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Abstract. In this paper we establish a link between diffraction theory
and graph characterization through the Schrédinger operator. This pro-
vides a natural way of characterizing wave propagation on a graph. In
order to do so, we compute the spatio-temporal Fourier transform of
the operator and then pack its spherical representation in a point of a
Stiefel manifold. We show that when the temporal interval of analysis
is set according to quantum efficiency principles the proposed approach
outperforms the alternatives in graph discrimination.

Keywords: Diffraction, Schrédinger operator, Stiefel manifolds.

1 Introduction

Graph characterization aims to provide a succinct way of representing graph
structure that can be used distinguish or compare different types of graph, with-
out applying graph or subgraph isomorphism (procedures that are known to
be NP-complete). Popular and effective methods include random walks [1], the
Thara zeta function [2] and the spectral radius [3].

Of particular interest to us here is recent work based around the analysis of
the heat kernel of a graph. The heat kernel is the solution of the heat equation
on a graph, with the Laplacian matrix playing the role of conductivity matrix,
i.e. controlling the flow of heat along edges with time. If the eigenvalues and
eigenvectors of the Laplacian are known, then the heat kernel can be found by
exponentiating the Laplacian eigensystem with time. The heat kernel determines
the time evolution of a continuous time random walk on a graph, and this leads to
several possible characterizations or signatures for graphs. Bai and Hancock [6]
show that the moments of the heat kernel trace (i.e. its Mellin transform) are
linked to the Riemann zeta function. Sun, Ovsjanikov and Guibas [11] histogram
the elements of the heat kernel trace to compute the heat kernel signature, and
use this for shape recognition. In a recent paper, Escolano et al. [4] introduced
an alternative technique based on the analysis of the heat flow on a graph. Heat
flow is derived from the heat kernel, which is the solution of the heat diffusion



2 Escolano et al.

equation. It provides a method to represent the heat transfer between the nodes
of a graph over time.

Closely related to this work on the heat kernel is the wave kernel signature
(WKS) [7]. This involves histogramming the elements of the wave kernel, which
is the solution of the complex wave equation or Schrodinger equation associated
with the graph’s Laplacian matrix. While the heat equation describes how heat
is transferred in a system, the Schrodinger equation characterizes the dynamics
of a particle in a quantum system. In fact, the continuous time quantum walk
on a graph is the solution to the Schrodinger equation, with the normalised
Laplacian playing the role of a Hamiltonian. In this setting, the quantum nature
of the Schrédinger equation and its complex-valued solutions give rise to many
interesting non-classical effects, including quantum interferences. These interfer-
ences have proved to be useful in several applications, including the detection
of symmetric motifs in graphs via continuous-time quantum walks [8] and graph
embedding by means of quantum commute times [9].

One difference between the approach in [7] and ours is that in the WKS,
the time variable is not considered. In order to do so, the limiting average time
behaviour (in the infinity) is computed. However, Rossi et al. [8] show that this
choice is sub-optimal when used for measuring the similarity between two graphs.
Alternatively, our approach relies on choosing proper finite limiting times. Our
process is data driven (validated by the experiments) but herein we argue in favor
of relating these limiting times with the transport efficiency of the quantum walk.
Therefore, the long-term objective of this line of research is to choose the limiting
times that mazimize transport efficiency.

Another difference between WKS and our representation is that we do not
compare the wave signatures between two nodes in the graph, but consider si-
multaneously all of them as forming a time-parameterized wave.

It must be stressed though that we do not claim that our method is in any
sense a quantum algorithm. So we do not consider the issue of whether the char-
acterization developed is observable or not. We are primarily interested in the
complex nature of the characterization provided by the Schrodinger equation
and the resulting non-stationarity and non-ergodicity of the dynamic system as-
sociated with it. Since the dynamic system is non-stationary and non-ergodic, it
makes sense neither to characterize it using its steady state behaviour (since this
does exist) nor its phase transitions (as is the case in the heat flow method). In-
stead we turn to the Fourier transform as a natural way of providing a frequency
domain characterization of the time evolution of the complex wave equation, and
use this instead of the heat flow trace [4].

The resulting representation relates frequency and graph structure by estab-
lishing a link between structural pattern analysis and diffraction theory. Diffrac-
tion theory is the basis of methods such as X-ray diffraction which allows molecu-
lar structure to be recovered from diffraction patterns. The seminal achievement
here was the determination of the structure of DNA from Rosalind Franklin’s
skilfull diffraction imagery by Crick and Watson [12]. The diffraction pattern is a
spatial pattern, and so it is an embedding of a graph on the 2D plane. The sym-
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metry planes of the graph-structure are manifest as sets of geometrically regular
frequency peaks. Thus we transform the characterzation of graph structure into
a problem of searching for geometric regularity in a set of points.

In Section 2 we compare the Schrodinger operator with the heat kernel (both
are governed by the eigensystem of the graph Laplacian). In Section 3 we analyze
the operator and build a parametric representation from its spatio-temporal
power spectrum. Such representation is transferred to a point in a suitable Stiefel
manifold and principal angles are used for graph comparison. In Section 4 we
show that the proposed approach outperforms state-of-the-art graph matching
methods. Finally, in Section 5 we present our conclusions and future work.

2 Heat Kernel Vs. Schrodinger Operator

2.1 Heat Kernel

Let G = (V, E) be an undirected graph where V' is its set of nodes and E C V xV
is its set of edges. The Laplacian matrix L = D — A is constructed from the n xn
adjacency matrix A with n = |V, in which the element A(u,v) = 11if (u,v) € E
and 0 otherwise, where the elements of the diagonal n x n degree matrix are
D(u,u) = ), ¢y A(u,v). The n x n heat kernel matrix K; is the fundamental
solution of the heat equation

=LK, (1)
and depends on the Laplacian matrix L and time ¢. The form of the heat kernel
matrix is K; = e~ ’*. The continuous time random walk starting at p, € R"
evolves as p; = K;pg, where p; is the state of the random walk at time t. The
spectral decomposition of the Laplacian is L = @A®T | where @ = [¢1|da] . .. |dn]
is the n x n matrix of ordered eigenvectors according to the corresponding
eigenvalues 0 = A1 < Ay < ... < A\, and A = diag(A1 A2 ... A,). There-
fore, the spectral decomposition of the heat kernel is K; = ®e~4*dT where
e~ = diag(e=*t e7?2t .. e~ that is, the heat kernel and the Laplacian
share their eigenfunctions, which are contained in @. Both the columns and the
rows of @ define orthonormal basis: ¢7 ¢; = J;;.

2.2 Schrodinger Operator

The Schrodinger equation describes how the complex state vector ;) € C™ of
a continuous-time quantum walk varies with time [10]:

Olvy)
ot

= _iL|¢t>~ (2)

Given an initial state |ig) the latter equation can be solved to give |¢;) =
Wi|10), where ¥, = e~ Lt is a complex n x n unitary matriz. In this paper we refer
to ¥; as the Schrodinger operator and we focus our attention on the operator
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itself and not on the quantum walk process. In this regard, Stone’s theorem [13]
establishes a one-to-one correspondence between a time parameterized unitary
matrix Uy and a self-adjoint (Hermitian) operator H = H* such that there is
a unique Hermitian operator satisfying U = e/, Such an operator H is the
Hamiltonian. In the case of graphs we may set H = —L and then we have that
¥, = e~ is a unitary matrix for t € R.

Unitary matrices play a fundamental role in characterizing complex wave
equations in a manner analogous to that performed by doubly stochastic matrices
in characterizing diffusion processes. A n x n complex matrix U is unitary if
U'U = UU'" = I,,, where UT is the conjugate transpose, that is (A");; = Aj;.
Therefore, both the rows and columns of U form a orthonormal basis in C". U
is diagonalizable via the factorization U = VAV where A contains the complex
eigenvalues of U and V is unitary and its columns contain the eigenvectors of
U. Combining the latter diagonalization with the property |det(U)| = 1 we have
that all the complex eigenvalues of U must lie on the unit Argand circle. They
must have either the form e or e =% where 6 is a rotation angle. More precisely,
for ¥, we obtain the spectral decomposition ¥, = de~*4PT where & contains
the eigenvectors of L and e~ = diag(e= 1t e~ 2t | ¢=#nt ) the complex
eigenvalues of ¥;, rely on the ones of the Laplacian.

Therefore, the Laplacian controls the dynamics of both the heat kernel and
the Schrodinger operator according to the similarity between Eq. 2 and Eq. 1.
However, this similarity is misleading since ¥; is complex valued. The physical
dynamics induced by the Schrédinger equation is therefore totally different from
that of the heat equation, due to the existence of oscillations and interferences.

In this paper we address the question of whether the Schrédinger operator
may be used to characterize the structure of a graph. Empirical analysis on dif-
ferent graph structures shows that both the heat kernel and the Schrodinger
operator evolve with time in a manner which strongly depends on graph struc-
ture. ! However, the underlying physics and the resulting dynamics are quite
different (see Fig. 1 where for the heat kernel we represent K;(u,v) and for the
Schrédinger operator we show the squared magnitude |¥;(u,v)|?). In the case
of heat flow, heat diffuses between nodes through the edges, eventually creating
transitive links (allowing effective energy exchange between nodes that are not
directly connected by an edge), until reaching a stationary equilibrium state.
The Schrédinger operator defines a wave which yields a faster energy propaga-
tion through the system (e.g. for a 100 nodes line graph, it takes ¢ = 50 time
steps for the Schrodinger operator to reach every possible position on the graph,
taking more than twice this time in the case of the heat kernel [4]). Moreover,
due to the negative components of the complex amplitudes, interferences are
created, producing energy waves [5]. The main difference is that because of its
wave nature the Schrodinger operator never reaches an equilibrium state. In
other words, it is non-ergodic. Graph connectivity imposes constraints on the
distribution of energy. In the case of the heat kernel, a larger number of en-

! Videos showing the evolution of both heat kernel and Schrédinger operator are avail-
able at http://www.dccia.ua.es/~pablo/downloads/schrodinger_operator.zip
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ergy distribution constraints implies the creation of more transitive links with
time [4]. This is true in the case of the Schrodinger operator, for which higher
frequency and more symmetrical energy distribution patterns are also observed.

Fig. 1. Evolution with time (¢ = 1,25 and 100). From top to bottom: heat kernel for
a 100 node line graph, Schrodinger operator for a 100 node line graph, Schrédinger
operator for a 100 node circle graph, Schrédinger operator for a 10x10 grid graph
with 4 neighbour connectivity and Schrédinger operator for a 10x10 grid graph with
8 neighbour connectivity. (Courtesy of Pablo Suau)

3 Analysis of the Schrodinger Operator

3.1 Non-Ergodicity

In order to explore the ergodicity of the Schrédinger operator we consider both
its spectral decomposition ¥, = Pe~*APT and that of the heat kernel K; =
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PePT | that is

n

W, =) e ol and K, = Ze*t*wsmk, (3)

k=1 k=1

where Ay is the k-th eigenvalue of the Laplacian L and ¢y its corresponding
eigenvector. Therefore, both operators are specified by the eigenfunctions of the
Laplacian but in a very different way. The spectral decomposition of the heat
kernel demonstrates that it is dominated by the lowest eigenvalues, due to the
fact that lim; ., e ** = 0. However, the limit of e=#* = cos(tA\x) — isin(t\;)
when ¢ tends to infinity is undefined. Thus, there are two important differences
with the heat kernel. Firstly, the Schrédinger operator never converges (it is non-
ergodic), and secondly, it is not dominated by any particular eigenvalue. This is
consistent with the well known physics of waves since the Schrédinger operator
is a linear combination of waves.

3.2 Regimes Dynamics of Wave Propagation

The behavior of the Schrodinger operator at small and large times responds to
different aspects of graph structure. At low ¢, the edge constraints contained in
the Laplacian dominate (see left column in Fig. 1). At high ¢, on the other hand,
it is the path structure that dominates (see the rest of the columns in Fig. 1).

In addition, the two regimes can be explained by the fact that the largest am-
plitudes occur at low frequencies. More precisely, each entry ¥;(u, v) is described
by a linear combination of complex rotations:

@, (u, v) = { S e Mg (w)pr(v) ifu# v @

>oheq € MG (u) otherwise .

We let 2.(u,v) = ¢p(u)pr(v) if u # v and zx(u,v) = ¢x(u)? otherwise. In
this case zx(u,v) € R for each value relies on the k—th eigenvector ¢ of the
Laplacian. Since

|y (u, v) ZZ u, v)z1(u, v)2 cos(t(N — Ax)) (5)
k=1 l=k

we have that N

n
lim|Wtuv 2:2Zszuvzluv) (6)
k=1 1=k

yields the maximal amplitude at (u,v) since zj(u,v) and z;(u,v) are time inde-
pendent. As t increases the differences A\; — \;, which are also time independent,
become significant. They define lower or equal amplitudes and the characteristic
frequency content of the wave emerges as expected. Low amplitudes dominate
due to the ordering of the eigenvectors of the Laplacian 0 = A1 < Ay < ... < A,
although there are always n terms where \; = Ay. The latter property (domi-

nance) is preserved as much as the graph is connected.
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Fig. 2. Power spectra of the Schrédinger operator for different graphs of 400 nodes at
t = 25: circle (loop) graph (top-left), line graph (top-middle), 20x20 grid graph with 4
neighbor connectivity (bottom-left) and 20x 20 grid graph with 8 neighbor connectivity.
For the latter graphs we also show their spectra (top-right) and the multiplicity of each
value of Ag; (bottom-right).

3.3 Expressiveness of the Schrodinger Power Spectra
The discrete Fourier transform (DFT) of the squared magnitude of the Schrédinger
Operator ¥, is

Filwwswn) = Y [W(u,v) Ze o)

w,v=1
u

Z Z Zkl(s(tAkl — (Wuu +Wyv))+

,w=1 \ k=1,l=k

Zklé(tﬂkl + (wuu + WUU)) ) (7)
k=1,i—k

where w, and w, are the angular frequencies, Ay, = A\ — A\ > 0, Zy; =
zi(u, v)z(u,v), and 6(.) is the Dirac delta function resulting from the Fourier
transforms of 2cos(t(Ay)) = Ak + e~k (see Eq. 5) for k = 1,...,n
Il =k,...,n. After shifting we have that the amplitude A¢(w.,, wy,) = |Fi(wu, wy)|
is given by pooling the values relying on ZZ:I,l:k Zy at all points (u,v) be-
longing to the lines tAg; = wyu+ w,v (tAg; gives the distance to the origin and
the vector [w,,w,|? is perpendicular to the direction of the line). Therefore the
energy (power) distribution is determined by both the spectrum of the Lapla-
cian, which defines the gaps Ay, and its eigenvectors which define the values of
Z:l,l:k Zkl-

In Fig. 2 we show the power spectra of the Schrodinger operators for scaled

versions of the graphs analyzed in Fig. 1. These images resemble responses to
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diffraction gratings (interference patterns). In diffraction theory, interference
patterns emerge when waves are bent around edges or slits. Constructive and
destructive interferences occur producing alternate bright and dark fringes (see
for instance the Young's experiment) which fade away from the center. The
distribution of the so called Bragg’s peaks (associated to constructive interfer-
ences) relies both on wavelengths and the number and spacings between the
slits, as well as it also depends on the incidence angle. Fringes become sharper,
for instance, as the number of slits is increased but, in this case, they are char-
acterized by less and less significant maxima of intensity. In X-ray crystallogra-
phy, the interdependence between the spatial distribution (e.g. a lattice) of the
atoms, the properties of incident light and diffraction patterns is exploited to
infer the tridimensional density of electrons in a crystal as well as to solve the
structure of organic molecules like proteins. When applying this ideas to charac-
terize pure topological structures like graphs, we realized that the Schrodinger
operator provides a natural way of encoding the latter interdependences: the
complex exponentiation of the Hamiltonian (the negative Laplacian) produces a
wave equation completely determined by the spectrum and eigenvectors of such
Hamiltonian. In addition, there is a correspondence between interference pat-
terns and Fourier transforms. Actually, the Fourier transform in Eq. 7 has the
same form of an aperture used in Fraunhofer diffraction: a[é(x—S/2)+4d(x+S/2)]
where S is the distance between two slits. This gives us an interpretation of
A[o(tApr — (wyu+wyv)) +0(EAR + (wuutw,v))] where A = 370 370y Zh
in terms of the topological constraints that must be satisfied in order to produce
Bragg’s peaks. In our case, the role of the slits is played by the spectra (more
precisely by the gaps Ay;) and the eigenvectors of the Laplacian. They determine
what frequencies (energies in the power spectra) can be seen in the diffraction
pattern. For instance, in circle (ring) graphs Fig. 2 (top-left) shows that the
energy distribution may be constrained to lie at 0 = u + v. For a line (path)
graph (top-middle) we have a richer energy distribution although the line and
circle graphs are quasi iso-spectral. Grid graphs are endowed with even richer
diffraction patterns (larger range of eigenvalues).

The above rationale can be summarized as follows. Graphs produce diffrac-
tion patterns in the power spectra imposed by their Laplacians. This intuition
is again borrowed from physics. Therefore, the analysis of the the Schrodinger
operator can be posed in terms of analyzing its power spectra in order to ex-
plain the distribution of the different frequency amplitudes and their meaning.
So far we have provided a geometric interpretation. In this regard, it is key
to find the relation, if any, between the anisotropies in the power spectra and
the lack of regularity in the structure. Such anisotropy is poorly contemplated
in well known models of holistic image characterization [14],[15]. However, de-
spite existing models in image characterization are not directly applicable to
describe graph-based diffraction patterns, the underlying methodology (includ-
ing PCA/SVD eigenspaces) can be extended to incorporate anisotropy. In order
to do that we will exploit the spatio-temporal nature of the Schrédinger operator.
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log-AMPLITUDES.

15

Fig. 3. Spatio-Temporal Power spectra of the Schrodinger operator for a 20x20 grid
graph with 4 neighbor connectivity. Top-left: planes w, = 0, w, = 0, wy = 0. Top-
center/right: detail of wy = 0 and wy, = 3 showing parallel high pooled lines. Bottom-
left: spherical coordinates of log-amplitudes. Bottom-right: 10 principal eigenvectors of
the 0 — ¢ space.

3.4 Characterization of the Spatio-Temporal Schrédinger Power
Spectra

Let F(wy,wy,w;) be the spatio-temporal DFT of |¥(u,v,t)|?. It is straightfor-
ward to extend Eq. 7 to include time variation. As expected, after shifting the
transform we have that the amplitudes A(wy,wy,wt) = | f (wu, wy, wy)| are given
by pooling the values relying on ZZ:l,l:k Zy at all points (u,v,t) belonging
to the planes tAy = wyu + w,v + wit. Furthermore, since the gaps Ay, are
time independent, scaled temporal frequencies w;t can be seen as offsets in the
spatial constraints tAg; = wy,u + w,v. Such offsets are needed to explain the
spatio-temporal behavior of the Schrédinger operator. More precisely, for ¢ > 0
and w; # 0 only the contributions ZZ:l,l:k Zy at (u,v,t) where (u,v) do not
satisfy tAy; = wyu + w,v are taken into account for computing the amplitudes
Awy, Wy, wt).

An interesting particular case of the latter rationale is to pool amplitudes
from (u,v) satisfying constraints which are orthogonal to the spatial ones. For
instance, in Fig. 3 (top-left) we show the spatio-temporal log-amplitudes for the
planes w,, = 0, w, = 0 and wy = 0 where t' =t —T/2 being [0, T the temporal
interval of analysis. The graph analyzed is the 20 x 20 grid with 4 neighbors con-
nectivity. In Fig. 3 (top-center/right) we show respectively the planes wy = 0
and wp = 3. Both of them are characterized by high log-amplitudes at lines
w, = w, £ k, with £ > 0, which are orthogonal to those which have a simi-
lar degree of pooling at a particular ¢’ (see Fig. 2 (bottom-left)). The highest
pooling is obtained at k = 0, that is w, = w,, and it decreases as |k| in-
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Fig. 4. Experimental Results. Top: Delaunay graphs of Gatorbait - Gator#1 (left) vs-
Gator#20 (right). Middle: Quantum Efficiency for Gator#1 (left) vs QE for Gator#20
(right); The intercept for the first one is smaller almost one order of magnitude that
that of the second. Bottom: Average Recall vs Retrieval curves. Best performance is
achieved with 7" = 64 on average, even when larger values of T are assumed (left).
The result outperforms state-of-the-art graph matching algorithms (right). In all cases
classes with only one element are not considered for measuring the performance.
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creases. This happens for sign(w,) = sign(w,). Otherwise we have the inverse
case: log-amplitudes increase with |k| (at wy = 0 such increase is more spatially
constrained than at wy = 3).

Once the role of temporal frequencies is clarified, it is convenient to change
the coordinate system in order to better visualize the angular asymmetries in the
spatio-temporal domain (anisotropy). Given (w,,, w,,w;) its spherical coordinates
are given by (r,0,¢) where r = /w2 + w2 + w? is the radius, 6 = tan_l(z—z),
—7m < 0 < 7 is the azimuthal angle in the w, — w, plane and ¢ = cos’l(%),
—5 < ¢ < 7 is the elevation angle. Therefore, r encodes the magnitude of the
spatio-temporal frequencies, 6 refers to the relation between spatial frequencies
and ¢ gives the relative importance of temporal frequencies. In addition, for a
given pair a;, = (6, ¢) the power spectrum A(a,)? decays with 7 and such decay
does not follows, in general, a power law. In addition, for a1 n = (04+ A, ¢+ A),
with |A| > 0 as small as possible, we have that A(as;)? differs significantly
from A(as)? in the general case (directional anisotropy).

In Fig. 3 (bottom-left) we plot the r — 6 — ¢ space for the log-amplitudes.
The representation is symmetric with respect to the elevation axis § = 0 and
it is periodic with respect to the azimuthal axis ¢ = 0. Therefore, for the sake
of computational efficiency we can define a discrete 6 — ¢ elevation-azimuth
space by setting: 6 € [0,7/2], ¢ € [0, 7). Such space relates spatial and temporal
frequencies. In addition, for each discrete radius r € [0, 7n42], Where 70 = n/2,
we define a sample space X, as the log-amplitudes log A(r, o) at all coordinates
of the 8 — ¢ parametric space. Performing SVD/PCA analysis on the set of
sample spaces S = {X,} the principal eigenvalues A\; > Ay > ... > X, with
p < d, where d = dp X 04 is the number of cells, encode the degree of directional
anisotropy. Their associated d—dimensional eigenvectors wuj,ug, ..., u, define a
subspace where we compress all the spatio-temporal information of the operator.

The latter representation allows us to map a graph to a multi-layered para-
metric space (one layer per radial samples). Then, such space is encoded by a
set of eigenvectors as it is done when analyzing image sequences. In this regard,
it becomes very useful to consider each set of eigenvectors (subspace) as a point
in a given manifold in order to exploit the geodesics defined in it. The natural
choice is to consider that U = [u1 ug ... up) is a point in the Stiefel manifold
St(p,d) = {U € R¥>? : UTU = I,}, that is, the set of d x p matrices with
orthonormal columns [16]. In Fig. 3 (bottom-right) we show the first p = 10
eigenvectors which define the Stiefel point associated to the 20 x 20 4N grid
graph. Given the spatial structure of log-amplitudes in spherical coordinates,
global details appear close to 7/2 in the azimuthal axis whereas local details are
highlighted at lower values.

Stiefel manifolds are endowed with a Riemannian mathematical structure and
therefore it is more convenient to define dissimilarities beyond the Frobenius or
Euclidean distances, that is, which account for the curvature of the manifold
where these subspaces lie [19] [20]. One of these dissimilarities relies on the
concept of principal angle [17][18]. Given two points U and V in St(p,d), the
principal angles 0 < 6 < 6y < ... <6, < 7/2 between the subspaces Span(U)
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and Span (V') satisfy that cos(6;) are the singular values of U7V and the geodesic
distance between U and V is given by ||©|| where © = [#1 6, ... 6,]. In this paper,
given two graphs Gx = (Vx,FEx) and Gy = (Vy, Ey) and the Stiefel points
Ux and Uy derived from the corresponding spatio-temporal Schrédinger power
spectra, we will quantify the dissimilarity between the two graphs in terms of
the principal angles.

4 Experiments

4.1 GatorBait Database and Quantum Efficiency

In order to test our graph characterization method we use the GatorBait_100
ichthyology database. GatorBait has 100 shapes representing fishes from 30 dif-
ferent classes. Shapes are discretized and then Delaunay triangulation graphs
(included in the publicly accessible UA Graph Database? ) are retained for test-
ing graph comparison/matching algorithms [21].

Gaps distribution is very important since it is known that the transport
efficiency of quantum walks relies on it [23]. More precisely,

a®)? = [(1/n) Y e
k=1

is the probability that a continuous-time quantum walk returns to the origin
at t. Such quantity is usually characterized by two regimes: for low-mid values
of t it decreases; at higher values, quantum oscillations around the long-term
average dominate. This happens if the probability density function over the A,
(the larger gaps) follows a power-law distribution, which is a mild assumption for
Delaunay graphs. If so, the temporal range where quantum oscillations vanish is
bounded by the intercept of ¢t ~2(1+¥) (the so called envelope of the process) where
v is the power exponent. The smaller the intercept the higher the efficiency. This
allows us to set the optimal value for 7" within the range of the envelope. The
intercept for each graph induces a partial order that can be used for scaling T’
(see Fig. 4 (top) where vertical axes are fixed according to the minimal values
of |a(t)|?). It also explains why too-low or too-high uniform values of 7' produce
less discriminative characterizations that setting 7' = 64 on average (Fig. 4
(bottom-left)).

4.2 Comparison with Graph Matching Algorithms

In Fig. 4 we compare the discriminability of or characterization with state-of-the-
art graph matching algorithm like Entropic Manifold Alignment [21][22] (which
outperforms many others), the PATH algorithm [24] and the Caelli-Kosinov
spectral algorithm [25], not evaluated in previous experiments. Their cost func-
tions or associated kernels are used for estimating similarity after alignment. In

2 http://www.rvg.ua.es/graphs/dataset01.html
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Fig. 4 (bottom-right) we show that our approach (setting 7' = 64 on average)
outperforms the alternatives in terms of average recall in the part of the curve
where the number of retrievals is small or medium. Only when a high num-
ber of retrievals is allowed (usually avoided in practice) the alternatives slightly
improve our characterization.

5 Conclusion

In this paper we have proposed the use of Bragg diffraction patterns to char-
acterize graphs. The representation of the spatio-temporal Fourier transform of
the Schrodinger operator in terms of a Stiefel points produces high discrimina-
tion rates provided that quantum efficiency is considered. Future works include
the formulation of finding the optimal 7' that maximizes quantum transport
efficiency.
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