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Reassessment of pre-industrial fire emissions
strongly affects anthropogenic aerosol forcing
D.S. Hamilton 1,2, S. Hantson 3,4, C.E. Scott 1, J.O. Kaplan 5,6,7, K.J. Pringle1, L.P. Nieradzik8,9, A. Rap 1,

G.A. Folberth 10, D.V. Spracklen1 & K.S. Carslaw1

Uncertainty in pre-industrial natural aerosol emissions is a major component of the overall

uncertainty in the radiative forcing of climate. Improved characterisation of natural emissions

and their radiative effects can therefore increase the accuracy of global climate model pro-

jections. Here we show that revised assumptions about pre-industrial fire activity result in

significantly increased aerosol concentrations in the pre-industrial atmosphere. Revised

global model simulations predict a 35% reduction in the calculated global mean cloud albedo

forcing over the Industrial Era (1750–2000 CE) compared to estimates using emissions data

from the Sixth Coupled Model Intercomparison Project. An estimated upper limit to pre-

industrial fire emissions results in a much greater (91%) reduction in forcing. When com-

pared to 26 other uncertain parameters or inputs in our model, pre-industrial fire emissions

are by far the single largest source of uncertainty in pre-industrial aerosol concentrations, and

hence in our understanding of the magnitude of the historical radiative forcing due to

anthropogenic aerosol emissions.
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The global occurrence of wildfire and biomass burning in
the modern world is controlled by a combination of cli-
mate and human activity1–3. The present-day (PD) pattern

of fire (Fig. 1) is relatively well understood based on global
satellite measurements of burned area4. However, despite the
importance of fire in the climate system in the past and present5,
current understanding of fire occurrence in the late pre-industrial
Holocene (PI) is limited6. Analyses of ice core records, charcoal
measured in lake and marine sediments, and tree-rings suggest
that fire activity varied considerably over the last 500 years, but
that generally fire occurrence increased to a peak around 1850 CE
before declining to PD levels7–13. Paleoenvironmental archives
therefore suggest that PI fire activity was similar to PD activity, if
not higher (Supplementary Figures 1 and 2 and Supplementary
Table 1). This runs contrary to existing ideas about the pristine
nature of the Earth system in the PI, which is embodied in both
the AeroCom 175014 and the Coupled Model Intercomparison
Project (CMIP) phase 5 and 6 aerosol emission datasets15,16.

It has been widely assumed in global climate models that
aerosol emissions from fires in the PI were lower than in the
PD14–16, based on a misconception that total fire emissions
have increased with human population density17. Globally,
most fire ignitions are caused by humans1, which makes a
positive scaling of total burned area, and hence total fire
emissions, with human population density logical at first.
However, recent analysis of global fire occurrence shows that,
at a global scale, burned area declines with increasing popu-
lation density18,19 due to land use change20. For example,
observationally based estimates of burned area over the last
few decades suggest a global decline of 1–2% per year20–22,
with a maximum of 3–6% per year regional decline in Europe
and Australia/New Zealand20,21. On longer timescales Mallek
et al.23 suggest that PD (1984–2009) burned area is just 14% of

PI (1500–1850) burned area in California, and Arora and
Melton24 suggest an overall global decline of 25–30% in
burned area since the PI. This decline in fire is a result of
human activity: e.g., passive fire suppression from landscape
fragmentation limits the spread of fires25, while active fire
suppression management and legislation aimed to improve air
quality offset any potential anthropogenic increase in acci-
dental fire ignitions26. Therefore, advances in global fire
modelling27 suggest a significantly different pattern of fire
occurrence under PI conditions (modelled PI burned area
estimates: Supplementary Figure 3), with consequently higher
aerosol emissions than previously estimated.

A large number of global fire models exist, of which six con-
tributed to the creation of historical fire emissions in the CMIP6
dataset16. However, most fire models still assume an overall
positive relationship between human population and fire27 so
they do not capture the observed human-driven decline in burned
area, and hence fire emissions, over the last decades20. Therefore,
CMIP6 probably underestimates PI fire emissions.

Here we use two fire models driven by distinct philosophies
of the relationship between humans and fire to simulate a
range of PI fire emissions which are consistent with current
knowledge of how humans influence global fire occurrence, as
well as representing the uncertainty in anthropogenic land
cover and land use change from the PI to the PD (see Meth-
ods). Emissions in the two fire models are much greater than
in the AeroCom and CMIP6 PI datasets and are more in line
with the trends predicted from paleofire proxy records. When
used in a global aerosol model, the fire models result in a
substantial reduction in the magnitude of anthropogenic
aerosol forcing over the Industrial Era compared to the CMIP6
fire emission scenario; which has not been accounted for in
climate models.

PD (2003–2012) SIMFIRE-BLAZE: 1.97 Tg
PD (1991–2000) LMfire: 3.26 Tg
PD (2003–2012) FINN: 2.15 Tg
PD (2003–2012) GFAS: 2.17 Tg
PD (2003–2012) GFED4: 1.81 Tg

Decadal range

PI (1750) LMfire & range: 91.6 Tg
PI (1750–1770) SIMFIRE-BLAZE: 49.7 Tg
PI (1750) AeroCom: 13.8 Tg
PI (1750–1770) CMIP6: 20.4 Tg
PD (2005–2015) CMIP6: 24.0 Tg
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Fig. 1 Fire carbonaceous aerosol emissions. a Pre-industrial (PI) and present-day (PD) carbonaceous fire emissions (sum of black and organic carbon) as a
function of latitude. PI fire emissions derived from four fire datasets: LMfire, SIMFIRE-BLAZE, CMIP6 and AeroCom. PD fire emissions are from the CMIP6
dataset. The range around LMfire represents a plausible range in the natural variability of PI fire emissions derived from the maximum and minimum in fire
emissions from the four distinct decadal mean fire climatologies. Seasonal PI carbonaceous aerosol emission maps are shown in Supplementary Figure 4.
b Black carbon emissions for PD from five datasets: LMfire, SIMFIRE-BLAZE, GFED4, GFAS and FINN (mean of 2003–2012 for all except LMfire which is
the mean over 1991–2000). Shaded area represents the minimum and maximum in decadal emissions from within all three observation datasets
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Results
Modelling pre-industrial fire emissions. To quantify how
assumptions concerning PI fire emissions affect historical aerosol
concentrations, and how this change in the PI aerosol baseline
affects anthropogenic radiative forcing, we use four datasets of
black carbon (BC), particulate organic matter (POM) and sulphur
dioxide (SO2) fire emissions in a global aerosol model (Supple-
mentary Table 2). We define the PI to be 1750 and fire emissions
are defined as the sum of emissions from natural wildfires as well
as fires resulting from anthropogenic activity.

The principal fire modelling dataset is calculated using the
LPJ-GUESS-SIMFIRE-BLAZE model. To calculate burned area
BLAZE incorporates the empirically optimised SIMFIRE
(SIMple FIRE) model18,28. SIMFIRE-BLAZE is then configured
to run under PI conditions, but does not explicitly simulate PI
agricultural burning. We also calculate PI fire emissions using
the LPJ-LMfire29 model. LMfire is currently the only fire model
specifically designed to simulate human-caused fires and
natural wildfires in the PI period. LMfire reproduces long-
term observed PD boreal fire behaviour within central Alaska29,
which is the PD region where fire activity is most analogous to
the PI30. We compare PI fire emissions from these two fire
models with emissions from the CMIP6 dataset16, which is the
most recent fire emission dataset for use within global climate
and Earth system models. The CMIP6 dataset for both the PI
and PD combines information from satellite measurements, fire
emission proxy records and six fire models from the Fire Model
Intercomparison Project (FireMIP; see Methods). To assess
how the CMIP6 fire dataset and our new fire models compare to
earlier understanding of PI fire emissions we also compare to
the Dentener et al.14 1750 dataset adopted by AeroCom. A
global aerosol model was then used to quantify the changes in
PI aerosol concentrations resulting from each fire emission
dataset. We also calculate the effect on the aerosol radiative
forcing between the PI and PD assuming a common
observation-based fire emission dataset for the PD, which is
also used in CMIP6 (see Methods).

Evaluation of fire emissions. The four PI fire emission datasets
(AeroCom, CMIP6, SIMFIRE-BLAZE and LMfire) produce a
wide range of aerosol and trace gas emissions (Supplementary
Table 2). Figure 1 shows that when assuming a positive rela-
tionship between human population and fire occurrence (Aero-
Com scenario), fire emissions are consistently lower in the PI
than the PD, because emissions are scaled only by population
changes in most regions. Global annual mean PI CMIP6 carbo-
naceous fire emissions are 48% higher than in the AeroCom
dataset, with major increases over Northern Hemisphere (NH)
mid-latitudes and tropical Africa, but are still lower than the PD.
In contrast, although the LMfire and SIMFIRE-BLAZE modelled
PI fire emissions differ substantially, they are both much higher
than PD emissions at almost all latitudes outside the tropics,
where continental pristine aerosol environments are both spa-
tially and temporally rare30. The majority of PD fire emissions
originate in tropical savannah and grassland regions31 where
herbaceous biomass accumulates during the wet season and
provides large quantities of finely structured fuel that can readily
burn during the dry season. In the PI a significant fraction of
global emissions also originate from NH mid-latitudes, while in
the PD passive and active human fire suppression is highly active
(e.g., >99.5% fire ignitions are actively suppressed in the US32).
Different representations of anthropogenic land cover and land
use change over the industrial period between the two fire models
(see Methods) contribute to the significant differences in mod-
elled estimates of PI burned area (Supplementary Figure 3) and

emissions (Supplementary Figure 4); particularly between 30° N
and 45° N where agricultural emissions present in LMfire but not
SIMFIRE-BLAZE are estimated to contribute up to 25% (Eurasia:
37%, North America: 1%) of total fire emissions, and during the
boreal spring season. Recent studies suggest that mid-latitude
Eurasian post-harvest agricultural burning emissions have been
strongly underestimated in both the PI33 and PD34,35, so the
inclusion of these sources in LMfire, but not SIMFIRE-BLAZE,
adds significantly to the total emissions between 30° N and 45° N,
but further research is needed to determine their accuracy.

Depending on the emitted species, modelled total global fire
emissions in the PI are estimated to be between approximately
two-and-a-half and five times higher than those in the CMIP6
dataset (Supplementary Table 2), reflecting the large contribution
to the uncertainty in fire emissions from fire modelling processes
and assumptions about land use change (see Methods). These
differences also lie well outside the perturbations assumed in
multi-model sensitivity studies36, and have a different spatial
distribution due to differences in fire emissions corresponding
with changes in the location of PI fire occurrence rather than a
uniform global increase. Seasonal patterns in fire emissions are
similar between fire models, except in spring where LMfire
simulates significantly more emissions than SIMFIRE-BLAZE in
both hemispheres (Supplementary Figure 4). Overall, the fire
model simulations suggest that a large source of PI aerosol
emissions is currently missing from climate models and the
CMIP6 experiments.

Figure 1 also compares SIMFIRE-BLAZE and LMfire modelled
BC emissions for the PD climate (see Methods) along with the
range in BC emissions derived from all three commonly used fire
inventories (The Global Fire Emissions Database: GFED4, The
Global Fire Assimilation System: GFAS and the Fire INventory
from NCAR: FINN). SIMFIRE-BLAZE and LMfire emissions
generally lie within the decadal-mean emission range of the three
observation-based datasets, although LMfire emissions are
consistently higher in SH regions compared to decadal mean
values from all other datasets. We also note that the two
observation-based inventories can differ by up to a factor 3
themselves, and therefore a factor 2 difference at mid-latitudes
between SIMFIRE-BLAZE and LMfire emissions in the PI reflects
the uncertainty which also hinders accurate estimates of PD
emissions.

The ability of a model to reproduce PD emissions does not
necessarily mean that it also produces realistic results under a
different past climate using different boundary conditions and
where emissions are controlled by different processes. Hence, we
advocate that model performance is best evaluated against what
we know about the PI, rather than the PD.

Comparisons with ice core records. BC deposited on glaciers
and recovered in ice cores can be used to infer the relative change
in atmospheric total BC concentrations that occurred between the
PI and the PD11. Here we evaluate NH changes in BC con-
centrations in each dataset. We compare modelled PD/PI BC
atmospheric concentration ratios (see Methods, Supplementary
Figure 5) to measured BC ice core ratios at four ice core locations:
two in Greenland, and one in each of North America and Europe
(Fig. 2). To minimise the large uncertainties associated with the
absolute deposition37, we analysed only the ratio of PI to PD BC
in the cores, assuming that trends can be more accurately mod-
elled than absolute values. Our hypothesis is that a modelled PD/
PI ratio that is higher than measured indicates that PI emissions
are too low in the model compared to the PD. Although absolute
BC deposition is uncertain37 (see later discussion) we assume that
the controlling factor in the PD/PI ratio across multiple
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independent sites will be the trend in emissions. Together these
ice core records provide an estimate of how fire emissions have
changed within, or downwind of, NH regions of intensive land
use and land cover change over the last 200 years38,39.

Overall (Fig. 2), global aerosol model simulations of the PD/PI
ratio in BC concentrations using LMfire and SIMFIRE-BLAZE
fire emissions are in closer agreement with ice core measurements
than the global aerosol model simulation which uses the CMIP6
fire emissions dataset, although CMIP6 is an important
improvement on the AeroCom dataset.

In Greenland the ice core BC in the PI is derived from wildland
fires10 transported from boreal North America40, while in the PD
it will also contain large amounts of BC from industrial activity41.
Figure 2 compares the aerosol model with the PD/PI ratio in ice
core BC concentrations from the D4 core (2713 m above sea
level) in central Greenland10 and the NEEM core (2480 m above
sea level) in northern Greenland42. Using AeroCom emissions in
the aerosol model results in a PD/PI atmospheric BC ratio that is
a factor 2.2–3.1 higher at NEEM and a factor 5.6–8.6 higher at D4
than the measured BC ratio in the ice. These ratios suggest that
assuming a positive relationship between human population
density and fire occurrence results in PI fire emissions that are too
low. Using CMIP6 emissions results in a PD/PI BC ratio that is a
factor of 1.3–1.9 higher at NEEM and a factor of 2.9–4.5 higher at
D4 than the measured BC ratio. Using LMfire emissions results in
a PD/PI BC ratio that is a factor 1.7–2.4 lower at NEEM and
between a factor of 1.3 higher and a factor of 1.1 lower at D4,
while using SIMFIRE-BLAZE emissions results in a PD/PI BC

ratio that is between a factor of 1.0–1.5 higher at NEEM and a
factor of 2.0–3.1 higher at D4, than the measured BC ratio.

In the Wyoming ice core12, which is 4100 m above sea level
(see Methods), measured PD (1970–1979) BC concentrations are
37% lower than in the PI (Fig. 2). However, North American
industrial BC emissions have been decreasing significantly since
197041,43, so to compare with our model simulation in 2000 we
scale the model PD concentrations by a factor of 1.6 ± 0.4 in line
with the CMIP6 changes in anthropogenic emissions, and the
uncertainty, over this period (see Methods). The global aerosol
model with AeroCom fire emissions results in a PD/PI BC ratio at
the altitude of the measurement site that is a factor 21.2
(15.7–26.2) larger than the measured ratio in the ice core (0.6),
again consistent with the hypothesis of fire emissions being too
low in the PI with a positive scaling of fire occurrence with
population density. Using CMIP6 emissions results in a PD/PI
ratio that is a factor of 11.5 (8.5–14.2) higher than the measured
BC ratio. Using LMfire emissions results in a PD/PI BC ratio that
is a factor 1.2 (1.0–1.6) lower than measured, while using
SIMFIRE-BLAZE emissions results in a PD/PI BC ratio that is 2.2
(1.6–2.7) higher than measured. Aerosol model results using fire
model estimates of PI fire emissions are much closer to the
measured PI to PD change in BC concentrations than the aerosol
model results using the AeroCom and CMIP6 datasets, which
predict far larger increases in BC from PI to PD.

In the Colle Gnifetti ice core in the Swiss Alps, which is 4450 m
above sea level44 (see Methods), BC concentrations averaged for
1950-to-1980 are a factor of 2.9 higher than in 1750 (Fig. 2). Total
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Fig. 2 Present-day/pre-industrial ratio in ice core and modelled black carbon concentrations. Shown are two Greenland sites (D4 and NM), one North
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BC concentrations at this site are significantly higher in the PD
than in the PI due to additional industrial emissions that are not
present in the PI. Similarly to North America, European
industrial BC emissions have been decreasing significantly since
196045. In Fig. 2 we account for this known change by increasing
the global aerosol model PD concentrations of BC by a factor of
2.0 ± 0.5 (see Methods). The global aerosol model with AeroCom
fire emissions results in a PD/PI BC ratio, at the altitude of the
measurement site, that is a factor 4.1 (3.1–5.2) larger than the PD/
PI BC ratio recorded in the ice core; again, consistent with
AeroCom PI emissions being too low. Using CMIP6 emissions
results in a PD/PI ratio that is a factor of 2.7 (2.0–3.3) higher.
Using LMfire emissions results in a PD/PI BC ratio that is a factor
1.6 (1.3–2.2) lower than the ratio recorded in the ice core, while
using SIMFIRE-BLAZE emissions results in a PD/PI BC ratio that
is 1.3 (1.0–1.6) higher than the ratio recorded in the ice core.

Due to the short atmospheric lifetimes of aerosol and soluble
gases, ice cores store local-to-hemispheric-scale changes and
contain many uncertainties as a proxy for fire emissions (see
Methods). Nevertheless, we find that the changes in BC recorded
in ice cores at four sites in very different environments are
inconsistent with the assumption that fire emissions were
significantly lower in the PI than in the PD, especially over
North America and Europe. Compared to using fire emissions
from the CMIP6 dataset, incorporating fire model emissions
within the aerosol model results in closer agreement with the
measured PD/PI ratio of total BC.

Comparisons with other paleofire proxy records. Other proxies
for fire occurrence and emissions provide further evidence for the
likely changes in fire occurrence from the PI to the PD. Arora and
Melton24 recently reported a 28% decline in global burned area
from the PI (1850–1870) to PD (2005–2010). Applying this
change to PD estimates of burned area from GFED4s (~475Mha)
24 and FINN (~725Mha)46 results in an estimated PI range in
burned area from 679 to 1040Mha (Supplementary Table 3).
Emissions from SIMFIRE-BLAZE in the PI are based on a burned
area of 641Mha, while emissions from LMfire are based on a
burned area of 1180Mha (Supplementary Figure 3). This would
suggest that burned area in SIMFIRE-BLAZE is below the lower
end of the range in PI burned area and LMfire is above the upper
end of the range. However, Arora and Melton state that their
burned area estimates do not include contributions from agri-
cultural burning, which are a significant proportion of emissions
at mid-latitudes in LMfire, suggesting that LMfire represents the
plausible upper limit of PI emissions in many regions. A regional
comparison of modelled burned area with the Arora and Melton
dataset24 suggests that the distribution of burned area, and hence
emissions, in LMfire is appropriate, although the magnitude of
the emissions is high.

The charcoal record (see Supplementary Figure 2) suggests that
fire occurrence in the tropics (30° S to 30° N) increased slightly
from the PI to the PD. Moreover, in general agreement with
Fig. 1, fire occurrence in the extra-tropical regions (>30° S and N)
in the PI was similar to or larger than in the year 20008,9. The
charcoal record suggests fire occurrence in the NH mid-latitude
region (25–45° N) is lower in the PD compared to the PI, due
mainly to a decrease in charcoal deposition occurring over the last
few decades, the same region in which the fire models (Fig. 1)
predict the largest decrease in PD emissions compared to the PI,
and where tree-ring-based reconstructions of fire activity for
western North America also suggests a very rapid decline in fire
occurrence from the PI to the PD13.

Greenland ice core measurements of unique chemical tracers of
fires are also consistent with a decrease in fire emissions since the

PI (see Supplementary Figure 1 and Supplementary Table 1). We
note that CO measurements in Antarctic ice cores7 also suggest
that PI fire emissions are higher over the Southern Hemisphere
than are currently estimated in inventories. Although the
measured quadrupling of the enhancement in PI CO from fires
cannot be reproduced from PD fire distributions6, a significant
change in fire emissions from nearby regions such as Patagonia
and Australia (such as shown within the fire modelling presented
here) could significantly enhance PI CO from fires transported to
Antarctica.

Overall, the CMIP6 fire emission inventory does not capture
the trends in these proxies, which are more closely in agreement
with the overall trends in fire occurrence calculated from fire
modelling, which specifically incorporates information on the
non-linear relationship between fire occurrence and human
population density. In terms of fire model performance, neither
model outperforms the other in all regions and each has its own
strengths (see Methods). Based on currently available measure-
ments and the limited comparison with ice core records, we
suggest that LMfire represents what is likely to be an upper limit
to the plausible range of PI fire emissions in many regions,
particularly in the extra-tropics.

Pre-industrial aerosol concentrations. Figure 3 shows annual
mean PI cloud condensation nuclei (CCN) concentrations
simulated by the aerosol model for the four fire emission sce-
narios (see Methods). Global monthly mean PI CCN con-
centrations at 915 hPa (approximately low-level warm cloud
base) are 110 cm−3 when using CMIP6 emissions; this is a factor
of 1.1 higher than those calculated using AeroCom emissions.
Compared to using CMIP6 emissions, CCN concentrations are a
factor of 1.3 higher when using SIMFIRE-BLAZE emissions and a
factor 1.7 higher when using LMfire emissions (see Supplemen-
tary Figure 6). Over continental regions, the increases in CCN
concentrations are even greater relative to using the CMIP6
emissions, a factor of 1.5 higher using SIMFIRE-BLAZE emis-
sions and a factor of 2.1 higher using LMfire emissions. A large
portion of this difference is due to substantially increased fire
emissions in the NH mid-latitudes (Fig. 1). In general, using
CMIP6 emissions results in increases in CCN concentrations in
all regions compared to using AeroCom emissions, the exceptions
being near the high PD deforestation regions of Brazil and both
polar regions. Over Africa, CCN concentrations are higher in
extra-tropical regions but lower in tropical regions when incor-
porating LMfire or SIMFIRE-BLAZE fire emissions compared to
CMIP6. Over Indonesia and northern Australia CCN con-
centrations are higher when incorporating LMfire emissions
compared to using CMIP6 emissions, while using SIMFIRE-
BLAZE emissions yields lower CCN concentrations. Downwind
of southern Australia and Patagonia both fire model emission
datasets lead to higher CCN concentrations than when using
CMIP6 fire emissions, but similar or lower CCN concentrations
are calculated over most of the Southern Ocean when using the
two fire models. Incorporating SIMFIRE-BLAZE and LMfire
emissions results in marine CCN concentrations that are 1.2–1.5
times higher than when using CMIP6 emissions, due to long-
range aerosol transport. The current study shows that pre-
industrial fire emissions cause larger uncertainty in CCN (and
hence pre-industrial to present-day aerosol indirect forcing) than
the combined estimate in Hamilton et al.30 from 28 uncertain
parameters related to aerosol processes and emissions.

Effect on PI to PD anthropogenic aerosol radiative forcing.
Changes in PI CCN concentrations alter both the size and
number of cloud drops in the PI, and therefore the magnitude of
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the cloud radiative perturbation caused by anthropogenic emis-
sions over the historical period47. Figure 4 shows the radiative
forcing due to changes in cloud albedo between the PI and PD
using PI fire emissions from the CMIP6 dataset or the fire model
datasets (see Methods). Other cloud adjustments caused by the
changes in aerosol were not included, but are likely to enhance
the albedo effect we calculate43. The global annual mean cloud
albedo forcing in the simulation with CMIP6 emissions is −1.1
Wm−2 in this model, a decrease of 16% compared to using the
AeroCom PI and PD fire emission datasets (see Methods and

Supplementary Table 2), but is reduced to −0.73Wm−2 in the
SIMFIRE-BLAZE simulation and to −0.10Wm−2 in the LMfire
simulation. All simulations show a similar latitudinal distribution
in the forcing (Supplementary Figure 7), driven primarily by NH
anthropogenic industrial emissions. We estimate the LMfire
cloud albedo forcing to lie between −0.06 and −0.17Wm−2,
based on four emission scenarios representing the mean decadal
maximum and minimum in tropical and extra-tropical fire
emissions simulated by LMfire (see Methods, Supplementary
Table 2 and Supplementary Figure 8). This suggests that in order

CMIP6 SIMFIRE-BLAZE LMfire
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Fig. 4 Annual mean pre-industrial to present-day aerosol cloud albedo forcing and direct radiative forcing. Annual mean radiative forcing values are given
above each map for Global (G), Northern Hemisphere (N) and Southern Hemisphere (S) regions
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Fig. 3 Pre-industrial cloud condensation nuclei concentrations. Annual mean pre-industrial cloud condensation nuclei (CCN) concentrations (cm−3) for the
three main PI fire emission datasets (LMfire, SIMFIRE-BLAZE and CMIP6), and the percent change in the AeroCom, SIMFIRE-BLAZE and LMfire fire
emission estimates compared to the CMIP6 dataset. CCN number concentrations are calculated at a supersaturation of 0.2% at 915 hPa (approximately
cloud base for warm shallow, radiatively important clouds)
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to improve the accuracy of radiative forcing estimates in climate
models, it is more important to reduce the structural uncertainty
between fire models than to improve our understanding of nat-
ural variability in PI fire emissions.

Figure 4 also shows the aerosol direct radiative forcing between
the PI and PD for each fire emission scenario. Each PI fire
emission experiment results in a similar spatial pattern of direct
forcing. The global mean differences are much smaller than for
the cloud albedo forcing, ranging from −0.68Wm−2 for CMIP6
PI fire emissions to −0.62Wm−2 for LMfire PI fire emissions
(Supplementary Table 2). The sensitivity of the direct radiative
forcing to PI fire emissions is weaker than for the cloud albedo
forcing. This is caused by (i) the more linear response of the
natural aerosol direct radiative effect compared to its cloud albedo
effect48 and also by (ii) the smaller direct radiative efficiency of
fire aerosol compared to other natural aerosol48 due to
contrasting optical properties of absorbing BC and scattering
POM.

The revised assumptions about PI fire emissions lead to
substantial changes in the regional magnitude and pattern of the
net aerosol radiative forcing over the industrial period. Our
modelling results imply a substantial change in our under-
standing of the way the energy balance of the atmosphere has
evolved over the industrial period, particularly over the Atlantic,
with several possible implications for climate studies. In
particular, compared to the simulation using CMIP6 fire
emissions, we estimate that the revised fire emissions reduce
the magnitude of the net (cloud albedo and direct) aerosol
radiative forcing contrast between the Northern and Southern
Hemispheres by 0.2Wm−2 for both the SIMFIRE-BLAZE and
LMfire simulations, but with very different spatial distributions
(Fig. 4). In many coupled atmosphere-ocean climate models, the
inter-tropical convergence zone would likely be positioned
further southward in the PI compared to models participating
within CMIP6, as tropical precipitation patterns are sensitive to
changes in the gradient in the inter-hemispheric aerosol
forcing49,50. Other dynamical features of the climate system,
such as Atlantic and Pacific storm tracks are potentially also
sensitive to NH aerosol forcing51,52.

The inclusion of more realistic PI fire emissions in climate and
Earth system models is likely to cause a general reduction in the
magnitude of the aerosol radiative forcings that they simulate53,
although limitations to cloud droplet concentrations that are
imposed in some models will influence how they respond54. Any
subsequent adjustment to climate model processes through
tuning, while still maintaining agreement with historical global
mean temperature changes, will affect the climate sensitivity of
the models, and hence future climate projections55,56.

A realistic lower bound for PI fire emissions is currently
unknown, but analysis of ice cores, charcoal records and tree-
rings suggests it will be nearer to SIMFIRE-BLAZE modelled
estimates than those within the AeroCom or CMIP6 datasets.
LMfire emissions are approximately double SIMFIRE-BLAZE in
most mid-latitude regions due to the addition of agricultural
emissions and a longer fire season, which both increase annual
mean burned area and hence modelled emission estimates. We
therefore suggest that in many extra-tropical regions LMfire
represents a plausible upper limit, particularly in the Arctic and
semiarid regions of the mid-latitude NH. The exception is
temperate North America, a region important for the baseline
forcing, where reconstructions based on paleoenvironmental
archives are in closest agreement with LMfire of all examined
datasets. However, LMfire emissions from Australia are close to
an order of magnitude higher than SIMFIRE-BLAZE and should
be treated cautiously in the absence of supporting evidence, in
particular the impact that colonisation has had on fire activity

within Australia which could be large. The upper limit of
potential fire activity in most tropical regions is also currently
unknown.

Uncertainties and future directions. Several lines of evidence,
aside from more realistic fire models, point to PI fire emissions
being greater than previously assumed: ice core records of the PI
to PD change in BC at several independent sites in different
environments; ice-core records of tracers of fire activity; recent
analyses of fire occurrence revealing declining burned area with
increasing population density (e.g., refs. 13,18–20,24); and indirect
evidence from the charcoal record and tree-rings. Nevertheless,
evidence to support new model estimates currently contains
many uncertainties, including: the modelling of aerosol deposi-
tion on snow, in particular the extent to which models can
simulate trends even if absolute deposition is very uncertain; the
ability to simulate deposition to high-altitude sites using low-
resolution models; the extent to which deposition scales with
emissions and concentrations on a long-term mean; the effect of
PI to PD changes in aerosol processing, atmospheric circulation
and precipitation patterns; uncertainties in the different records
of fire emissions themselves; uncertainty in land cover and land
use change over the industrial period, and how this translates to
uncertainty in aerosol emission and deposition rates; uncertainty
in the impacts of European colonisation on fire regimes influ-
enced by aboriginal land use practices; uncertainty in fire emis-
sion factors, which also may have been different in the PI
environment; spatial and temporal variability in fire emissions,
including the fire return interval, and how this affects the opti-
mum length of model simulations; and the uncertainty in a single
model analysis. These are clear tasks for future research to help
reduce uncertainty in PI to PD changes in fire emissions, as well
as the associated uncertainty in radiative forcing estimates over
the Industrial Era, noting that any future constraints are not
automatically equivalent within each time-period.

Our results highlight the importance of developing a much
deeper understanding of how fires evolved over the industrial
period, especially since global fire models have mostly been
evaluated against PD data27. The exponential increase in human
population over the Industrial Era has restructured the fire
landscape on all inhabited continents and created a permanent
change in the energy balance of the atmosphere that has not been
fully accounted for in climate models. Furthermore, it is highly
likely that models participating in CMIP6 would simulate smaller
anthropogenic aerosol radiative forcings over the industrial
period if they used higher PI fire emissions.

The climate impacts of fires will also extend beyond changes in
aerosol emissions, and includes many other important processes5

such as changes in CO2 exchange, surface albedo, ozone and
methane concentrations, as well as other smoke-induced adjust-
ments to clouds and regional meteorology that were not explored
here. These factors could amplify or attenuate the effects we have
simulated here. A reduction in the uncertainties in unobservable
PI aerosol concentrations57–59, including but not limited to fire
emissions investigated within this study, will best be achieved
through a multi-disciplinary approach, including contributions
from Earth system modelling, palaeontology, geology, anthro-
pology and archaeology.

Methods
AeroCom fire emissions. The AeroCom inventory consists of multiple datasets of
global natural and anthropogenic aerosol and precursor emissions for the pre-
industrial (PI) year 1750 and the present day (PD) year 200014. AeroCom PI fire
emissions are calculated by scaling back present day (year 2000) fire emissions
from the Global Fire Emissions Database (GFED2)60 database according to the
change in human population density between the PI and PD. Deforestation fires
are scaled solely by population density data while fire emissions from all other land
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surface types are scaled to 60% of their PD value, assuming 40% would burn
naturally. Exceptions for high latitude boreal regions were made to account for
changes in fire suppression and are assumed to be double PD levels.

Coupled Model Intercomparison Project phase 6 fire emissions. The Coupled
Model Intercomparison Project (CMIP) phase 6 fire emission inventory16 provides
monthly fire emissions from 1750 to 2015 anchored to GFED4s PD (1997–2015)
emissions. Estimates of historical fire emissions are derived by merging the satellite
record with fire proxy records (fire tracers contained within snow and ice and the
charcoal record) in regions with suitable proxy coverage (North America and
Europe), and by using the mean of six fire models in regions of limited proxy
record coverage. Within the tropical rainforest regions of Equatorial Asia
(including Indonesia, Micronesia, and Polynesia) and South America fire emissions
are held constant back in time from 1960 and 1970, respectively. Agricultural fires
are also kept relatively constant over time. Here we use the mean of emissions from
1750 to 1770 to represent the PI and the mean of emissions from 2006 to 2015 to
represent the PD. The CMIP6 PI dataset is presented here as a lower bound to, and
likely underestimates, the magnitude of PI fire emissions because the fire models
used to construct the main part of the inventory are unable to reproduce the
observed 24% decrease in global burned area over the last 18 years due to human
impact20.

SIMFIRE-BLAZE fire model description. The principle fire modelling dataset is a
transient simulation using the LPJ-GUESS-SIMFIRE-BLAZE model, where PI is
defined as the mean of 1750-to-1770 and PD is defined as the mean of 2003-to-
2012. The BLAZE (L.P.N. et al., manuscript in preparation) combustion model
simulates fire driven fluxes within the biosphere and from biosphere to atmo-
sphere. It computes survival-probabilities for stands of trees based on the vegeta-
tion properties and potential fire-line intensity (FLI)61, which is derived from
available fuels and local meteorology. In the event of a fire the survival probability
of each tree is tested individually. The total area burned is computed by SIMFIRE
(SIMple FIREmodel)28 using an algorithm fitted to values of average annual
maximum fraction of absorbed photosynthetically active radiation (fAPAR), the
maximum annual Nesterov-index, the biome-type, and human population density.
The reciprocal of the monthly fractional area of grassland burned is used as a
stochastic proxy for the occurrence of fire affecting forested regions in each grid
cell. Fluxes between live and litter pools as well as the atmosphere are then com-
puted depending on FLI. SIMFIRE-BLAZE is incorporated within the LPJ-GUESS
dynamic vegetation model62,63

LPJ-LMfire fire model description. The LPJ-LMfire model29,64 includes processes
to simulate natural wildfires from lightning ignition and a unique representation of
fire generated by both agricultural and pastoral societies. To run LMfire we
combined climatological mean climate fields that provide a high-spatial-resolution
baseline, with detrended, interpolated climate anomalies from reanalysis simula-
tions that provide interannual variability. The original datasets used to drive the
model are described in Table 3 of Pfeiffer et al.29; here we describe the process that
were used to prepare the interannually variable climate driver input files.

A 20th Century Reanalysis65 is used to impose interannual variability in our
simulations in several steps. First, we prepared monthly anomalies relative to the
period 1961–1990 for: mean temperature, diurnal temperature range, total
precipitation, number of days with precipitation, cloud cover, wind speed, and
convective-available potential energy (CAPE). These monthly anomalies are then
detrended using a robust loess regression filter66 with a bandwidth of 30 years.
Next, we interpolated the detrended anomalies for each meteorological variable to
0.5° spatial resolution. Next, a climate driver dataset was generated from a 1080-
year climate dataset by dividing the 140-year detrended climate anomalies into
twelve 30-year blocks at 10-year intervals. Anomalies were then sampled using a
pseudo-random scheme where once a block was chosen it was not selected again
until all of the other remaining blocks have been selected. In order to generate a
1080-year timeseries 36 blocks were selected, i.e., each block was used three times
but appeared in a different order each time. Finally, each anomaly timeseries was
added to its complementary baseline climatological mean climate field, and used
the resulting 1080-year (12960-month) climate data input file to run LMfire. For
the PI simulation in LMfire, we used only the last 150 years of this model run, i.e.,
years 931–1080, as this is the period where all of the model pools are considered to
be in equilibrium, although we acknowledge that the actual state of the terrestrial
biosphere in the late preindustrial Holocene may have been far from equilibrium in
many regions33,67,68. Atmospheric CO2 concentrations were set to 1770 levels for
the duration of this simulation.

In the LMfire PI simulation, land use is prescribed from the KK10 scenario67 for
the year 1770. The managed burning routine of the fire module29 defines that 50%
of the litter on 20% of the used land (cropland and pasture) is burned annually. As
the seasonality of burning on used land is not well known at global scale, fire
emissions are partitioned evenly across all snow-free days of the year with mean
temperature above 0 °C. In reality, most biomass burning on used land probably
occurred during certain periods of the year, e.g., after harvest, but it is currently
beyond the capability of any global land use scenario to prescribe these periods.

To perform a PD simulation with LMfire, we made a transient model
simulation for the period 1701–2000 driven by the synthetic climate timeseries
described above, transient land use, and reconstructed and measured atmospheric
CO2 concentrations. Land use was provided by merging KK10, which ends in 1850,
to the Hundred Year Database for Integrated Environmental Assessments (HYDE)
dataset following the protocol described in Kaplan et al.68. The LMfire PD results
presented here represent the mean over the period 1991–2000.

Modern agricultural practices and legislation to protect air quality mean that in
some parts of the world intentional burning of used land is currently rare. To
account for this in the PD simulation, we set the burning-on-used-land factor
described above to not exceed the observed burned area fraction in the JR12 burned
area dataset29,69, which leads to burning on used land at PD to be effectively zero in
large parts of North America and Europe.

Although passive fire suppression as a result of land use is included in this
simulation following Pfeiffer et al.29, and burning on used land is largely eliminated
in many parts of the world, the PD simulation of LMfire still overestimates mean
annual burned area in parts of the world, notably in the western United States,
southern Europe, and the Middle East. Because these are PD regions known to be
subject to large-scale industrial fire suppression efforts, we accounted for this fire
suppression by further correcting the LMfire output in a model postprocessing
step. To identify regions affected by potential model bias, we compared modelled
burned area with GFED4s at the level of GFED regions, with Europe further
subdivided into North and South at 45° N (Supplementary Figure 9). Within those
regions where the discrepancy between modelled and observed burned area was
≥90%, i.e., the USA, southern Europe, and Middle East, we assumed that the
primary reason for the discrepancy was active fire suppression. To correct this
model PD bias in these regions, we scaled the modelled BC emissions by the ratio
of GFED4s observed to LMfire modelled burned area calculated at the GFED
regional level. This resulted in a slightly <10% decrease to the global BC annual
emission flux. In all other regions, we used modelled BC emissions without bias
correction because the discrepancy was smaller and we could not justify industrial
fire suppression as being the potential primary cause of model-data mismatch. The
primary region where simulated burned area remains overestimated by LMfire is in
the tropical seasonal forests of South America. This is both a region of rapid land
use change over recent decades where anthropogenic influences on burning may
not be well captured in the PD LMfire simulation, and where it has already been
identified29 as a place where the process representation of fire could be improved in
the LMfire model.

In all three GFED regions (encompassing the USA and Mediterranean) where
PD LMfire emissions were scaled, the scaling reflects a modern-day fire
suppression practice driven largely by technologies and ideologies that were not
present in 1750. For example, in the PD US > 99.5% fires are actively suppressed32,
and due to this the USA underwent reductions in annual burned area over the 20th
Century of over 80% from >40 m ha in late 1920s to ≤5 m ha in the early 2000s
(http://www.fao.org/docrep/010/ai412e/AI412E06.htm)70. We therefore assume
that a similar small (<10% global emission reduction) PI bias correction is not
required here. This does however highlight once more that fire models should aim
to move beyond present-day optimisations27 by incorporating more paleofire data.

Differences in fire emissions within boreal regions between LMfire and GFED4s
are in part due to the longer simulation time within LMfire (150 years) compared
to satellite measurements, resulting in fires being simulated in the model that are
not represented in the satellite record used to construct the GFED4s emission
dataset. In particular, the wide range of fire regimes within the Arctic tundra leads
to fire return periods of between decades to millennia71. Many high latitude fires
are therefore unaccounted for in fire emission datasets72, including the CMIP6 and
SIMFIRE-BLAZE datasets presented here, but can occur within LMfire. Other
differences include assumptions about fuel load, combustion completeness,
emission factors, permafrost, PD fire suppression and increased post-harvest
agricultural burning in the PI that is not present in the PD due to land use change
practices. Within semi-arid regions LMfire predicts a shorter fire return interval29

than suggested by recent studies73, however total emissions from these regions are
generally low, and therefore less important for climate, due to the sparse vegetation
cover within them29.

To test the sensitivity of PI fire emission estimates to natural climate variability
the 150-year emission dataset of LMfire was partitioned into 15 decadal mean fire
climatologies, each representing a plausible PI fire landscape. As tropical and extra-
tropical fires belong to distinct regimes with different characteristics, four different
scenarios (Supplementary Table 2) based on the maximum and minimum
emissions from each were selected. These four scenarios were then used to generate
the uncertainty range in estimates of LMfire emissions in Fig. 1 and the range in
radiative forcing calculations in Supplementary Table 2.

Modelled fire emissions. Dry biomass burned from both fire models is used to
calculate fire emissions (mass of aerosol species emitted per mass of dry matter
burned) in each grid cell using carbonaceous aerosol emission factors from Li
et al.74 for non-herbaceous vegetation and emission factors from van der Werf
et al.31 for herbaceous vegetation and sulphur dioxide emissions.

Total biomass available as fuel (Supplementary Figure 3) is calculated for
SIMFIRE-BLAZE as the sum of carbon in living vegetation and the carbon in litter,
and for LMfire as the sum of living vegetation in herbaceous vegetation and the
carbon in litter. The spatial distribution of PI biomass is largely similar to the PD75
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with peak biomass amounts simulated in SH tropical and NH boreal regions and
appreciable biomass amounts in NH mid-latitudes (particularly around the
Mediterranean and Eastern USA and China regions). Burned area (Supplementary
Figure 3) is defined as the annual mean fraction of the grid cell which burns over
the studied simulation time frame. Burned area in LMfire is calculated based on the
well-established Rothermel equations of rate of fire spread, so fires spread only
when fuel is available. Globally, modelled maxima in burned area for both LMfire
and SIMFIRE-BLAZE do not exceed PD maxima observed burned areas within
African Savannah regions73.

Different representations of anthropogenic land cover and land use change over
the industrial period in each fire dataset contribute significantly to the difference in
PI emissions at northern mid-latitudes (Fig. 1). The AeroCom and CMIP6 datasets
assume that anthropogenic land cover does not change much over time, which is
unrealistic76, and therefore PI emissions are spatially co-located with observed PD
emissions. The SIMFIRE-BLAZE simulation incorporates the HYDE 3.1 dataset77

within the host LPJ-GUESS vegetation model, which linearly extrapolates historical
land cover change based on 1961 land use, and results in increases to
anthropogenic land use in western Europe at 175038,39,67. The LMfire simulation
incorporates the KK10 dataset67 within the host LPJ vegetation model, which
assumes a Boserupian view of non-linear land use intensification where low
population densities lead to fast anthropogenic land expansion39,67. The LMfire
simulation therefore features significantly more anthropogenic land use in the early
PI period than SIMFIRE-BLAZE, particularly over Eurasia, India, southeast Asia
and Africa39,67. As LMfire incorporates a dedicated modelling scheme for
simulating post-harvest agricultural fires, the extra impact of agricultural fires on
emissions from cropland areas are contributing to the larger emissions in these
regions compared to SIMFIRE-BLAZE. In these simulations 10% of the annual
agricultural biomass is assumed to be left on the field post-harvest and
subsequently burned each year.

LMfire emissions are approximately a factor 2 higher than SIMFIRE-BLAZE
while CMIP6 approximately a factor of 2 lower. This level of uncertainty in fire
emissions is half that reported in Lee et al.78 and common place when comparing
modelled fire-related aerosol optical depth (AOD) to measured AOD. For example,
Reddington et al.79 found that discrepancies between modelled aerosol and
measured AOD and surface PM2.5 from biomass burning can be resolved by scaling
fire emissions by a factor of 1.5–3.4, depending on dataset. They also note that
other models require a scaling as high as a factor of 6, although 2–3 is more
common. We therefore suggest that our uncertainty (factor of 2) in PI emissions
reflects this current PD uncertainty—but is not higher and hence not unrealistic.

Global aerosol microphysics model description. The GLObal Model of Aerosol
Processes (GLOMAP) was used to calculate monthly mean aerosol mass and
number concentrations in seven lognormal modes (one soluble nucleation mode,
plus one insoluble and one soluble for each of the Aitken, accumulation and coarse
modes)80. This study follows the experimental set up of Hamilton et al.30 with the
addition of CMIP6 fire emissions for the PD. GLOMAP simulates particle
nucleation, growth, coagulation, cloud cycling and deposition. The horizontal grid
resolution is 2.8° × 2.8° with 31 vertical levels between the surface and 10 hPa.
Modelled aerosol transport in both time periods is prescribed by 3D gridded wind
speed, temperature and humidity fields for year 2008 from the European Centre for
Medium-range Weather Forecasts (ECMWF), which are interpolated every 6 h.
Cloud condensation nuclei (CCN) number concentrations are calculated at 0.2%
supersaturation following Petters and Kreidenweis81, we assign hygroscopicities (κ)
values of 0.61 for sulphate, 1.28 for sea salt, 0.1 for organic carbon and 0.0 for black
carbon (BC). Aged soluble aerosols in GLOMAP are internally mixed and contain
the species: sulphate, sea salt, organic carbon, BC and dust. We report CCN
concentrations at the 915 hPa model level (~850 m a.s.l.), approximately corre-
sponding to cloud base for low-level warm stratiform clouds. GLOMAP-mode has
previously been used to model aerosol number concentrations in various studies
involving biomass burning aerosols30,82–85 and has been shown to perform well
against CCN measurements in different environments86. In the PI fossil fuel
emissions and the concentration of anthropogenic volatile organic compounds are
assumed to be zero in all scenarios. A small PI biofuel component exists, mainly
due to domestic heating and cooking14. Natural emission fluxes of ocean dimethyl
sulphide87, sea spray and dust to the atmosphere are generated as a function of the
local wind speed88,89, resulting in identical emission fluxes for each time period.
Biogenic volatile organic compound90 and volcanic emissions91 are also identical in
both time periods.

Ice core black carbon and fire tracer comparison. The Wyoming ice core12 is
located at 43.1° N, 109.6° W and 4100 m above sea level. The D4 Greenland ice
core10 is located at 71.4° N, 44.0° W and 2713 m above sea level. The North
Greenland Eemian (NEEM) ice cores42 at 77.5° N, 51.2° W and 2480 m above sea
level. The Colle Gnifetti (CG) Swiss-Italian Alps ice core44 at 45.6° N, 7.5° E and
4450 m above sea level. Each site has BC measurements for different historical
periods: D4 1788 to 2002; NEEM 78 to 1998; CG has a single year PI mea-
surement at 1750 and an average PD measurement between 1950 and 1980. The
CG site is located within a heterogeneous alpine environment and BC con-
centrations in both time periods are calculated as the average concentrations
from the model level matching the ice core site over six grid cells: the grid cell

containing the CG site plus the grid cells directly to the east, west, south,
southeast and southwest, those adjacent to the north were not included as it is
assumed the Alps would provide a barrier to continental air flow. As the
Greenland sites are within a more homogenous Arctic environment BC con-
centrations in both time periods are calculated at the ground level within the
closest four grid cell containing the site.

While our model does not directly calculate BC concentrations in snow, as the
processes involved are not represented, deposition data was retrieved from the
model in a previous study37 and tested offline within the Community Land Model,
which does represent the relevant processes. Results from this study showed that
GLOMAP simulates BC deposition close to the mean for the Arctic region37. We
therefore expect relative BC changes in air and in ice to be approximately
comparable. Ice core measurements of fire emission tracers are sparse, limiting our
analysis to BC, levoglucosan and vanillic acid (Supplementary Figure 1). We
therefore assume that as the trends in these three species are generally similar pre-
1880 (wide scale industrialisation) that POM and SO2 will follow similar trends.
Limitations in comparing PI ice core measurements to PI modelled atmospheric
concentrations centre on a lack of understanding of how the PI atmospheric state
was behaving59. For example, there are uncertainties in aerosol transport and
residence time, chemical transformation and deposition processes to Arctic
regions92. Furthermore, in this study we assume that these processes are the same
in the PI as the PD, although some could be different93, and by using a single year’s
meteorology we do not capture possible changes to modelled deposition process
(e.g., precipitation rates) at the ice core location. Another issue is relating the
modelled regional aerosol emissions and processes to the point measurements of a
single ice core, which can also capture emissions from varying sources. To account
for uncertainties in the PI period caused by natural variability in fire activity and
atmospheric circulation, the Greenland and Wyoming ice core BC concentrations
in the PI were calculated as a 20-year mean (D4: 1788–1807, NEEM: 1740–1759,
Wyoming: 1747–1766). In the PD Greenland ice core BC concentrations are also
heavily influenced by industrial emissions that have been decreasing in strength
over the past decades. We therefore calculate Greenland ice core means over a
shorter 5-year period (D4: 1998–2002, NEEM: 1994–1998), and the Wyoming ice
core over a 10 year period (1970–1979). The PD/PI ratio range was calculated using
the standard error of the mean. The mean PD/PI BC, ratio for 5, 10 and 20-year
averages in both time periods, and the standard errors, are shown in
Supplementary Table 1. Mean PI BC concentrations from the Wyoming ice core
are highly sensitive to the chosen PI start year; altering from 1747 (first year in the
record) to 1750 (first year in the fire emission datasets) would increase mean PI BC
concentrations by 23%, further reducing the measurement-based PD/PI BC ratio.
For model M and observation O the symmetric bias factor was calculated as: For
M > O: (M/O)−1; For O >M: –(O/M)+ 1. Uncertainty in the CMIP6 industrial
BC emission inventory used to calculate the decrease in BC emissions from
anthropogenic activity in the region of the WY (factor of 1.6) and CG (factor of 2)
glacier ice cores could be up to a factor of two78, however as the uncertainties in
European and American BC emission datasets are much lower than other regions43

we estimate the uncertainty at ±25%.
Specific fire emission tracers are also recorded within the Greenland ice cores:

yearly measurements of Vanillic acid (VA) at D4 and sub-decadal (~2
measurements decade−1) Levoglucosan (LG) measurements at NEEM. The mean
PD/PI VA and LG ratio for 5, 10 and 20-year averages in both time periods, and
the standard errors, are shown in Supplementary Table 1. The sub-decadal NEEM
data has a large fire year within the 20-year mean (155 ng/g LG compared to a
mean of 44 ng/g LG without that year) and therefore the PD/PI ratio is shown both
with and without this year included. Measurements of LG and VA show that PD
fire emissions deposited to Greenland have decreased since the PI, further
supporting the fire model emission data (Supplementary Table 2).

Charcoal database comparison. The Global Charcoal Database (GCD version
3.0.3) was used within the paleofire R package (http://cran.r-project.org/web/
packages/paleofire/paleofire.pdf) to determine trends in fire activity over the
industrial period (1750–2000). The GCD contains 736 charcoal records (NH: 436,
SH: 300). Following Marlon et al.9 charcoal accumulation records in the GCD are
transformed in a 3 step process prior to examination to allow comparison of
records that are based on a wide range of sampling techniques. Step 1: minimax
transformation to rescale values. Step 2: Box-Cox transformation to homogenise
the variance within individual time series. Step 3: rescaling values to Z-scores. A
LOcally WEighted regression Scatter plot Smoother (LOWESS) smoothing of the
data was employed with a 10-year window half-width (i.e., a 20 year smoothing).
Bootstrap analysis (1000 samples by site) gives a 97.5% confidence interval. The
main difference in the charcoal analysis presented here compared to those in
previous studies8,9,94 is that the charcoal influx anomaly base period for all panels
is 1750–2015 CE. This time period is omitted from the base period in other
charcoal reconstructions so as to avoid the impacts of anthropogenic activity on the
results, which is what we wish to capture in this study.

Aerosol radiative forcing calculation. We calculate the aerosol direct radiative
forcing and cloud albedo forcing, also known as the first indirect forcing, between
the PI and PD using the Suite Of Community RAdiative Transfer codes based on
Edwards and Slingo (SOCRATES)95, with nine bands in the longwave (LW) and
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six bands in the shortwave (SW). We use an offline configuration driven by year
2000 monthly mean temperature and water vapour concentrations from ECMWF
reanalysis data. We use a monthly mean cloud climatology (1983–2008) from the
ISCCP-D2 archive96. The same PD simulation (with CMIP6 fire emissions) was
paired with the three PI simulations using CMIP6, SIMFIRE-BLAZE and LMfire
fire emissions. Both PI and PD fire emissions are used to calculate the AeroCom
radiative forcing values in Supplementary Table 2 in order to provide a reference to
compare the radiative forcing values calculated by using the CMIP6 PI and PD fire
emissions. Each paired PI–PD simulation accounts for changes in anthropogenic
aerosol emissions from 1750 to 2000 (due to industrial, transport and domestic
fossil fuel combustion sources)14.

The direct radiative forcing is calculated as the difference in the net (SW+ LW)
top-of-atmosphere all-sky radiative flux between the PI and PD, based on the
aerosol optical properties (scattering and absorption coefficients and the
asymmetry parameter) for each size mode and spectral band97. The cloud albedo
forcing is determined from the radiative perturbation induced by the change to
cloud droplet number concentration (CDNC) between the PI and PD48,98.

Cloud droplet number concentrations are calculated99–101 from the monthly
mean aerosol size distribution, assuming a uniform updraught velocity of 0.15m s−1

over ocean and 0.3 m s−1 over land. The critical supersaturation is calculated using
the hygroscopicity parameter (κ) approach81. A multi-component κ is obtained by
weighting individual κ values by the volume fraction of each component. We assign
κ values as follows: sulphate (0.61, assuming ammonium sulphate), sea-salt (1.28),
black carbon (0.0), and particulate organic matter (0.1).

To calculate the cloud albedo forcing, a uniform control cloud droplet effective
radius (re1) of 10 µm is assumed to maintain consistency with the ISCCP derivation
of the liquid water path. For each paired PI−PD experiment the effective radius
(re2) for low- and mid-level clouds (up to 600 hPa) is calculated as in Eqn. 1, from
the monthly mean cloud droplet number fields CDNC1 and CDNC2, respectively
(where CDNC1 represents the PD simulation, and CDNC2 represents the PI
simulation).

re2 ¼ re1 ´
CDNC1

CDNC2

� �1
3 ð1Þ

In these offline experiments, we do not calculate the second aerosol indirect
(cloud lifetime) effect.

Code availability. The codes used to conduct the analysis presented in this paper
can be obtained by contacting the corresponding author (D.S.H.).

Data availability. Data are available upon request from the corresponding author
(D.S.H.).
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