (bottom).

where āma is the macro-average accuracy, FNi is the false

negatives of gesture i, TPi is the true positives for gesture i
and G is the number of gestures (classes).

This metric encodes explicitly the idea that all classes are

equally important and helps provide an unbiased measure of

performance, it would also help account for any imbalance

in the number of training examples although this is not an

issue here due to our experimental methodology.

We perform a variation of 12-fold stratified cross valida-

tion on each subject to acquire a mean performance for each

subject using totaled TP and FN for a less biased result [32]

as in Equation 7. We then calculate the mean of this across

all subjects to get an estimate for the expected performance

on a new subject.

ā∗ma =
1

G

G
∑

i=1

∑K

j=1 TPi,j

∑K

j=1 TPi,j +
∑K

j=1 FNi,j

(7)

where K is the number of cross validation folds.

Typically when selecting folds in cross validation samples

are selected randomly however in this dataset and in any

other data set where a sliding window is used with an incre-

ment lower than the window length this is inappropriate and

undermines any conclusions drawn because random selection

will include windows that overlap violating training-test data

separation.

In order to avoid this problem we split data via repetition

number into training (3/6), validation (1/6) and test sets

(2/6). This method ensures no informational contamination

between between sets.

Numerically, for the Myo data this led to ∼ 90, 000 train-

ing samples, ∼ 30, 000 validation samples and ∼ 60, 000
independent test samples. The Delsys data was roughly

∼ 87, 000, ∼ 29, 000, ∼ 58, 000 due to the longer window

length in terms of samples.

Validation data was used for early stopping during neural

network training and ignored for SVMs to ensure compara-

bility between results. Each classifier was trained indepen-

dently on each subject and the mean performance was then

calculated across all subjects and validation folds.

F. Run-time Performance

We used two different computing platforms to evaluate

runtime performance in a real world context. One was a

general purpose computer with an Intel Core i5-6500 and an

NVIDIA GTX 1080 Ti GPU with 3,500 CUDA cores. The

second was the NVIDIA Jetson TX2 - a low power embedded

device designed for use with neural networks with just 256

CUDA cores. Both ran Ubuntu 16.10 LTS, Tensorflow 1.5.0

[28] and Keras 2.0.6 [27].

We made use of Python’s “timeit” package reporting the

lowest value from 20 trials, each of which took the mean

run-time of 1000 predictions. This produced a soft lower

bound on computation time. The upper bound, mean and

standard deviation of trials were less informative here due

to interactions with the operating systems and other running

programs.

III. RESULTS AND DISCUSSION

We compared the classification performance of the com-

pact CNN to the SVM, which showed that the CNN out-

performed the SVM for all movements (Figure 3), and all

subjects (Figure 4), on both Myo and Delsys data sets. To

summarise, the macro accuracy on the Myo data across all

subjects and movements was 84.2± 0.06% for the deep net

versus 70.5 ± 0.07% for the SVM. For the Delsys data the

macro accuracy was 80.3± 0.07% using the deep net versus

67.8± 0.09% using the SVM.

We compared the size of this compact CNN to previously

published types of deep neural network (Table I). The

compact CNN used here contained only 5,889 parameters,

which is far fewer than networks previously used in this

domain. Table I shows a comparison of the compact CNN

against contemporary networks retrained and tested using our

methodology and data. On a desktop PC using a GTX 1080

Ti we found, as expected, that number of parameters was

not critical for fast run-time implementation. However, for

the Jetson TX2, which is more representative for embedded

systems, we observed significant improvements in run-time

using the compact CNN.



Fig. 3: Comparison of accuracy per class of the neural networks and SVMs trained on the Delsys and Myo data.

Fig. 4: Per Subject performance comparison between compact CNN and SVM classification algorithms, for both Myo and Delsys data
sets. Note that each dot represents an individual test subject.

The generic CNN architecture actually performed best of

all architectures on both data sets by 2−3% but scaled poorly

in number of parameters with the window length leading

to a much slower run-time on the Delsys data (Table I).

Our compact CNN performed second best overall, but still

outperformed other published networks in terms of macro

accuracy, and performed best in terms of run-time by a

significant margin. This trade-off between high accuracy and

fast run-time makes the novel, compact, deep neural network

designed here the best suited to embedded systems.

The Geng et al. [16] network performed with low accuracy

here (Table I), which was likely due to the network’s use

of a single sample of EMG as input, not a window, as

was used in all other methods. This single sample approach

appeared more successful in their previous work where there

were large numbers of electrodes available [16]. Also, our

evaluation method took into account data balancing equally

weighting performance across classes, which might not have

been the case in their original study.

The results indicate that the Myo Armband can provide a

Myo Data

Params Acc. 1080 Ti TX2

Compact CNN 5,889 84.2% 1.68ms 7.89ms
Atzori et al. [15]: Delsys 97,883 81.7% 1.69ms 13.17ms

Generic CNN 135,599 86.8% 2.40ms 13.57ms
Geng et al. [16] 644,435 44.1% 3.19ms 22.26ms

Delsys Data

Params Acc. 1080 Ti TX2

Compact CNN 5,657 80.3% 1.74ms 8.07ms
Atzori et al. [15]: Delsys 99,308 65.4% 1.66ms 15.36ms

Generic CNN 740,399 83.1% 2.66ms 24.55ms
Geng et al. [16] 546,131 26.4% 3.21ms 20.14ms

TABLE I: Comparison of number of parameters, cross-subject
mean macro accuracy and run-times for different types of deep
convolutional neural network used in hand movement classification.

level of performance similar to the Delsys Trigno system

for the purpose of hand movement classification, albeit

with more electrodes (Figure 4). The Myo also has the

advantages that it is easier to setup, easier to integrate

with other applications and a factor of 100 cheaper. The

Delsys system does provide a greater degree of flexibility



in electrode placement and extensibility in the form of using

more electrodes, however, which may allow a more complex

setup to provide better performance than the Myo.

A similar study using deep nets with Myo and Delsys

electrodes [17] indicated that the Delsys system improves,

relative to the Myo, on classification performance for many

movements (∼50), likely due to its superior sampling and

electrode quality. However, for situations where only 10-15

movements are required, the Myo is likely the better solution

given it’s comparable performance and lower cost.

IV. CONCLUSIONS

We have presented a compact deep neural network based

approach to gesture recognition. The compact CNN was

evaluated on hand movement classification on inexpensive

sEMG hardware in the form of the Myo Armband and

compared to the Delsys Trigno electrodes.

We compared the compact deep neural network to an

SVM-based approach using the features based on the

marginal discrete wavelet transform and found our approach

to be significantly better, achieving a ∼ 15% performance

enhancement for both types of electrode.

Lastly, we compared our compact architecture to other

larger, contemporary deep neural network architectures

demonstrating that our compact CNN performs better in

terms of accuracy and run-time performance making it well

suited to sEMG applications in general and especially to

applications that have a restriction on computational power,

such as embedded systems.
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