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Background: The genetic cause of primary immunodeÞciency
disease (PID) carries prognostic information.
Objective: We conducted a whole-genome sequencing study
assessing a large proportion of the NIHR BioResourceÐRare
Diseases cohort.
Methods: In the predominantly European study population of
principally sporadic unrelated PID cases (n5 846), a novel
Bayesian method identiÞed nuclear factorkB subunit 1
(NFKB1) as one of the genes most strongly associated with PID,
and the association was explained by 16 novel heterozygous
truncating, missense, and gene deletion variants. This accounted
for 4% of common variable immunodeÞciency (CVID) cases
(n 5 390) in the cohort. Amino acid substitutions predicted to be
pathogenic were assessed by means of analysis of structural
protein data. Immunophenotyping, immunoblotting, andex vivo
stimulation of lymphocytes determined the functional effects of
these variants. Detailed clinical and pedigree information was
collected for genotype-phenotype cosegregation analyses.
Results: Both sporadic and familial cases demonstrated
evidence of the noninfective complications of CVID, including
massive lymphadenopathy (24%), unexplained splenomegaly
(48%), and autoimmune disease (48%), features prior studies
correlated with worse clinical prognosis. Although partial
penetrance of clinical symptoms was noted in certain pedigrees,
all carriers have a deÞciency in B-lymphocyte differentiation.
Detailed assessment of B-lymphocyte numbers, phenotype, and
function identiÞes the presence of an increased CD21low B-cell
population. Combined with identiÞcation of the disease-causing
variant, this distinguishes between healthy subjects,
asymptomatic carriers, and clinically affected cases.
Conclusion: We show that heterozygous loss-of-function
variants in NFKB1 are the most common known monogenic
cause of CVID, which results in a temporally progressive defect
in the formation of immunoglobulin-producing B cells. (J
Allergy Clin Immunol 2018; nnn:nnn-nnn.)

Key words: B cells, common variable immunodeÞciency, nuclear
factor kB1

Common variable immunode�ciency (CVID; MIM 607594),
which occurs in approximately 1:25,000 persons1-3 is a clinically
and genetically heterogeneous disorder characterized by suscep-
tibility to sinopulmonary infections, hypogammaglobulinemia,
and poor vaccine responses. CVID is the most common primary
immune de�ciency, requiring lifelong clinical follow-up, and
the clinical course is highly variable, with substantial excess mor-
tality. Affected subjects present frequently with recurrent respira-
tory tract infections, as well as immune dysregulatory features.
The antibody de�ciency is often not as marked as the agamma-
globulinemia seen in patients with genetically de�ned conditions
leading to B-lymphocyte aplasia.4,5Conversely, although patients
with B-lymphocyte aplasia have a favorable prognosis on
adequate replacement immunoglobulin treatment, the response
of patients with CVID is highly variable.

Past studies focused on familial cases with CVID and used
techniques ranging from traditional linkage analysis to more
recent exome sequencing to characterize the genetic cause. This
has revealed that monogenic gene dysfunction accounts for 10%
of cases.4,5 Several of the variants in these genes have been char-
acterized as partially penetrant; it remains unclear whether

genetic or environmental factors determine disease onset. Multi-
ple recent studies identi�ed variants in nuclear factorkB subunit 1
(NFKB1)as a monogenic cause of CVID and reported on the clin-
ical features of these cases.6-11

As part of this NIHR BioResource–Rare Diseases study, we
sequenced the genomes of 846 unrelated patients with predom-
inantly sporadic primary immunode�ciency disease (PID) who
were recruited from across the United Kingdom and by Euro-
pean collaborators. Application of the recently developed sta-
tistical method BeviMed12 to the 846 PID cases and more than
5000 control genomes identi�edNFKB1 as the gene with the
highest probability of association with the disease and with the
largest number of cases explained by variants in that gene.
Further investigations revealed a series of 16 heterozygous
loss-of-function (LOF) variants inNFKB1as the most common
genetic cause of CVID.

Mutations in genes that affect nuclear factorkB (NF-kB)–
dependent signaling are associated with a number of immuno-
de�ciencies.13-26 NF-kB is a ubiquitous transcription factor
member of the Rel proto-oncogene family. NF-kB regulates
the expression of several genes involved in in�ammatory and
immune responses. The classical activated form of NF-kB con-
sists of a heterodimer of the p50/p65 protein subunits. The NF-
kB family of transcription factors comprises 5 related proteins,
c-Rel, p65 (RelA), RelB, p50 (NF-kB1) and p52 (NF-kB2),
which interact to form homodimers and heterodimers with
distinct gene regulatory functions.13,27-29Each Rel NF-kB pro-
tein has a conserved 300-amino-acid N-terminal Rel homology
domain (RHD) that encompasses sequences needed by NF-kB
proteins to bind DNA motifs (kB elements), form dimers,
interact with regulatory inhibitor IkB proteins, and enter the nu-
cleus. The 10 different NF-kB dimers identi�ed have distinct
transcriptional properties.28 In most cells NF-kB is retained in
the cytosol in a latent state through interaction with the IkB pro-
teins (eg, IkBa, IkBb, and IkB� ), a family of proteins with an-
kyrin repeats that mediate IkB interaction with the RHD of
NF-kB, masking the nuclear localization sequence and DNA-
binding domains. Signal-dependent activation of an IkB kinase
complex comprising catalytic (a andb) and regulatory (NF-kB
essential modulator) subunits induces the phosphorylation and
degradation of IkB,29 which permits NF-kB factors to enter
the nucleus and regulate gene expression.

We show that variants inNFKB1culminate in a progressive hu-
moral immunode�ciency indistinguishable from CVID, with a
highly variable penetrance. We demonstrate the utility of anin
silico protein prediction model for validating the predicted

Abbreviations used
CFSE: Carboxy�uorescein succinimidyl ester
CVID: Common variable immunode�ciency
LOF: Loss-of-function

NF-kB: Nuclear factorkB
NFKB1: Nuclear factorkB subunit 1

NIHRBR-RD: NIHR BioResource–Rare Diseases
PID: Primary immunode�ciency disease

PML: Progressive multifocal leukoencephalopathy
RHD: Rel homology domain
VEP: Variant effect predictor
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disease-causing substitutions, and we report on the clinical spec-
trum, immunologic phenotype, and functional consequences of
heterozygousNFKB1variants.

METHODS
Cohort

The NIHR BioResource–Rare Diseases (NIHRBR-RD) study was estab-
lished in the United Kingdom to further the clinical management of patients with
rare diseases by providing a national resource of whole-genome sequence data.
All participants provided written informed consent, and the study was approved
by the East of England–Cambridge South national institutional review board
(13/EE/0325). At the time of our analysis, the NIHRBR-RD study included
whole-genome sequence data from 8066 subjects, of whom 1299 were part of
the PID cohort. These were predominantly singleton cases, but additional
affected and/or unaffected family members of some of the patients were also
sequenced; in total, there were 846 unrelated index cases.

Patients with PIDs were recruited by specialists in clinical immunology
(either trained in pediatrics or internal medicine) from 26 hospitals in the United
Kingdom and a smaller number came from The Netherlands, France, and Italy.
The recruitment criteria included the following: clinical diagnosis of CVID
according to the European Society for Immunode�ciencies ESID criteria (ESID
Registry–Working De�nitions for Clinical Diagnosis of PID, 2014, latest
version: April 25, 2017), extreme autoimmunity, or recurrent (and/or unusual)
infections suggestive of severely defective innate or cell-mediated immunity.
Exclusion of known causes of PID was encouraged, and some of the patients
were screened for 1 or more PID genes before enrollment in the PID cohort. The
ethnic makeup of the study cohort represented that of the general United
Kingdom population: 82% were European, 6% were Asian, 2% were African,
and 10% were of mixed ethnicity based on the patients’ whole-genome data.

Given that PID is a heterogeneous disease, with overlap in phenotypes and
genetic causes across different diagnostic categories, we decided to perform
an unbiased genetic analysis of all 846 unrelated index cases. Whole-genome
sequence data were additionally available for 63 affected and 345 unaffected
relatives. Within a broad range of phenotypes, CVID is the most common
disease category, comprising 46% of the NIHRBR-RD PID cohort (n5 390
index cases; range, 0-93 years of age).

Sequencing and variant �ltering
Whole-genome sequencing of paired-end reads was performed by Illumina

on their HiSeq X Ten system (Illumina, San Diego, Calif). Reads of 100, 125,
or 150 bp in length were aligned to the GRCh37 genome build by using the
Isaac aligner, variants across the samples were jointly called with the AGG
tool, and large deletions were identi�ed by using Canvas and Manta
algorithms (all software by Illumina), as described previously.30 Average
read depth was 35, with 95% of the genome covered by at least 20 reads.

Single nucleotide variants and small insertions/deletions were �ltered
based on the following criteria: passing standard Illumina quality �lters in
greater than 80% of the genomes sequenced by the NIHRBR-RD study, having
a variant effect predictor (VEP)31 effect of either moderate or high, having a
minor allele frequency less than 0.001 in the Exome Aggregation Consortium
data set, and having a minor allele frequency of less than 0.01 in the NIHRBR-
RD cohort. Large deletions called by both Canvas and Manta algorithms, pass-
ing standard Illumina quality �lters, overlapping at least 1 exon absent from
control data sets,32 and having a frequency of less than 0.01 in the
NIHRBR-RD genomes were included in the analysis.

All variants reported as disease causing in this study were con�rmed by
using Sanger sequencing with standard protocols. Large deletions were
inspected in the Integrative Genomics Viewer plot (seeFig E1in this article’s
Online Repository atwww.jacionline.org), and breakpoints were con�rmed by
sequencing the PCR products spanning each deletion.

Gene and variant pathogenicity estimation
To evaluate genes for their association with PID, we applied the BeviMed

inference procedure12 to the NIHRBR-RD whole-genome data set. BeviMed
(https://CRAN.R-project.org/package5 BeviMed) evaluates the evidence for
association between case/control status of unrelated subjects and allele counts
at rare variant sites in a given locus. The method infers the posterior probabil-
ities of association under dominant and recessive inheritance and, conditional
on such an association, the posterior probability of pathogenicity of each
considered variant in the locus. BeviMed was applied to rare variants and large
rare deletions in each gene, treating the 846 unrelated PID index cases as cases
and the 5097 unrelated subjects from the rest of the NIHRBR-RD cohort as
control subjects. All genes were assigned the same prior probability of asso-
ciation with the disease of .01, regardless of their previously published

FIG 1. Overall BeviMed results showing that NFKB1 has the highest posterior probability of association with
disease in the NIHRBR-RD PID cohort. Genes with variants previously reported to cause PIDs are highlighted
in red. Genes with posterior probabilities of greater than .05 are shown.
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FIG 2. Plot of rare missense, truncating, and gene deletion NFKB1 variants identiÞed in the NIHRBR-RD ge-
nomes of unrelated subjects and their location relative to NFKB1 domains. Tracks from left to right show the
following: number of unrelated case (red) and control (black) subjects in whom each variant was observed;
the 4 major NFKB1 domains; each exon in transcript ENST00000226574 (gray bars) ; variant annotation rela-
tive to transcript ENST00000226574 and genomic location of large deletions, with VEP high-effect variants
and large deletions highlighted in blue; Combined Annotation Dependent Depletion (CADD) scores of all
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associations with an immune de�ciency phenotype. Variants with a VEP effect
labeled as high were assigned higher prior probabilities of pathogenicity than
variants with a moderate effect, as described previously.12

Immunophenotyping and B- and T-cell functional
assays

PBMCs were isolated by using standard density gradient centrifugation
techniques with Lymphoprep (Nycomed, Oslo, Norway). Absolute numbers
of lymphocytes, T cells, B cells, and natural killer cells were determined with
Multitest 6-color reagents (BD Biosciences, San Jose, Calif), according to the
manufacturer’s instructions. For PBMC immunophenotyping, we refer to the
Methodssection in this article’s Online Repository atwww.jacionline.org.

PBMCs were resuspended in PBS at a concentration of 5 to 103 106 cells/
mL and labeled with 0.5mmol/L carboxy�uorescein succinimidyl ester (CFSE;
Molecular Probes, Eugene, Ore), as described previously33 and in theMethods
section in this article’s Online Repository, to analyze theex vivoactivation of T
and B cells. Proliferation of B and T cells was assessed by measuring CFSE dilu-
tion in combination with the same mAbs used for immunophenotyping. Anal-
ysis of cells was performed with a FACSCanto II �ow cytometer (BD
Biosciences) and FlowJo software (TreeStar, Ashland, Ore). Patient samples
were analyzed simultaneously with PBMCs from healthy control subjects.

ELISA
Secretion of immunoglobulins by mature B cells was assessed by testing

supernatants for secreted IgM, IgG, and IgA with an in-house ELISA using
polyclonal rabbit anti-human IgM, IgG, and IgA reagents and a serum protein
calibrator, all from Dako (Glostrup, Denmark), as described previously.33

SDS-PAGE and Western blot analysis
Blood was separated into neutrophils and PBMCs. Neutrophils (53 106)

were used for protein lysates, separated by means of SDS-PAGE, and trans-
ferred onto a nitrocellulose membrane. Individual proteins were detected
with antibodies against NF-kB p50 (mouse mAb E-10; Santa Cruz Biotech-
nology, Dallas, Tex), against IkBa (rabbit polyclonal antiserum C-21; Santa
Cruz Biotechnology), and against human glyceraldehyde-3-phosphate dehy-
drogenase (mouse mAb; Merck Millipore, Darmstadt, Germany).

Secondary antibodies were either goat anti-mouse-IgG IRDye 800CW,
goat anti-rabbit IgG IRDye 680CWor goat anti-mouse IgG IRDye 680LT (LI-
COR Biosciences, Lincoln, Neb). Relative �uorescence quanti�cation of
bound secondary antibodies was performed on an Odyssey Infrared Imaging
system (LI-COR Biosciences) and normalized to glyceraldehyde-3-phosphate
dehydrogenase.

NF-kB1 protein structure
A previously resolved crystal structure of the p50 homodimer (A43-K353)

bound to DNA was used to gain structural information on the NF-kB1 RHD.34

Ankyrin repeats of NF-kB1 (Q498-D802) were modeled by using comparative
homology modeling (Modeller 9v16) with the ankyrin repeats crystal structure
of NF-kB2 as a template.35,36There is no structural information on the region
between the sixth and seventh ankyrin repeats (F751-V771),36 and therefore
these were omitted in the model.

Statistical analysis of lymphocyte data
Differences between groups with 1 variable were calculated with a

nonpaired Studentt test or 1-way ANOVA with the Bonferronipost hoc
test, differences between groups with 2 or more variables were calculated
with 2-way ANOVA with the Bonferronipost hoctest by using GraphPad
Prism 6 software (GraphPad Software, La Jolla, Calif). AP value of less
than .05 was considered signi�cant.

RESULTS
Pathogenic variants in NFKB1 are the most
common monogenic cause of CVID

In an unbiased approach to analysis, we obtained BeviMed
posterior probabilities of association with PID for every
individual gene in all 848 unrelated patients with PID in the
NIHRBR-RD study. Genes with posterior probabilities of
greater than .05 are shown inFig 1, showing thatNFKB1
has the strongest prediction of association with disease
status (1.000). All 13 high-effect variants (large deletion,
nonsense, frameshift, and splice site variants) inNFKB1
were observed in cases only, resulting in the very high poste-
rior probabilities of pathogenicity (mean, 0.99) for this
class of variants (Fig 2). On the other hand, moderate-effect
variants (missense substitutions) were observed both in cases
and control subjects. The majority had near-zero probability
of pathogenicity, but 3 substitutions were observed in the
patients with PID only and had posterior probabilities of
greater than 0.15 (Fig 2), suggesting their potential involve-
ment in the disease. Genomic variants with a high Combined
Annotation Dependent Depletion score were found within
both the PID and control cohorts, suggesting that this
commonly used metric of variant deleteriousness cannot reli-
ably distinguish disease-causing from benign variants in
NFKB1. All 16 predicted likely pathogenic variants were
private to the PID cohort, and further investigation revealed
that all 16 subjects were within the diagnostic criteria of
CVID (Table I).

Assessment of all 390 CVID cases in our cohort for
pathogenic variants showedthat the next most commonly
implicated genes areNKFB2 and Bruton tyrosine kinase
(BTK), with 3 explained cases each (seeFig E2in this article’s
Online Repository atwww.jacionline.org). Importantly, based
on the gnomAD data set of 135,000 predominantly healthy sub-
jects, none of theNFKB1variants reported here are observed in
a single gnomAD subject, even though 90% of our CVID cohort
and all of theNFKB1-positive cases had European ancestry.
Therefore our results suggest that LOF variants inNFKB1are
the most commonly identi�ed monogenic cause of CVID in
the European population, with 16 of 390 patients with CVID
explaining up to 4.1% of our cohort. None of the variants

nonsense, frameshift, splice and missense variants; Exome Aggregation Consortium (ExAC) allele fre-
quencies; and conditional probability of variant pathogenicity inferred by using BeviMed. Only variants
labeled as being of moderate or high effect relative to the canonical transcript ENST00000226574 are shown.
The initial inference that formed part of the genome-wide analysis included variant chr4:103423325G>A,
which was observed in 1 control sample. This variant is intronic (low effect) relative to ENST00000226574
but is a splice variant (high effect) relative to the minor transcript ENST00000505458. Because variants
were Þltered based on the highest-effect variant annotation against any Ensembl transcript, this variant
was originally included in the inference. For this plot, the inference was rerun, including only missense,
truncating, and gene deletion variants relative to the canonical transcript.
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identi�ed here had been reported in the previously described
NFKB1cases.6-11

The NFKB1 gene encodes the p105 protein, which is pro-
cessed to produce the active DNA-binding p50 subunit.13 The
16 potentially pathogenic variants we identi�ed were all
located in the N-terminal p50 part of the protein (Fig 2). The
effects of the 3 rare substitutions on NF-kB1 structure were
less clear than those of the truncating and gene deletion vari-
ants, and therefore we assessedtheir position in the crystal
structure of the p50 protein. Their location in the inner core
of the RHD (Fig 3, A) suggested a potential effect on protein
stability, whereas other rare substitutions in the NIHRBR-RD
cohort were found in locations less likely to affect this (Figs
2 and3, A, and seeFig E3 in this article’s Online Repository
at www.jacionline.org).

NFKB1 LOF as the disease mechanism
Twelve patients with truncating variants (Arg284*,

His513Glnfs*28, c.160-1G>A, and Asp451*), 1 patient with
gene deletion (del 103370996-103528207), and 3 patients with
putative protein destabilizing missense variants (Ile281Met, Va-
l98Asp, and Ile87Ser) were investigated for evidence of reduced
protein level. Assessment of the NF-kB1 protein level in PBMCs or
neutrophils in 9 index cases and 7NFKB1variant–carrying rela-
tives demonstrated a reduction in all subjects (Fig 3, B, and see
Fig E4in this article’s Online Repository atwww.jacionline.org).
Relative �uorescence quanti�cation of the bands con�rmed this
and demonstrated a protein level of 38%6 4.3%
(mean6 SEM) compared with healthy control subjects. There
was no difference between clinically affected and clinically unaf-
fected subjects (36%6 4.4% vs 42%6 10.1%, n 5 11 vs
n 5 5, P 5 .50). Our observations indicate that the pathogenic
NFKB1variants result in LOF of the NF-kB1 p50 subunit because
reduction in protein levels was seen in all carriers regardless of their
clinical phenotype and was absent in family members who were
noncarriers.

Variable disease manifestations in NFKB1 LOF
subjects

Seven subjects had evidence of familial disease (Table I),
prompting us to investigate genotype-phenotype cosegregation
and disease penetrance in cases for which pedigree information
and additional family members were available (Fig 4 and see
Tables E1 to E3in this article’s Online Repository atwww.
jacionline.org). The age at which hypogammaglobulinemia be-
comes clinically overt is highly variable (seeFig E5 in this arti-
cle’s Online Repository atwww.jacionline.org), as shown by
pedigree C in which grandchildren carrying the c.160-1G>A
splice-site variant had IgG subclass de�ciency (C:III-3 and
C:III-4), in one case combined with an IgA de�ciency (C:III-3).
Although not yet overtly immunode�cient, the clinical courses
of their fathers (C:II-3 and C:II-5) and grandmother (C:I-2) pre-
dict this potential outcome and warrant long-term clinical
follow-up of these children.

We also observed variants in subjects who were clinically
asymptomatic. Pedigree A highlights variable disease penetrance:
the healthy mother (A:II-1) carries the same Arg284* variant as 2
of her clinically affected children (A:III-2 and A:III-3). Identi�-
cation of this nonsense variant prompted clinical assessment of
the extended kindred and demonstrated that her sister (A:II-4) had
recurrent sinopulmonary disease and nasal polyps with serum
hypogammaglobulinemia consistent with a CVID diagnosis.
Overall, based on the clinical symptoms observed at the time of
this study across 6 pedigrees, the penetrance ofNFKB1variants
with respect to the clinical manifestation of CVID is incomplete
(about 60% in our cohort, 11 affected subjects among 18 variant
carriers), with varied expressivity not only of age at disease onset
but also of speci�c disease manifestations, even within the same
pedigree.

The clinical disease observed among theNFKB1 variant car-
riers is characteristic of progressive antibody de�ciency associ-
ated with recurrent sinopulmonary infections (100% of
clinically affected subjects) by encapsulated microbes, such as
Streptococcus pneumoniaeand Haemophilus inßuenzae(see

TABLE I. Summary of the CVID patientsÕ clinical presentation and NFKB1 variants

Case
ID Sporadic/familial Infections Autoimmunity Malignancy

Chromosome 4
position (GRCh37)

Nucleotide
change

Type of
variant

cDNA (NM_003998.3);
Amino acid

A Familial C 103504037 C>T Nonsense c.850C>T;Arg284*
B Familial C C B 103518717 delCATGC Frameshift c.1539_1543del; His513Glnfs*28
C Familial C C C B 103459014 G>A Splice acceptor c.160-1G>A;?
D Familial C C 103518801 delGA Nonsense c.1621_1622del; Asp541*
E Sporadic C C B 103504030 C>G Missense c.843C>G; Ile281Met
F Sporadic C C 103488178 T>A Missense c.293T>A; Val98Asp
G Sporadic C 103488145 T>G Missense c.260T>G; Ile87Ser
H Familial C C 103501798 T>C Splice donor c.8351 2T>C;?
I Sporadic C 103370996-

103528207
— Large deletion —

J Familial C 103517415 delG Frameshift c.1423del; Ala475Profs*10
K Sporadic C C C 103436974-

103652655
— Large deletion —

L Familial C C 103459041 delG Frameshift c.187del; Glu63Lysfs*64
M Sporadic C C 103501790 insA Frameshift c.830dup; Lys278Glufs*3
N Sporadic C C C 103504086 insT Frameshift c.904dup; Ser302Phefs*7
O Sporadic C 103488180 C>T Nonsense c.295C>T; Gln99*
P Sporadic C C 103505914 delG Frameshift c.1005del; Arg336Glyfs*96

C , Presence of symptoms in index patient;B , presence of symptoms in family member of index patient.
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Table E1). The clinical spectrum ofNFKB1 LOF includes
massive lymphadenopathy (24%), unexplained splenomegaly
(48%), and autoimmune disease (48%), either organ-speci�c
and/or hematologic in nature (mainly autoimmune hemolytic
anemia and idiopathic thrombocytopenic purpura, seeTables

E1 and E2). The percentage of autoimmune complications is
based on the presence of autoimmune cytopenias (autoimmune
hemolytic anemia, idiopathic thrombocytopenic purpura [<50-
75 3 106/mL], autoimmune neutropenia, and Evans syndrome),
alopecia areata/totalis, vitiligo, and Hashimoto thyroiditis among
the clinically affected cases. Granulomatous-lymphocytic inter-
stitial lung disease and splenomegaly were considered lympho-
proliferation. Enteropathy, liver disease, colitis, and a mild
decrease in platelet count (>1003 106/mL) were neither included
in those calculations nor scored separately. Histologic assessment
of liver disease found in 3 patients showed no evidence of autoim-
mune or granulomatous liver disease, although �brosis and
cirrhosis were observed in these male patients. Finally, the num-
ber of oncological manifestations, predominantly hematologic,
was noticeable. There were 2 cases with solid tumors (parathyroid
adenoma and breast cancer) and 4 cases with hematologic malig-
nancies (B-cell non-Hodgkin lymphoma, diffuse large B-cell
lymphoma, follicular lymphoma, and peripheral T-cell lym-
phoma), which add up to 6 (28.6%) of 21 cases.

B-cell phenotype in subjects with NFKB1 LOF
mutations and immune cell activation

Index cases and family members carryingNFKB1variants were
approached for repeat venipuncture for further functional assess-
ment. In clinically affected subjects, B-cell numbers and pheno-
types were indistinguishable from those described for patients
with CVID (Fig 5 and seeFig E6in this article’s Online Reposi-
tory atwww.jacionline.org).37 However, in clinically unaffected
subjects the absolute B-cell count was often normal or increased
(Fig 5, A). In all subjects withNFKB1LOF variants, the numbers
of switched memory B cells were reduced (Fig 5, B-D), whereas a
broad range of nonswitched memory B cells was observed. This
demonstrates that although the clinical phenotype ofNFKB1
LOF variants is partially penetrant, all carriers have a de�ciency
in class-switched memory B-cell generation. The presence of
increased numbers of the CD21low population described in pa-
tients with CVID discriminates between clinically affected and
unaffected subjects withNFKB1LOF variants (Fig 5, E). B cells
from subjects withNFKB1LOF variants demonstrated impaired
proliferative responses to anti-IgM/anti-CD40/IL-21 and CpG/
IL-2 (Fig 6, A); this corresponded with the inability to generate
plasmablasts (CD381 /CD2711 ), which was most pronounced
in the more extreme phenotypes (ie, clinically affected cases;
Fig 6, B, and seeFig E7, B, in this article’s Online Repository at
www.jacionline.org). Similarly, ex vivo IgG production was
reduced in subjects with LOF variants, whereas IgM levels in
the supernatants were normal (Fig 6, C andD, and seeFig E7,
C), which is compatible with hypogammaglobulinemia.

T-cell phenotype in subjects NFKB1 LOF variants
The T-cell phenotype was largely normal in the subset distri-

bution (seeFigs E8andE9 in this article’s Online Repository at
www.jacionline.org). Similar to the knockout mouse model,38

we found an aberrant number of invariant natural killer T cells
in clinically affected subjects (seeFig E8). T-cell proliferation
was intact on anti-CD3/anti-CD28 or IL-15 activation (seeFig
E10 in this article’s Online Repository atwww.jacionline.org).
Because invariant natural killer T cells have been implicated in
diverse immune reactions,39 this de�ciency might contribute to

FIG 3. NFKB1 LOF variants lead to haploinsufÞciency of the p50 protein. A,
Localization of RHD substitutions with a high Combined Annotation Depen-
dent Depletion (CADD) score (>20) within the structure of the NF- kB p50
monomer. Shown is a solid (top panel) and a transparent (bottom panel)
sphere representation of the NF- kB p50 monomer. Perturbed residues indi-
cated in green were observed in a control data set and are located on the
outside of the structure, whereas residues shown in red were perturbed
exclusively in the PID cohort and are buried inside the structure. B, Western
blot analysis targeting p50, I kBa, and glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) of NFKB1 variant carriers. Left , Representative blot of
a healthy control subject and patient B-II:1; right , summary of 16 NFKB1
variant carriers showing haploinsufÞciency expressed as a percentage of
healthy control subjects on the same blot corrected for GAPDH
(mean 6 SEM).
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the residual disease burden in immunoglobulin replacement–
treated patients, some of whom had acute or chronic relapsing
infection with herpes virus and, in one case, JC virus.

DISCUSSION
In our study we show that LOF variants inNFKB1are present

in 4% of our cohort of patients with CVID, being the most
commonly identi�ed genetic cause of CVID. Furthermore, we
highlight speci�c features of these patients that distinguish
them within the diagnostic category of CVID, which otherwise
applies to an indiscrete phenotype acquired over time that is
termed common and variable. The majority of the genetic variants
we report here truncate or delete 1 copy of the gene; together with
pedigree cosegregation analyses, protein expression, and B-cell
functional data, we conclude thatNFKB1 LOF variants cause
autosomal dominant haploinsuf�ciency. This has now been
recognized as the genetic mode of inheritance for at least 17
known PIDs, including those associated with previously reported

variants inNFKB1.6,40-42 In monogenic causes of PID, incom-
plete penetrance has been more frequently described in haploin-
suf�cient relative to dominant negative PID disease, having
been reported in more than half of the monogenic autosomal
dominant haploinsuf�cient immunologic conditions described.40

This might be because dominant negative gain-of-function muta-
tions cause disease by expression of an abnormal protein at any
level, whereas, as seen in this study, haploinsuf�ciency is pre-
dicted to lead to 50% residual function of the gene product. By
de�nition, incomplete penetrance of a genetic illness will be asso-
ciated with substantial variation in the clinical spectrum of dis-
ease, and the spectrum seen in this study is consistent with prior
reports; in 3 pedigrees with 20 subjects6 harboring heterozygous
mutantNFKB1alleles, the age of onset varied from 2 to 64 years,
with a high variety of disease severities, including 2 mutation car-
riers who were completely healthy at the ages of 2 and 43 years.

It is important to temper skepticism of partial penetrance of
immune genetic lesions with our knowledge that individual
immune genes might have evolved in response to selection

FIG 4. Pedigrees of familial NFKB1 cases. Six affected families for which pedigree information and addi-
tional family members were available. P, Proband/index cases.
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pressure for host protection against speci�c pathogens.43 Conse-
quently, within the relatively pathogen-free environment of devel-
oped countries, the relevant pathogen for triggering disease might
be scarce, and reports documenting partial penetrance of the clin-
ical phenotype will increase. This makes the traditional ap-
proaches to genetics for determining causality dif�cult. The
BeviMed algorithm used in this study prioritized both the gene
NFKB1 and individual variants withinNFKB1 for contribution
to causality; the power of methods like this will increase with
greater data availability. Identi�cation of a number of rare
NFKB1 variants with high Combined Annotation Dependent
Depletion scores in both the PID and control data sets highlights
the potential for false attribution of disease causality when the ge-
netics of an individual case are considered outside the context of
relevant control data.

Currently healthy family members carrying the sameNFKB1
LOF variant demonstrated similar reductions in p50 expression
and low numbers of switched memory B cells as their relatives

with CVID. The longitudinal research investigation of these sub-
jects could help identify the additional modi�ers, including epige-
netic or environmental factors, that in�uence the clinical
penetrance of these genetic lesions. The similarity of results
seen in patients with large heterozygous gene deletions and in
those with more discrete substitutions is consistent with haploin-
suf�ciency as the shared disease mechanism.

In patients with mild antibody de�ciency, it is often dif�cult to
decide when to initiate replacement immunoglobulin therapy; this
might be the case for subjects and their family members identi�ed
with LOF NFKB1variants. Two measures seem to correlate well
with clinical disease.

First, the class-switch defect and lower IgG and IgA produc-
tion ex vivowas examined. Immunoglobulin class-switching is
known to be regulated by NF-kB. Mutations in NF-kB essential
modulator cause a class-switch–defective hyper-IgM syndrome
in human subjects,20 as well as in p50 knockout mice.13,44,45

Haploinsuf�ciency of NF-kB might result in defective

FIG 5. Decreased class-switched memory B-cell and increased CD21 low B-cell counts in NFKB1 LOF variant
carriers. A, Absolute numbers of CD19 1 B cells; each dot represents a single subject and his or her age. Age-
dependent reference values are shown in gray. B-E, Percentages within CD19 1 CD201 B lymphocytes of
CD271 IgD1 (nonswitched memory or marginal-zone B cells) and CD27 1 IgD2 (switched memory B cells;
Fig 5, B) or CD271 IgG1 (Fig 5, C), CD271 IgA1 (Fig 5, D), or CD21 low CD38low/dim (Fig 5, E). CA, Clinically
affected subjects with an LOF variant in NFKB1; CU, clinically unaffected subjects with an LOF variant in
NFKB1; HD, healthy donor. The gating strategy is shown in Fig E6, A. Only subjects with sufÞcient B cells
could be analyzed. P values were determined by using 1-way (Fig 5, E) or 2-way (Fig 5, B) ANOVA with
the Bonferroni post hoc test or unpaired Student t test (Fig 5, C and D). ns, Not signiÞcant. ** P <_ .01 and
*** P <_ .001.
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class-switch recombination because of poor expression
of activation-induced cytidine deaminase, a gene regulated
by NF-kB, which, when absent, is also associated with
immunode�ciency.46

Second, the ability to measure the CD21low B-cell population is
widespread in diagnostic immunology laboratories, and our study
identi�es this marker to correlate with NF-kB disease activity.
Although the function of these cells remain to be fully eluci-
dated,47 this laboratory test might be useful for longitudinal
assessment of clinically unaffected subjects identi�ed with LOF
NFKB1variants.

Apart from having recurrent and severe infections (including
viral disease) for which these patients had been given a diagnosis
of PID in the �rst place, autoimmunity and unexplained spleno-
megaly are very common manifestations in our patient cohort
similar to the other heterozygousNFKB1 cases described.6-11

Although autoimmunity has been subject to variable percentages
per cohort study,3,48,49 it seems that these complications occur
more frequently inNFKB1-haploinsuf�cient patients compared
with unselected CVID cohorts. In contrast to IKAROS defects
but similar to cytotoxic T lymphocyte–associated protein 4

(CTLA4)haploinsuf�ciency, we observed thatNFKB1 haploin-
suf�ciency can also result in chronic and severe viral disease, as
noted for cytomegalovirus and JC virus infections in 3 of our pa-
tients. In the study of Maffucci et al,11one of theNFKB1-affected
patients also experiencedPneumocystis jiroveciiinfection and
progressive multifocal leukoencephalopathy (PML), which is
suggestive for JC virus infection. Whether the B-cell defect in
NFKB1 haploinsuf�ciency is responsible for these nonbacterial
infections is unclear.50,51 PML is most often discovered in the
context of an immune reconstitution in�ammatory syndrome, as
seen in patients with HIV receiving antiretroviral therapy and in
patients with multiple sclerosis after natalizumab discontinua-
tion.52 Although the exact contribution of B-cell depletion in
PML pathogenesis is unknown, the increased PML risk in
rituximab-treated patients53 suggests a protective role for B cells.

Three subjects in this cohort had liver failure, and an additional
3 had transaminitis. Although autoimmunity is suspected, a
nonhematopoietic origin of liver disease cannot be excluded in
the absence of autoantibodies and nodular regenerative disease.
Mouse models have suggested a nonimmune role for NF-kB
signaling in patients with liver failure.13,54-56

FIG 6. Ex vivo class-switch recombination defect of subjects carrying NFKB1 LOF variants is linked to the
more extreme phenotype. Six-day culture of CFSE-labeled lymphocytes normalized for B-cell numbers: un-
stimulated, CpG/IL-2 stimulated (T cellÐindependent activation), or anti-IgM/anti-CD40/IL-21 stimulated (T
cellÐdependent activation). A, Percentage of divided B cells, as measured based on CFSE dilution. B, Per-
centage of CD27 11 plasmablasts. The gating strategy is shown in Fig E7, A. C and D, IgM and IgG production
in supernatants of 6-day cultures. CA, Clinically affected subjects with an LOF variant in NFKB1; CU, clini-
cally unaffected subject; HD, healthy donor. Only subjects with sufÞcient B cells could be analyzed. P values
were determined by using 2-way ANOVA with the Bonferroni post hoc test. ns, Not signiÞcant. ** P <_ .01 and
*** P <_ .001.
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In the cohort of patients withNFKB1variants, we identi�ed a
number of malignancies. Malignancies in patients with PIDs
have been cited as the second-leading cause of death after infec-
tion,57,58and murine models have demonstrated that haploinsuf�-
ciency of NF-kB1 is a risk factor for hematologic malignancy.59

In a large CVID registry study of 2212 patients, 9% had malig-
nancies, with one third being lymphomas, some presenting before
their CVID diagnosis.49Despite the fact that our cohort is relatively
small, we found oncologic manifestations in 29% of our cases (two
thirds being lymphoma), suggesting that malignancies in patients
with NFKB1haploinsuf�ciency can occur more often than in unse-
lected patients with CVID. In a study in 176 patients with CVID,
among the 626 relatives of patients with CVID, no increase in can-
cer risk was observed,60suggesting that when this does occur, as in
this study (3/7), it might be due to a shared genetic lesion. Therefore
in a pedigreewith an LOF variant inNFKB1, any relatives with can-
cer should be suspected of sharing the same pathogenic variant.

In conclusion, previous publications61,62 have suggested that
CVID is largely a polygenic disease. Our results provide further
evidence that LOF variants inNFKB1 are the most common
monogenic cause of disease to date, even in seemingly sporadic
cases. In these patients there is a clear association with complica-
tions, such as malignancy, autoimmunity, and severe nonimmune
liver disease; this is important because the excess mortality seen
in patients with CVID occurs in this group.48 The screening for
de�ned pathogenicNFKB1 variants accompanied by B-cell
phenotype assessment has prognostic value and is effective in
stratifying these patients.

We thank the patients and their family members for participation in our
study.
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