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Abstract—One of the major limitations of brain computer
interface (BCI) is its long calibration time. Due to between ses-
sions/subjects nonstationarity, typically a big amount of training
data needs to be collected at the beginning of each session in
order to tune the parameters of the system for the target user.
In this paper, a number of novel weighted multi-task transfer
learning algorithms are proposed in the classification domain to
reduce the calibration time without sacrificing the classification
accuracy of the BCI system. The proposed algorithms use data
from other subjects and combine them to estimate the classifier
parameters for the target subject. This combination is done based
on how similar the data from each subject is to the few trials
available from the target subject. The proposed algorithms are
evaluated using dataset 2a from BCI competition IV. According to
the results, the proposed algorithms lead to reduce the calibration
time by 75% and enhance the average classification accuracy at
the same time.

I. INTRODUCTION

A major challenge in brain-computer interface (BCI) is that

everyone has unique brain signals [1]. Using machine learning

techniques, BCI has to learn the user’s brain signals, but this

training takes time. Calibration time is the time that a BCI

system needs to adapt its parameters to the user’s signals

in order to accurately classify their thoughts. Generally, this

calibration session could take up to 20 - 30 minutes for each

new session, which is an exhausting and tiring amount of

time that the patient has to undergo before the system is fully

functional [2].

Among different brain signals electroencephalograph (EEG)

is widely used in BCI. The main advantage of an EEG-based

BCI system is providing a non-invasive direct communication

between a person’s brain and an electronic device without the

need for any muscle controls [3]. The reasons for having a

long calibration session in EEG based BCI can be as follows:

the first reason is the high dimensionality of EEG signals

which are very noisy as well. In order to predict correct brain

states, features need to be extracted from the training EEG

data to calibrate the classifier. The problem here is when

there are only few trials available for training, it is hard to

estimate probability distributions for high dimensional noisy

EEG signals where outliers will have a great negative effects.

Second, EEG is highly non-stationary. A lot of factors lead to

this non-stationarity such as: the variations of users’ mental

and psychological states, miss concentration and fatigue; also

it may be affected by various measurements circumstances,

e.g. changes in the positions of the electrodes when wearing

the cap on a new session, and changes in the impedance of

the electrodes due to sweating. So, the classifier trained on the

features extracted from data of the previous sessions usually

performs poorly on a new session data. In order to mitigate the

mentioned problem, recent studies try to reduce the calibration

time based on different methods while keeping accuracy in an

acceptable range [2], [4]–[6].

One promising approach to reduce the calibration time can

be transfer learning, where data from other users or sessions

are mined and used to compensate the lack of labeled data

from the current target subject [7]. Transfer learning aims at

learning characteristics that are consistent across sessions and

subjects and at the same time adjusting those characteristics to

the existing few trails of the target subject. Transfer learning

has been successfully applied in different machine learning

applications such as: text, image, and human activity classi-

fication. In BCI, there are some studies that applied transfer

learning-based approaches on raw EEG [8], feature extraction

[6], [9], [10] and classification domains [4], [11] and represent

some improvements in reduction of calibration time.

Recently, a multi-task learning-based algorithm on the clas-

sification domain was proposed to reduce calibration time in

BCI for a new subject [11], [12]. Multitask learning is a sub-

field of transfer learning where multiple classification tasks

are learned jointly. In [11], [12], the classification parameters

of multiple subjects are learned jointly such that the average

errors as well as dissimilarities between the parameters of

the different classifiers get minimized. However, the proposed

algorithm did not consider the similarity/dissimilarities be-

tween the data from the new subjects and the existing data

from other subjects during the learning process. To address

this problem and improve the BCI classifier trained for a

new subject, this paper proposes a novel weighed multi-task

learning algorithm, where previously recorded data are mined,

processed and reused in a way that higher weights are given

to the data that are more similar to the new data and less

weights to data that are less similar. Two versions of weighted

multitask learning are proposed, namely supervised and un-

supervised. The proposed algorithms are evaluated using BCI

Competition IV dataset 2a which was recorded from 9 subjects

during a motor imagery paradigm. The results show that our

proposed algorithms outperform the baseline approaches not



only by reducing the calibration time but also by enhancing

the classification accuracy for some subjects.

The rest of this paper is structured as follows. Section II

introduces the baseline approaches used throughout this work,

then the proposed weighted multi-task model is presented.

After describing the data set used to evaluate the models in

Section III, Section IV covers the results and discussions.

Finally, Section IV concludes this work with a short summary

and future work.

II. METHODOLOGY

A. Baseline Approaches

Two main baseline training approaches will be explained

in this subsection. The first approach is the commonly used

subject-specific BCI training model where the support vector

machines (SVM) classifier is trained independent from other

subjects using features extracted from the common spatial

patterns (CSP) algorithm for the target subject. The second

baseline approach is the standard multi-task learning-based

classification algorithm. This approach has two models, the

first one is the linear regression-based multi-task linear pro-

posed in [11] and the second one is the logistic regression-

based multi-task proposed in [13].

1) Subject Specific Classification (Ss) : In this approach,

subject-specific training trials with known labels are used to

train an SVM classifier based on CSP features. The classical

motor imagery-based BCI subject-specific model, used in this

paper, consists of the following parts: bad trials removal, band-

pass filtering, common spatial filtering, extraction of log band

power features and SVM classifier. These parts are described

as follows: First, a threshold test is applied to remove bad

trials due to blinks or any unintended motion, then a band

pass filter within the band 8 to 35 Hz is used on EEG data

to remove brain activities that are out of the range known for

motor imagery. Next, CSP, the commonly used spatial filtering

algorithm in EEG, is applied for spatial filtering [14], [15]. The

importance of spatial filtering arises due to the poor spatial

resolution of EEG measurements. CSP linearly transforms the

data from the original EEG-channels into new channels to

better differentiate between two conditions by maximizing the

variance of one condition while minimizing it for the other

condition [16]. Thereafter, normalized log band power of CSP

filtered EEG signals are extracted as features. Finally, the

extracted features are used to train an SVM classifier. This

trained classifier is used to predict the labels of the test trials.

2) Multi-Task Learning-based Classification Algorithm-

Linear Model (MLLin): Alamgir et al. proposed a framework

for multi-task learning in BCI [11]. In this framework, each

BCI subject/session was defined as one task. A parametric

probabilistic approach that uses shared priors was employed to

calculate classification parameters of a new subject by defining

the relation between this subject’s parameters and shared priors

from the available subjects/sessions [11], [12].

This algorithm works as follows: s ∈ {1, ....., S} is the mul-

tiple subjects or recording sessions. For each subject/session,

the ns EEG trials are presented as ds = (xi
s, y

i
s)

ns

i=1
, where

xi denotes the feature vector extracted from the ith trial of

subject s, and yis presents the class label of the ith trial. Thus,

X={x1, ..., xns} is the feature matrix for each subject/session

with labels presented as yisǫ{−1, 1}.

By assuming the classification model as a linear model with

a noise term η which is distributed as ∼ N (0, σ2), the label

of any trial can be modelled as

yis = wT

s x
i

s + η, (1)

where the classification parameters ws refers to the individual

features weights being used to predict the class labels of the

trials belonging to the subject/session s. Thus, when a new test

trial, xi+1
s , arrives for the subject/session s, the class label can

be predicted by

yi+1
s = sign(wT

s x
i+1
s ). (2)

Typically, when there is no prior information available about

the distribution of the model’s parameters, using the available

labelled trials in the data set, the objective is to determine

the best ws that minimizes the prediction error in the data set

ds. The loss function for calculating ws can be defined using

negative log-likelihood as follows:

L1(ws) = min
ws

[1/σ2

ns
∑

i=1

(yis − wT

s x
i

s)
2] (3)

When prior information about ws is available and assumed

to be Gaussian distributed with N (µ, Σ), a regularization term

R can be added to the loss function leading to reduce the

complexity of the system and hence to prevent over-fitting.

Thus, R is defined as:

R(ws;µ,Σ) = (1/2)([(ws−µ)TΣ−1(ws−µ)]+log|Σ|); (4)

From this point of view the authors in [12] proposed that

for a BCI problem, each subject/session is treated as one task,

where the shared structure, µ and Σ can be presented respec-

tively by the mean vector and covariance matrix of W where

W = {w1, ......., wS}. This model calculates these shared

parameters from all the tasks jointly in a way that the ws

calculated for different subjects reduce the total classification

error and also are close together, and this can be achieved by

solving the following optimization problem:

L2(W ) = min
W

[1/σ2
∑

s

||(Xsws − ys)||
2 +

∑

s

R]. (5)

Finally, solving this optimization problem with respect to W
and holding µ and Σ fixed yields to the following equation:

ws = ((1/σ2)ΣXT

s Xs + I)((1/σ2)ΣXT

s ys + µ) (6)

For fixed W , solving the optimization problem yields to

identify the update equations of µ and Σ as the following

equations. Thus, optimum ws can be calculated in an iterative

manner by iteratively updating ws and (µ∗ and Σ∗) until

convergence. Finally, σ2 is calculated using cross validation.

µ∗ = (1/S)
∑

s

ws (7)



Σ∗ =

∑

s
(ws − µ)(ws − µ)T

Tr(
∑

s
(ws − µ)(ws − µ)T )

+ ǫI (8)

3) Multi-Task Learning-based Classification Algorithm- Lo-

gistic Model (MLLog): The authors of [13] modified the previ-

ously presented MLLin algorithm by using logistic regression

instead of linear regression. Assumptions on the distribution

of the dependent variables in logistic regression model could

be more suitable for a binary classification problem than those

in linear regression.

The MLLog algorithm aims at minimizing the following

optimization problem:

L3(W ) = min
W

−
∑

s

ns
∑

i=1

H(ws, yi, xi) +
∑

s

R, (9)

where H is the point wise cross-error function, and R is

the regularization term as defined in (4). By calculating the

optimum ws in (9), the prediction of the labels of a given trial

is then calculated as:

P (yis|x
i

s) =
1

1 + exp(wT
s x

i
s)
. (10)

Similar to MLLin, L3 should be minimized with respect to

W in order to obtain the parameters of the classifiers across

subject. However, unlike the MLLin algorithm, there is no

closed form solution for ws in this optimization problem.

However, gradient based optimization procedures [17] could

be applied to obtain the optimal ws given the shared param-

eters (µ, σ). Following the same steps that were presented in

the MLLin algorithm, the shared parameters were calculated

using standard Gaussian sample statistics from the optimal

weights ws as in (7,8) respectively. Iterative optimization

should be then applied to update ws and µ and Σ iteratively

until convergence.

B. Proposed Weighted multi-task algorithm (WML)

The MLLin and MLLog algorithms treat all the subjects

similarly so that the similarities/dissimilarities between the

new subject and previous subjects are not considered in the

learning process. The proposed WML algorithm addresses this

limitation by giving each subject a different weight based on

how the features of this subject/session are close to the features

of the new subject. Thus, instead of updating shared parame-

ters by giving the same weights to all subjects/sessions, they

are weighted by taking into account similarities/dissimilarities

of each subject with the new subject.

Fig. 1 presents how the classification parameters of the new

subject are calculated in the proposed WML algorithm. As

shown in Fig. 1, the proposed WML algorithm consists of

two parts. In the first part, the best W = {w1, ......ws} for

the previous subjects are calculated in away that the total

classification error is reduced for these subjects and at the

same time their classification parameters are close to their

weighted average which is calculated by assigning weights

to the subjects based on their similarities to the new subject.

In the second part, weighted shared priors (µw,Σw) obtained

from the previous part are used with the new subject few

Fig. 1. Weighted multi-task algorithm

Algorithm 1: Proposed weighted multi-task algorithm

1 part 1

Input : d = {d1, ....., dS}, σ2, KL weights(αs)

Output: µw,Σw

2 Set [µ,Σ] = [0, I]
3 Repeat

4 update W = {w1, ......ws}
5 update µ using weights (15)

6 update Σ using weights (16:18)

7 Until convergence

8 return µw,Σw weighted shared priors

9 part 2

Input : dnew, σ2
new, µw,Σw

Output: wnew

10 Set [µ,Σ] = [µw,Σw]
11 Repeat

12 calculate wnew

13 Until convergence

14 return wnew

trials to obtain this new subject classifier parameters. Optimum

wnew is calculated in an iterative manner aiming to reduce

the classification accuracy error for the new subject while the

defined regularization makes it close to the weighted shared

priors.

There are two main differences between the proposed algo-

rithms and the baseline multitask algorithms. Firstly, three dif-

ferent methods for covariance matrix calculation are examined,

and a comparison between these methods is held to choose the

best method based on the best classification accuracy results.

The first method to calculate a covariance matrix is referred

to as cov1(size) and calculated as below:

Σ =

∑

s
(ws − µ)(ws − µ)T

size((ws − µ)(ws − µ)T )
+ ǫI. (11)

The second method, called cov2 (trace), is calculated as:

Σ =

∑

s
(ws − µ)(ws − µ)T

Tr((ws − µ)(ws − µ)T )
+ ǫI, (12)

and the third method is called cov3 (diagonal) and it’s equation

is as follows:

Σ =
diag

∑

s
(ws − µ)(ws − µ)T

Trace(
∑

s
(ws − µ)(ws − µ)T )

+ ǫI. (13)

The second main difference is the weight that is defined for

each subject to represent the similarity between this subject

and the new subject. Kullback-Leibler (KL) divergence is

used to calculate these weights [18]. The KL divergence

between two gaussian distributions, presented as N0(µ,Σ) and

N1(µ̄, Σ̄), has a closed-form expression as follows:

KL[N0||N1] = (1/2)[(µ̄− µ)T Σ̄−1(µ̄− µ)

+tr(Σ̄−1Σ)− ln

(

det(Σ)

det(Σ̄)

)

−K],
(14)



where det and k denote the determinant function and the

dimensionality of the data, respectively. Therefore, in the

proposed weighted algorithm, (14) is used to calculate the

distance between the feature distributions of each subject and

the new subject. It is noted that we use CSP features in

this study. CSP features are normalized log variance of CSP-

filtered EEG data, thus the assumption of having Gaussian

distribution can be valid.

If labelled trials from the new subject are available, super-

vised KL distance is computed for each class and the total

distance is the sum of the distances for the two classes. When

there are no labelled trials available for the new subject, the

KL distance between the two subjects is calculated without

considering the class labels and it is called unsupervised KL.

Considering these two weighted distances, the proposed algo-

rithms can be supervised weighted multi-task (SMLLin, and

SMLLog) and unsupervised weighted multi-task (UMLLin,

and UMLLog), where Lin and Log are referring to the applied

regression method. The weight between the subject s and the

new subject, αs, is calculated using the following equation:

αs =
(1/KL[dnew, ds])

4

S
∑

i=1

(1/KL[dnew, di])4
. (15)

Based on the obtained weight for each subject, αs, the new

equation to update the weighted µ is:

µw = (1/S)
∑

s

αsws. (16)

Similarly, the weighted Σ is calculated using the following

modified equations for cov1 (size), cov2 (trace), and cov3

(diagonal) respectively:

Σw =

∑

s
(αsws − µw)(αsws − µw)

T

size((αsws − µw)(αsws − µw)T )
+ ǫI (17)

Σw =

∑

s
(αsws − µw)(αsws − µw)

T

Tr((αsws − µw)(αsws − µw)T )
+ ǫI (18)

Σw=
diag

∑

s
(αsws − µw)(αsws − µw)

T

Trace((αsws − µw)(αsws−µw)T)
+ǫI (19)

III. EXPERIMENTS

In order to validate the proposed algorithms and compare

them with the baseline algorithms, all the algorithms are

applied to data set 2a BCI Competition IV 2008 [19]. This

data set consists of EEG data from 9 subjects performing 4

classes of motor imagery task. In this paper only data from

right and left hand motor imagery are used. Two sessions on

different days were recorded for each subject. Each session is

comprised of 6 runs, each run consists of 12 trials for each

class.

EEG signal was recorded using 22 electrodes. EEG signals

were sampled at 250 Hz, and were bandpass-filtered between

0.5 Hz and 100 Hz. Moreover, a 50 Hz notch filter was applied

to remove power line noise. The proposed algorithms and the

baseline algorithms are applied only on the trials recorded on

Fig. 2. Comparison between different covariance matrix calculation methods
when 20 trials from the new subjects are used for training. The average
accuracy calculated include results obtained by MLLin, SMLLin, UMLLin,
MLLog, SMLLog, and UMLLog.

Fig. 3. Comparison between the proposed algorithms (SMLLin, UMLLin,
SMLLog, and UMLLog) and the baseline algorithms (Ss, MLLin, and
MLLog) using different number of trials for training (20, 40, and all trials)
from new subject based on the average accuracy calculated over the nine
subjects for each algorithm. UMLLog is the best algorithm when using any
number of trials.

the second day by dividing it to two sessions one for training

(consists of the first 42 trials recorded per class) and one for

testing (consists of the last 30 trials recorded per class). This

was done to establish a practical case that new subject data is

coming from the same session. For the new subject, different

training sizes were examined (i.e. 10, 20 and 42 trials per

class). It is note that in each multitask learning algorithm, the

train data of each new subject and the other 8 other subjects

were used for calculating classification parameters.

IV. RESULTS AND DISCUSSION

As mentioned before, in this section the multitask learning

algorithms are applied based on three different covariance



TABLE I
CLASSIFICATION ACCURACIES CALCULATED USING THE BASELINE ALGORITHMS (SS, MLLIN, AND MLLOG) AND THE PROPOSED ALGORITHMS

(SMLLIN, UMLLIN, SMLLOG, AND UMLLOG) FOR EACH INDIVIDUAL SUBJECT WHEN THERE ARE 40 TRIALS AVAILABLE FOR TRAINING FROM THE

NEW SUBJECT, SHOWING THAT LOGISTIC ALGORITHMS OUTPERFORM LINEAR ALGORITHMS

Algorithm sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Average

Ss 85 53 98 66 55 56 73 86 86 73

MLLin 85 52 97 57 52 55 67 97 60 69

SMLLin 72 58 98 63 55 53 70 98 78 72.6

UMLLin 72 57 98 63 55 53 70 95 87 72.2

MLLog 90 48 97 67 52 52 75 97 83 73.4

SMLLog 90 50 98 63 58 55 77 98 87 75.1

UMLLog 95 50 97 63 58 55 78 97 87 75.6

matrix calculation methods and two regression approaches

(i.e. Linear and Logistic). All algorithms are evaluated using

different number of training trials from new subjects (i.e 20,

40, all 84 trials from both classes).

To identify the most effective method of calculating covari-

ence matrices, first a comparison between the three different

covariance matrix calculation methods was held across dif-

ferent number of training trials for new subjects, regression

approaches and all the applied multitask learning algorithms.

Subsequently, a 3 (Number of trials)×6 (Algorithms)×3 (co-

variance calculation methods) repeated measure ANOVA test

was performed on the results followed by post-hoc analysis.

Fig. 2 compares the classification results obtained by the

different methods of calculating covariance matrices using

20 trials from the new subjects. These results include the

classification accuracies of all the different multitask learning

algorithms in both linear and logistic approaches. According

to the average accuracies shown in the Fig. 2, cov3(diagonal)

yielded higher classification accuracies than cov1(size) and

cov2(trace). Indeed, conducting a repeated ANOVA test re-

vealed that using different covariance matrix calculation meth-

ods had a main effect on the classification accuracy results with

(p = 0.009). Based on the post-hoc analysis cov3(diagonal)

significantly outperformed cov1(size) and cov2(trace) with the

p values equal to 0.03 and 0.025 respectively. Thus, for the rest

of thi paper, all the calculations and comparisons of multitask

algorithms will be done using only cov3(diagonal).

Another comparison between the linear regression and the

logistic regression approaches was conducted. As shown in

Table I, on average the logistic approach outperformed the

linear approach in all the considered multitask learning algo-

rithms when 40 trials used from the new subjects for training.

Although not presented in the table, the results of using 20 or

all the trials from new subjects also showed that the logistic

regression approach worked better than the linear one in the

majority of the algorithms.

Finally, comprehensive comparisons were conducted based

on the classification results of the 7 algorithms (i.e. Ss, MLLin,

MLLog, proposed SMLLin, proposed SMLLog, proposed

UMLLin, and proposed UMLLog), followed by a 3 (Number

of trials)×7 (Algorithms) repeated measure ANOVA test.

Fig. 3 shows that all the proposed weighted multitask learn-

Fig. 4. Comparison between the classification accuracies calculated using
the proposed weighted linear multi-task learning algorithms (SMLLin, and
UMLLin) and the baseline algorithms (Ss, and MLLin) for all subjects
individually when 20 trials are available for training from the new subjects.
As can be seen in addition to the calibration time reduction, 7 subjects out of
9 gained an increase in the accuracy when the proposed algorithms are used.

Fig. 5. Comparison between the classification accuracy calculated using the
proposed weighted logistic multi-task algorithms (SMLLog, and UMLLog)
and the baseline algorithms (Ss, and MLLog) for all subjects individually
when 20 trials are available for training from the new subjects. In addition
to the calibration time reduction 5 subjects gain an increase in the accuracy
when the proposed algorithms are used.

ing algorithms outperformed the subject specific algorithm

(Ss) when there are only 20 trials available for training the



new subjects. When the number of the training trials from

the new subject increased to 40 and all, still the majority

of the proposed weighted multitask learning algorithms out

performed Ss. Besides the proposed algorithms outperformed

the baseline linear and logistic multi-task algorithms when

using 20, 40, and all trials from the new subjects for training.

Based on the statistical tests, MLLin and MLLog were nei-

ther significantly outperformed the state of art Ss algorithm nor

any of the proposed algorithms. Importantly, the classification

accuracy of the proposed UMLLog algorithm tended to be

significantly better than the Ss algorithm results. Moreover, the

proposed UMLLog algorithm significantly outperformed the

baseline MLog algorithm with the p value of 0.045, whereas

SMLLog tended to be significantly better than MLLog with

the p value of 0.078. Interestingly, when using diagonal

matrix calculation method with the baseline logistic multi-task

algorithm, the modified logistic algorithm was significantly

better than MLLog with P = 0.021. Moreover, statistical tests

showed that using different number of trials did not have a

main effect on classification results. This finding strengthens

the outcome of this work which is reducing the calibration

time without altering the overall accuracy of the system.

Fig. 4 and Fig. 5 show the classification results calculated

for each subject using the proposed and baseline algorithms

for linear and logistic approaches respectively. The results

were obtained when when 20 trials were available for training

from the new subject. As can be seen, besides reducing the

calibration time, the proposed algorithms outperformed the

baseline algorithms for 7 subjects out of 9 in linear regression

case and for 5 subjects out of 9 in the logistic regression.

In summary, our results suggest that the novel proposed

unsupervised weighted logistic multi-task learning algorithm

(UMLLog) outperformed all the other algorithms. The pro-

posed UMLLog not only reduced the required calibration time

but also enhanced the average classification accuracy.

V. CONCLUSION

The aim of this work was to develop novel algorithms based

on transfer learning to reduce the calibration time for BCI-

based systems and at the same time to enhance the over-

all accuracy of the system. Previous approaches on transfer

learning based on multi-task learning in BCI have ignored

the similarity/dissimilarities between the data from the new

subjects and the existing data from other subjects during the

learning process. In this paper, we presented novel weighted

multi-task learning algorithms to address this problem. The

main finding of this paper suggests that applying the proposed

transfer learning algorithms in classification domain leads to

reduce the calibration time by 75% and enhance the average

accuracy of the BCI-based systems.

The proposed algorithms in classification domain yielded

remarkable increase in the classification accuracy of subjects

that initially performed BCI with a medium accuracy. However

the observed improvement for the subjects with initially poor

BCI performance was not pronounced. It seems changing

the parameters of classifiers for these subjects is not effec-

tive, since their feature spaces for different classes are not

separable. These findings suggest that to increase accuracy

of subjects that initially perform poor BCI, transfer learning

approaches should be applied in a different domain before the

classification domain.
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