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Abstract—Mathematical modelling of vehicle dynamics is es-
sential for the development of autonomous cars. Many of the
vehicle models that are used for control design in cars are based
on nonlinear physical models. However, it is not clear, especially
for the case of longitudinal dynamics, whether such nonlinear
models are necessary or simpler models can be used. In this
paper, we identify a linear data-driven model of longitudinal
vehicle dynamics and compare it to a nonlinear physically derived
model. The linear model was identified in continuous-time state-
space form using a prediction error method. The identification
data were obtained from a Lancia Delta car, over 53 km of
normal driving on public roads. The selected linear model was
first order with requested torque, brake and road gradient as
inputs and car velocity as output. The key results were that 1.
the linear model was accurate, with a variance accounted for
(VAF) metric of VAF=96.5%, and 2. the identified linear model
was also superior in accuracy to the nonlinear physical model,
VAF=77.4%. The implication of these results, therefore, is that
for longitudinal dynamics, in normal driving conditions, a first
order linear model is sufficient to describe the vehicle dynamics.
This is advantageous for control design, state estimation and
real-time implementation, e.g. in predictive control.

I. INTRODUCTION

Mathematical models of car vehicle dynamics are essen-

tial for the development of future driverless cars and driver

assistance systems [1]–[4]. Typically, the development of

longitudinal and lateral vehicle control algorithms have been

based on physically derived models, either fully nonlinear [5]

or based on linearised time-varying models [6], [7]. These non-

linear models lead to relatively complicated control and state

estimation schemes, which are both challenging to implement

in real-time and also challenging to analyse for stability.

Given that firstly, linear feedback control schemes are rela-

tively tolerant of plant model error (e.g. due to nonlinearities),

and secondly, nonlinearities in vehicles are relatively weak

(although become important at high-g [8]), it would appear

attractive to develop linear models of vehicle dynamics for

control design. There are examples of linear models of vehicle

dynamics identified from sampled data [9]. However, the

relative utility of linear vehicle models have not yet been well

investigated and compared to nonlinear physically-derived

models.

The novel aim of this paper is to develop a linear model

of longitudinal vehicle dynamics, compare it to a nonlinear

physically derived model and assess to what extent nonlinear

modelling is necessary for vehicle control in normal driving.

To identify the model of longitudinal vehicle dynamics, we

used experimental data combined with linear system identi-

fication techniques. The experimental data were collected in

a Lancia Delta car which was driven along a 53 km route

on public roads in normal conditions. We used a prediction

error method (PEM) to directly identify the linear model in

continuous-time state-space form [10], with model initialisa-

tion using subspace state-space system identification (N4SID)

[11]. We used a constrained nonlinear optimisation routine to

estimate parameters for a nonlinear physical model based on

the longitudinal component of the well-known bicycle model

of vehicle dynamics [12].

The results indicated that the linear model was comparable

in accuracy to the nonlinear physical model and yet much

simpler and more attractive for control design.

II. METHODS

A. Experimental data

The experimental data used in modelling and identification

were collected in a Lancia Delta car which was driven along a

53 km route on public roads in normal conditions. The route

was chosen to incorporate a typical selection of motorways,

extra-urban and urban roads, roundabouts and intersections.

The route began at Centro Ricerche Fiat in Orbassano, near

Turin (Italy), then went to Pinerolo via Piossasco before

returning to Orbassano, a distance of 53 km driven in about

42 minutes, and is the same data as described in [3].

The following signals were amongst those recorded during

the journey: longitudinal velocity, accelerator pedal position,

brake pedal position, selected gear, engine torque and GPS

co-ordinates. From the GPS co-ordinates, the road elevations

were obtained (using the Google Maps API), providing the

approximate road gradient. Signals were sampled at 20 Hz for

the purpose of this modelling study. The elevation and road

gradient signals were smoothed with a third order Butterworth

low-pass filter with a cut-off frequency of 0.5 Hz.

In this study we used a single circumnavigation of the route,

which provided about 1 hour and 20 minutes of data from

which to parameterise and identify the models. We subdivided



Fig. 1. Test route of the Lancia Delta vehicle from the experiment conducted near Turin, Italy over 53 km of public roads in normal driving conditions,
and example data over 100 seconds. The plot of road gradient shows the raw data and the smoothed data obtained from a zero-phase low-pass 3rd order
Butterworth filter.

this into two sections; one of 2000 s duration for model

identification and another of 1000 s for validation. Fig. 1

shows the control and output for part of the training data as

an example.

B. Physical model of longitudinal vehicle dynamics

We employ a well known simplification of the physical

dynamics of a four wheeled vehicle—that the lateral dynamics

and the longitudinal dynamics may be decoupled [12]. The

longitudinal model may then be expressed by its force equa-

tion,

Mv̇ = Fp(t) + Fb(t)−Mg sin(γ(t))− kD v2 −Mg kR (1)

where M is the mass of the vehicle and v is the vehicle’s

longitudinal velocity, which we will solve for. Fp(t) is the

collective propulsive force due to the engine actuating through

all of the drive wheels. Fb(t) is the collective braking force.

g is the acceleration due to gravity and γ(t) is the gradient

of the road. kD is the parameter governing the strength of air

resistance; kR is the static friction parameter. If operating with

velocity near 0 m/s, care must be taken to ensure that these

frictional terms always act in the opposite direction to v.

While it is possible to model (for each gear) the relationship

between the position of the accelerator pedal and Fp, the

engine control unit (ECU) provides engine torque signals

which can be used to compute the motive force. The ECU

provides a requested engine torque signal, Ta, which is a

scaled (0 to 400 Nm) version of the accelerator pedal position.

When the requested engine torque is scaled by the gearbox

ratio, R, we have a post-gearbox requested torque, Tr = Ta.R.

The ECU also provides the delivered engine torque, Td, which

may be lower than the requested torque if the engine is

unable to comply with the request or if the engine torque is

being controlled by the automatic gearbox during a gear shift.

Additionally, the ECU reports the engine-speed dependent

torque due to friction in the engine, Tf . The delivered engine-

shaft torque, Te, is therefore given by

Te = Td − Tf (2)

For control system design, the use of the requested torque,



Ta, and its post-gearbox partner, Tr, is most relevant, as the

control system may not have access to the engine-friction

signal or the ability to predict when the engine is unable

to deliver the requested torque. However, the most accurate

physical model against which to compare alternative models

will be given by making use of the engine-shaft torque,

Te, along with the gear ratio information. In our physical

modelling, we therefore have Fp given by

Fp(t) =
Te(t)R[G(t)] ηg Rd ηd

rw
(3)

where Te(t) is the delivered engine-shaft torque, R[G(t)] is

the gearbox ratio as a function of the gear, G(t), and Rd is

the driveline gear ratio. ηg and ηd model the frictional loss

in the gearbox and driveline, respectively and rw is the wheel

radius. R[G(t)] is provided by the ECU as a signal, which we

combine with Te to give the pre-loss gear-shaft torque, Tg:

Tg(t) = Te(t)R[G(t)] (4)

We collect the terms Rd (unknown), ηd and ηg (unknown;

approximately 0.93) and rw (known; 0.292 m) together into a

single parameter, kτ , so that Fp is, finally,

Fp(t) = kτ Tg(t) (5)

with the value of kτ to be found by the parameter search.

The collective braking force, Fb(t), is governed by the

relationship,

Fb(t) =











µb Mg v > 0, kb pb(t) > µb Mg

kb pb(t) v > 0

0 otherwise

(6)

where kb is a known coefficient of braking force in Newtons

per bar of brake pressure (189 N/bar) and pb(t) is the time-

varying master brake cylinder pressure. The upper limit on the

available braking force, µb Mg, is the force at which the tyres

slip along the road surface; the coefficient µb is road-surface

dependent. Because the data we use here were collected for

normal driving, with no sharp or emergency braking taking

place, we set µb to a high, fixed value for all time.

To estimate the parameters we used the training data and

a nonlinear interior-point optimisation method [13], imple-

mented in the MATLAB function fmincon. The parameters

were initialised using a multi-start approach, with 100 different

parameter sets, randomly sampled in the ranges kD ∈ [0, 20],
kR ∈ [0, 0.05] and kτ ∈ [1, 100]. We found the choice of ODE

solver to be important in this work. MATLAB’s ode23 solver

[14] operated well for the ‘best’ parameters—those which

would provide a good fit to the data. However, this solver

became computationally inefficient towards the boundaries of

the chosen parameter ranges. For this reason, to allow the

parameter search to complete quickly, the ode23s solver [14]

was employed, which is more effective in computing stiff

differential equation systems. Unfortunately, ode23s produced

occasional, random, quickly corrected deviations from the

putative true solution of the system, introducing noise into the

simulation and hence affecting the fit metrics. For this reason,

after finding a first set of parameter values, we reduced the

parameter ranges to kD ∈ [0.1, 3], kR ∈ [0.0001, 0.04] and

kτ ∈ [5, 15] and re-ran the parameter search using ode23 and

30 different parameter sets as a start point. ode23 was used

when computing all simulations shown below and to generate

the reported fit metrics.

C. Linear state-space system identification

For system identification, we used a linear continuous-

time state-space model to represent the longitudinal vehicle

dynamics:

ẋ(t) = Ax(t) +Bu(t) (7)

y(t) = Cx(t) +Du(t) (8)

where the output y(t) ∈ R is the vehicle velocity at time

t; the input u(t) ∈ R
nu is composed of the delivered post-

gearbox engine torque (Td) and the brake pressure signal (pb),

and in some versions of the model also the smoothed road

gradient (γ(t)); x(t) ∈ R
nx is the vehicle state vector, where

nx is the model order, which is determined as part of the

identification procedure. The matrices A, B, C and D are

assumed fully parameterised here and comprise the unknown

model parameters.

The parameters of the state-space model were estimated

directly in continuous-time using a prediction error method

(PEM) [10]. Assume all parameters in A, B, C and D are

collected in the parameter vector θ, so that the estimation

problem is defined as

θ̂ = argmin
θ

1

N

N
∑

k=1

e(tk,θ)
2 (9)

where the prediction error is e(tk,θ) = y(tk) − ŷ(tk,θ) and

ŷ(tk,θ) is the simulated output of the state-space model at

sample-time tk (N is the number of data samples). The PEM

is typically solved using numerical search [10].

The numerical search algorithm can be initialised, as here,

using a subspace state-space system identification (N4SID)

algorithm [11]. The N4SID algorithm requires a number of

choices (insight into these choices is given in [15]), such

as the forward prediction horizon and the number of past

inputs and outputs that are used for the prediction - here

these were chosen by estimating multiple models over a range

of values and using Akaike’s information criterion (AIC) to

select between them. The weighting scheme used in the N4SID

algorithm was canonical variate analysis (CVA) [16].

Parameter estimation was performed in MATLAB using the

System Identification Toolbox, using the function ssest, which

conveniently combines the N4SID initialisation of the state-

space model with the PEM estimation stage in one function.

Key user-choices for the estimation algorithms are summarised

in Table I. The ssest function, by default, uses a combination

of search methods in the PEM stage including Gauss-Newton

(GN), adaptive Gauss-Newton (AGN), Levenberg-Marquardt

(LM) and gradient descent (GD). Also, note for initialisation



Fig. 2. Model selection for the linear system identification model, where the model index is as follows: t1o - torque only, first order; tb1o - torque-brake
input, first order; tbg1o - torque-brake-gradient input, first order; t2o - torque only, second order; tb2o - torque-brake input, second order; tbg2o - torque-
brake-gradient input, second order; (a)-(d) Model selection plots, which indicate that the models with torque-brake-gradient inputs should be preferred. Note
that FPE can be misleading because it is based on one-step-ahead prediction errors, unlike the other measures. (e)-(f) Residual analysis plots, which indicate
that the first and second order models have similar auto-correlation in the model residuals and in the gradient input-residual cross-correlation.

that the N4SID identification was performed in discrete-time,

then the model was mapped to continuous-time using a zero-

order hold.

To select the model order, nx, model orders nx = 1, . . . , 10
were initially tested using an analysis of singular values of

the input-output covariance matrix [10], which suggested only

models of first or second order should be further investi-

gated. First and second order models were then analysed and

compared with more in-depth methods, including Model Fit,

Variance Accounted For (VAF), and residual analysis (see

section below on model evaluation and validation).

To identify the model, the training data was used (com-

prising 2000 seconds of normal driving data), which was

consistent with the parameter estimation for the nonlinear

physical modelling. A separate validation data set was used

to validate the model (comprising a further 1000 seconds of

normal driving data).

TABLE I
STATE-SPACE SYSTEM IDENTIFICATION ALGORITHM PARAMETERS

Algorithm Option Method

Parameter Initialisation N4SID

Initial State Estimated

N4SID Weighting Scheme CVA

N4SID Prediction Horizon Chosen by AIC

Loss Function Simulation Error

Loss Function Weighting None

Search Method GN/AGN/LM/GD

D. Model evaluation and validation methods

Models were evaluated using a normalised fit metric based

on the Euclidean norm of the fit error, where

Model Fit = 100

(

1−
||y − ŷ||2
||y − ȳ||2

)

(10)



Fig. 3. Model simulations vs training and validation data. Top two rows: nonlinear physical model (orange) vs observed data (black). Bottom two rows: linear
first order state-space model (blue) vs observed data (black). The residual error is shown in grey in each plot.

where y is the vector of measured output data, ŷ is the vector

of model simulation outputs, and ȳ is the mean of measured

output data. A value of 100% indicates a perfect model fit,

a value of 0% indicates a fit equivalent to the mean of the

output data, and becomes negative for poor fits.

The model fit was also assessed using the variance ac-

counted for (VAF) metric, which is equivalent to the r2 metric,

defined as

VAF = 100

(

1−
var(y − ŷ)

var(y)

)

(11)

To evaluate the models in terms of accuracy and complexity,

Akaike’s final prediction error (FPE) was used,

FPE =
1

N

N
∑

k=1

e1(tk, θ̂)
2 ×

(

1 + np/N

1− np/N

)

(12)

where np is the number of model parameters and e1(.) denotes

the one-step-ahead prediction error.

Residual analysis was also used in model validation, by

analysing the auto-correlation of the residual error and the

cross-correlation of the input and residual error [10].

III. RESULTS AND DISCUSSION

The identification of the linear model first required the

selection of model order. This was done with N4SID for orders

nx = 1, . . . , 10, using the singular values of the input-output

covariance matrix, which indicated that a first, second or third

order model should be chosen (results not shown). The first,

second and third order models were then evaluated with three

combinations of input: torque-only, torque-brake and torque-

brake-gradient. The model evaluation methods indicated that

inputs should consist of torque-brake-gradient as these models

had the best fits to the data [Fig. 2(a)–(d))].

Selecting between the first or second order models requires

analysis of the model residuals and consideration of the model

complexity. Auto- and cross-correlation residues for the first

order torque-brake-gradient model are shown in Fig. 2(e).

These appear slightly larger than those for the second order

model in Fig. 2(f). On this basis we might choose the second

order model as the optimum representation of the system,

although as there is not a stark difference in the fit quality



or the residual analysis, the first order model is preferred for

its simplicity.

The linear first order model with torque-brake-gradient

inputs (u1, u2, u3) was identified as

A =
[

−0.0008036
]

(13)

B =
[

0.0000016 −0.0000334 −0.0027613
]

(14)

C =
[

3499.522
]

(15)

D =
[

0 0 0
]

(16)

and the linear second order model with torque-brake-gradient

inputs (u1, u2, u3) was identified as

A =

[

−0.2916319 0.0875774
−0.7851958 0.2345142

]

(17)

B =

[

−0.0000108 0.0003421 0.0042201
−0.0000325 0.0009946 0.0167971

]

(18)

C =
[

3313.131 −1278.718
]

(19)

D =
[

0 0 0
]

(20)

The nonlinear physical model parameters were estimated as

kD = 0.215, kR = 0.0214 and kτ = 12.41.

Simulation comparison of the nonlinear physical model and

linear first order model to each other and the observed data

demonstrated that firstly both models were accurate predictors

of car velocity, and that secondly the linear model was superior

in accuracy to the nonlinear model (Fig. 3).

The overall VAF for the linear first order model was

96.5% and for the nonlinear physical model was 77.4%. There-

fore, the linear state-space identified model outperformed the

nonlinear model. More importantly, the accurate performance

of the linear model is combined with the additional benefit of

model simplicity, advantageous in tasks such as control and

state-estimation.

There are few modelling studies that identify car vehicle

dynamics from sampled data but one investigation that uses

step responses found that a linear second order model was

sufficient to accurately describe the car dynamics during single

maneouvers of about 10 seconds duration [9]. That modelling

study therefore agrees with the investigation here that linear

models can be sufficient to describe vehicle dynamics.

A limitation of this investigation is that it only focuses on

longitudinal vehicle dynamics. The lateral dynamics might

require nonlinear modelling to adequately describe the car

behaviour for full path control. In future work, therefore, we

plan to extend the comparison of physical and linear identified

models to the coupled longitudinal-lateral vehicle dynamics.

IV. CONCLUSION

In this paper, we have compared a nonlinear physical model

of longitudinal car vehicle dynamics against a linear model

obtained by system identification techniques. Experimental

data used in the study was drawn from normal driving over

53 km of roads. A first order linear model, with torque-brake-

gradient inputs, was found to accurately model vehicle dynam-

ics (VAF=96.5%), and was superior to the nonlinear physical

model (VAF=77.4%). Therefore, the conclusion we draw from

this study is that linear models should be investigated as an

alternative to nonlinear physical models in longitudinal vehicle

control.
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