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Abstract—This work proposes an improved method for Predic-
tive Functional Control (PFC) to handle an integrating process.
Instead of assuming a constant future input, the dynamic
is shaped with a first-order Laguerre polynomial so that it
converges to the expected steady state value. This modification
provides simpler coding and tuning compared to the conven-
tional method in the literature. Simulation results show that
the proposed controller improves the consistency of the open-
loop prediction of an integrating process and thus improves
closed-loop performance and constraint handling properties. The
practicality of this algorithm is also validated on laboratory
hardware.

Index Terms—Predictive Control, PFC, Laguerre Function,
Constraints, Integrating Process, Transparent Control, Servo
System.

I. INTRODUCTION

Predictive Functional Control (PFC) is a simple version

of Model Predictive Control (MPC) developed in the early

1970s [1]. This algorithm only requires simple coding and

low-level computation while retaining similar benefits to MPC

in handling constraints and/or delays [2]. Despite its appealing

characteristics, PFC receives relatively little interest in the

literature [3] as it does not easily have rigorous properties

such as stability assurances [4], [5] or robust feasibility [6].

However, the key selling point of PFC is the simplicity in

tuning and implementation; it is a competitor to PID rather

than the conventional predictive controller.

The simplistic PFC concept has several limitations, espe-

cially when dealing with an integrating process [2]. Due to

their marginally stable dynamics, the constant future input

assumption of PFC gives a divergent open-loop prediction

[2], [7], [8]. Consequently, it may lead to poor closed-loop

performance, prediction inconsistency, and also a failure in

constraint implementation. Nevertheless, for low-level control

applications where PID is unable to handle a constraint, PFC

is still considered as an attractive option. Thus, the aim of this

paper is to overcome some weaknesses while maintaining the

formulation simplicity and cost effectiveness of PFC.

To deal with open-loop unstable plant, PFC practitioners

often employ a cascade like structure known as transparent

This work is funded by International Islamic University Malaysia and
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control [2]. The inner loop consists of a proportional controller

to stabilise the system predictions, and PFC provides the

target trajectory via an outer loop. In practice, this structure

often works better than PID within a constrained environment.

However, the use of constant future input assumption can

still lead to ill-posed decision making which impacts on both

closed-loop performance [9] and constraint handling [10]. The

interaction between inner and outer loops also makes the

tuning and constraint implementation less transparent and,

within the literature, there is no clear or systematic explanation

of the approach.

Recent work has shown Laguerre PFC (LPFC) can im-

prove closed-loop performance, prediction consistency and

constraint handling for a stable system [9], [10]. This paper

explores its capability to handle an integrating process. LPFC

shapes the future input trajectory to converge to steady state

with 1st order dynamics; this framework can stabilise the open-

loop prediction of an integrating system without requiring a

cascade structure, thus retaining a standard, and simpler, PFC

formulation. Moreover, the Laguerre pole can be used to fine

tune the closed loop performance [9], [11] and facilitate more

reliable constraint management. The required modification is

straightforward and thus in line with the simplicity require-

ment.

Section II gives some background on the nominal PFC

and LPFC frameworks. Section III introduces the transparent

control and LPFC law to handle an integrating process. Sec-

tion IV provides a numerical example and analysis for both

approaches. Section V validates the results with laboratory

equipment simulations and section VI provides conclusions.

II. PFC FORMULATION FOR NOMINAL SYSTEM

This section only gives a brief review of conventional and

Laguerre PFC formulations. For more detailed explanations of

PFC theory and concepts can be found in these references, e.g.

[2], [3], [7], [9]. To focus on the key conceptual contribution,

the offset free correction is omitted from the formulation

although it is applied in all the examples. Without loss of

generality, all the control structures will use a general transfer

function model for prediction. It is noted that the sensitivity

of PFC to uncertainties constitutes future work.



A. Traditional PFC

A PFC framework is based on simple human concepts and

computes a required control action depending on how fast a

user expects/desires the output to reach the target. There are

two main components in the PFC formulation which are the

desired target trajectory and system prediction. The control

law is calculated by enforcing the following equality:

yk+n|k = R− (R− yk)λ
n (1)

where yk+n|k is the n-step ahead system prediction at sample

time k. The right hand side of (1) represents the desired

trajectory of the output from yk to the target value R with

a convergence rate λ. The two main tuning parameters are:

• The coincidence horizon n defines the point where the

system prediction matches the target trajectory.

• The desired closed-loop pole λ = e−3T/CLTR, with

T the sampling time and CLTR the closed-loop time

response.

Since the n-step ahead prediction algebra of a linear transfer

function mathematical model is well known in the literature

(e.g. [12]), here only the key results are provided. For inputs

uk and outputs yk, the n-step ahead linear model prediction is

given as:

yk+n|k = Hnuk
→

+ Pnuk
←

+Qnyk← (2)

where parameters Hn, Pn, Qn depend on the model parame-

ters and for a model of order m:
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The control input is computed by substituting the prediction

(2) directly into (1) to obtain:

Hnuk
→

+ Pnuk
←

+Qnyk← = R− (R− yk)λ
n (4)

Adding a constant future input prediction assumption uk+i|k =
uk, i = 0, ..., n and defining hn =

∑

(Hn), the nominal PFC

control law reduces to:

uk
→

=
R− (R− yk)λ

n − (Pnuk
←

+Qnyk←)

hn
(5)

Remark 1: The tuning parameter λ should make the design

process transparent, however the selection of coincidence

horizon n affects the efficacy of λ due to the constant future

input assumption [7]. With small horizons, the effectiveness of

λ is more significant, but there may be poor prediction consis-

tency with the target behaviour resulting in poor closed-loop

behaviour. Conversely, larger horizons gives better prediction

consistency but reducing the effectiveness of λ as a tuning

parameter.

Remark 2: Prediction consistency is important for effective

constraint handling thus, for some challenging dynamics, a

constant input assumption may be ineffective [10].

B. Laguerre PFC (LPFC)

The LPFC approach utilises the expected constant steady-

state input uss to eliminate the offset. The z-transform of

discrete Laguerre polynomials are [11]:

L(z) =
√

1− a2
(z−1 − a)j−1

(1− az−1)j
; 0 < a < 1 (6)

where j is the order of Laguerre function and a is the Laguerre

pole which depends on a user selection between 0 < a < 1.

For simplicity of coding and concept, a first-order Laguerre

polynomial is employed here, although high order polynomials

may be used [11], [13], [14]. The function with altered scaling

becomes an exponential decay as:

L(z) =
1

1− az−1
≡ 1 + az−1 + a2z−2 + · · · (7)

Hence, the future input prediction is parametrised as:

uk+n = uss + Lnη; Ln = an; L = [1, a, · · · , an−1] (8)

where η is a degree of freedom. The parametrisation of (8)

gives output predictions which converge to the steady-state

exponentially with a rate a. The n step ahead output prediction

is derived by substituting (8) into (2):

yk+n|k = hnuss +HnLnηk + Pnuk
←

+Qnyk← (9)

Hence, the LPFC control law is defined by substituting

prediction (9) into (1) and solving for parameter η as:

ηk =
R− (R− yk)λ

n − (Pnuk
←

+Qnyk←)− hny
uss

HnLn
(10)

Due to the receding horizon principle [11] and the definition

of L(z) in (7), the current input uk is:

uk = uss + ηk (11)

Remark 3: By shaping the future input dynamics, LPFC can

improve prediction consistency, closed-loop performance and

the efficacy of λ as a tuning parameter [9]. This improvement

also provides a more accurate and less conservative solution

when satisfying output/state limits [10].

III. PFC FORMULATION FOR INTEGRATING SYSTEM

An integrating process has marginally stable dynamics as

one of the poles resides at the origin. This pole gives an extra

challenge to the traditional PFC framework because the open-

loop prediction does not converge when using the constant

future input assumption. This section presents two alternative

frameworks. The first subsection briefly reviews the proposed

technique in the literature, so-called transparent control by [2],

and the following subsection presents the proposed modifica-

tion of LPFC for integrating processes. Currently, the concept

is only introduced to a single integrator problem, while future

work will consider a further generalisation for a plant with

multiple integrators or marginally stable poles.



A. Transparent Control

Transparent control utilises two level of cascade structure

(see Fig. 1). The inner loop employs a proportional gain

with negative feedback to stabilise the open loop prediction,

while nominal PFC controls the outer loop and eliminates any

offset due to disturbance and enhances the overall dynamic

performance [2].

Fig. 1: Transparent PFC structure.

The inner loop with gain K will be used as a prediction

model as in (12) instead of the plant model G to compute the

manipulated input uc.

y(s) =
GK

1 +GK
uc(s) (12)

The actual input u that will be send to the plant is:

uk = K(uc,k − yk) (13)

With this technique, the controlled system is able to maintain

regulation during set-point changes by introducing a temporary

over-compensated set-point [2]. At the same time, the outer

loop will minimise the tracking error using a standard PFC

formulation as discussed in section II-A.

Remark 4: Transparent PFC (TPFC) only accepts propor-

tional gain rather than the combination with integral and/or

derivative to keep the constraint implementation purely al-

gebraic [2]. To implement input or rate constraints, a back

calculation procedure is needed to transfer the information

from the inner loop to the outer loop and avoiding saturation

as:

yk +
umin

K
≤ uc,k ≤ yk +

umax

K
(14)

yk +
∆umin + uk−1

K
≤ uc,k ≤ yk +

∆umax + uk−1

K
(15)

Since the constraint is implemented at the current time only,

there is no check that the implied predictions satisfy con-

straints in the future and thus recursive infeasibility may result.

Remark 5: For output or state constraints, the traditional

practise utilises a multiple PFC regulators that run in parallel

[2], [10]. The first regulator computes the preferred control

action while the second regulator produces an input to satisfy

the limit. A supervisor will choose the correct input for the

plant. However, advances in computation technology mean

this tedious ad hoc approach can be replaced with a more

systematic, but simple, approach such as in [15].

B. Laguerre PFC for Integrating Process

Due to the pole on the origin, the steady state input for

an integrating process is zero for a constant set point. These

dynamics are still compatible with a LPFC law (section II-B)

with the only required modification being to define uss = 0.

Theorem 1: The future input dynamics of

u(z) =
uss

1− z−1
+

ηk
1− az−1

(16)

will give input predictions that settle exponentially at zero with

a speed linked to Laguerre pole a. For an integrating process,

the value ηk effects the implied steady-state outputs.

Proof: The signal defined in (16) has the property that

lim
k→∞

uk = uss ⇒ lim
k→∞

yk = R (17)

When uss = 0, the steady-state output has affine dependence

on the integral of the future input. �

Remark 6: For simple first order system the value of a
should be equal to λ [9]. However for a higher order system,

selecting a < λ will give faster convergence to steady state

and thus can improve the prediction consistency.

Algorithm 1 (LPFC): For integrating process, a similar

algorithm as in (10) is used except that uss term is removed.

ηk =
R− (R− yk)λ

n − (Pnuk
←

+Qnyk←)

HnLn
(18)

Theorem 2: Using LPFC input predictions as defined in

Algorithm 1, output, state and input constraints can be rep-

resented by a set of linear inequalities.

Proof: Output constraints can be constructed from the

output predictions in (9) within the validation horizon ni and

comparison with the limits at each sample instant, e.g.:

ymin ≤ Hni
Lni

ηk + Pni
uk
←

+Qni
yk
←

≤ ymax, ∀i > 0 (19)

The maximum/minimum input rate/value occur at the first

sample, so input constraints can be formulated as:

umin ≤ ηk ≤ umax (20)

∆umin ≤ ηk − uk−1 ≤ umax (21)

Combining (19,20,21) it is clear that for suitable M, vk one can

represent the satisfaction of constraints by predictions using a

single vector inequality of the form:

Mηk ≤ vk � (22)

We can now define the constraint handling algorithm which

is akin to methods given in [15].

Algorithm 2: [LPFC constrained] Use the unconstrained

law (18) to determine the ideal value of ηk and check each

constraint in (22) using a simple loop (subscripts denote

position in a vector).

Set umax = ∞, umin = −∞.

For i=1:end,

if Miηk 6≤ vi & Mi > 0 then define umax = vi/Mi,

if Miηk 6≤ vi & Mi < 0 then define umin = vi/Mi,

end loop.

if ηk < umin, ηk = umin. if umax < ηk, ηk = umax.

Define u(k) using (16).

Note that the upper and lower limits to ensure recursive

feasibility update at each cycle in the loop but as all the

inequalities are only ever tightened, changes lower down

cannot contradict changes higher up throughout the horizon.



Remark 7: Infeasibility can arise due to too fast or large

changes in the target. However, LPFC helps in this case

because the exponential structure embedded into the input

prediction automatically slows down any over aggressive input

responses and thus significantly increases the likelihood of

feasibility being retained. In the worst case, set point changes

need to be moderated as in reference governor approaches

[16].

The summary benefits of this algorithm are:

• It offers a simple and systematic framework to handle an

integrating process.

• It stabilises the output prediction without a cascade

structure thus no back calculation process (Remark 4) is

needed for input/rate constraints.

• The Laguerre pole a can be utilised to control the speed

of convergence to improve the prediction consistency and

efficacy of constrained solution.

• The implied structure of (16) in conjunction with con-

straints (22) means that a recursive feasibility guarantee

(nominal case) is provided [15].

IV. NUMERICAL EXAMPLES AND ANALYSIS

This section presents a numerical example to demonstrate

the benefit of using LPFC compared to TPFC. A first order

servo system with integrator is considered as a plant where

the control objective is to track the position. The discrete

mathematical model with sampling time 0.02s is:

G =
0.0095z−2 + 0.0073z−1

1− 1.45z−1 + 0.45z−2
(23)

This simulation will focus on the tuning process and the

concept of well-posed decision making that can be observed by

comparing the open-loop prediction and closed-loop behaviour

of the controller. In addition, the efficacy of constraint handling

is also discussed in the last subsection.

A. Tuning and Performance of TPFC

The first step in implementing TPFC is to tune the pro-

portional gain before selecting the coincidence horizon n.

This gain K will determine the convergence speed and the

steady state error of the inner-loop. Small gain leads to slower

responses, while too large a gain causes oscillatory behaviour.

The root-locus (continuous time) plot shows that the choice

K = 6.45 is around a critical value in that higher K would

give oscillatory poles (see Fig. 2).

The coincidence horizon is selected by comparing the step

response with a desired first order target trajectory r with λ =
0.74 (refer to Fig. 2). Since the inner loop is second order

(due to the added integrator), it is necessary [7] to choose a

coincidence horizon in the range 3 ≤ n ≤ 8; lower values are

often preferable so here n = 3.

Fig. 3 shows the closed-loop and predicted (at sample

k = 0) performance of TPFC with different values of gain K.

The actual closed-loop behaviour is expressed as y (output)

and u (input), while the implied predictions are denoted by

signals output yp and input up (corresponding to first value
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with different K.

of input produced by PFC uc instead of the actual input u) .

For both choices of K, in the unconstrained case, the closed-

loop outputs y track the trajectory set point r and with almost

equivalent speed. However, with K = 1, the implied prediction

yp has a very slow convergence in response to the constant

input dynamics up and is inconsistent with the closed-loop

behaviour y that results. With a higher gain value (K = 6.45),

the consistency is improved but still poor. This inconsistency

is likely to lead to severely flawed decision making should

constraint handling be required.

B. Improvement on Prediction Consistency with LPFC.

For LPFC, due to the presence of an integrator, the coinci-

dence horizon is selected based on the the impulse response

(see Fig. 4) using the guidance of [7]; this suggests a value in

the region of n = 3.

Ideally, for a first order system, the value of Laguerre pole

a should be equal to the desired closed loop pole λ [10].
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Fig. 5: Closed-loop and open-loop behaviour of G for LPFC

with varying Laguerre pole a.

However, for a higher order system, this value needs to be

further tuned as it has an impact on the convergence rate

of the output prediction when tracking the first order target

trajectory (Theorem 1). Fig. 5 shows that with a choice of

a = λ, while the controller still tracks the set point well, there

is still noticeable inconsistency between predictions yp and

the closed-loop behaviour y. However, reducing the pole to

a = 0.55 improves the prediction consistency and the overall

closed-loop performance is still good (Remark 6).

C. Improvement in Constrained Performance with LPFC

One of the key selling points of PFC is the computationally

simple (low cost) constraint handling ability. When the system

input is bounded to umax = 8 (see Fig. 6), both of the

controllers manage to track the set point and satisfy the

given limit although LPFC gives a slightly better closed-loop

performance due to the well posed decision. Moreover, the

LPFC formulation is more straightforward to implement and

does not require back calculation methods (Remark 4).

Fig. 7 shows the system response of both controllers when

the output is limited to ymax = 0.8. The validation horizon is

selected at ni = 10 to cover most of the transient period and

prevent constraint violation at the early stage. In this case the

closed-loop response of TPFC is slower and more conservative

in satisfying the limit due to the prediction inconsistency

demonstrated in Fig 3. Conversely, LPFC which is based on

more consistent predictions (see Fig 5) converges much faster
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Fig. 6: Closed-loop response of G for LPFC and TPFC with

bounded input (umax = 8).
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bounded output (ymax = 0.8).

compared to TPFC. Clearly the constrained solution of LPFC

is more accurate and less conservative.

V. IMPLEMENTATION ON REAL HARDWARE

To validate the practicality of LPFC, the algorithm is

tested on a Quanser SRV02 servo based unit powered by a

Quanser VoltPAQ-X1 amplifier (see Fig. 8). This system is

operated by National Instrument ELVIS II+ multifunctional

data acquisition. The plant is connected to a computer via

a USB connection using NI LabVIEW software. The control

objective is to track the servo position θ(t) by manipulating the

supplied voltage u(t). The mathematical model of this system

is given as (for more details, refer to [17] user manual):

0.0254θ̈(t) = 1.53u(t)− θ̇(t) (24)

where θ̈(t) and θ̇(t) are both servo angular acceleration and

speed, respectively. Converting the continuous model in (24) to

discrete form with sampling time 0.02 s, the transfer function

of angular speed to voltage input becomes G as in (23).



Fig. 8: Quanser SRV02 servo based unit.
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in tracking the Quanser SRV02 servo position.

The algorithm is employed with similar tuning parameters

as in the previous numerical example (λ = 0.74, n = 3
and a = 0.55). Fig. 9 demonstrates the unconstrained and

constrained performances of LPFC to track an alternating set

point between -1 rad/s to 1 rad/s. For the unconstrained case,

a similar performance to the simulation studies are obtained.

The controller manages to provide a smooth tracking to the

desired target while retaining the intuitive link between the

target dynamic λ and the closed-loop convergences speed

(CLTR = 0.2s). In the constrained case, the implied input

limits (−8v ≤ uk ≤ 8v) and output limits (−0.8 ≤ yk ≤ 0.8)

are satisfied without any conflict by employing the systematic

constraint method (Algorithm 2).

VI. CONCLUSIONS

This work proposes an alternative Laguerre PFC approach

to control an integrating process. Since the traditional PFC

formulation for integrating processes is unable to give a

stable open loop prediction, the transparent control approach

is often used. Although this cascade structure can stabilise

the plant using a proportional controller, the decision making

process may still be poorly posed, and notably can lead to

a highly conservative solution in the presence of constraints.

Conversely, by shaping input predictions using a Laguerre

polynomial, the nominal PFC method can be employed with-

out a cascade structure. Besides, the improved prediction

consistency of LPFC enables the constrained solution to

become more accurate and less conservative, thus improving

performance. This paper has also demonstrated the efficacy

of the proposed LPFC algorithm on laboratory hardware with

active constraints. Critically, the proposed algorithm is very

simple to code and implement which in line with the core

markets for PFC approaches.

Nevertheless, there is a potential weakness with LPFC

especially when the independent model structure is used. A

small offset error may occur if there is a model mismatch

or the real plant is not in fact integrating. Future work aims

to look more closely at this issue while providing a formal

sensitivity analysis and systematic design of LPFC in handling

uncertainty. Another important consideration is to analyse the

alternative shaping methods which may be better tailored to

deal with higher order and/or challenging dynamical.
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