
This is a repository copy of The optimisation of stochastic grammars to enable cost-
effective probabilistic structural testing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/132851/

Version: Accepted Version

Article:

Poulding, S., Alexander, R. orcid.org/0000-0003-3818-0310, Clark, J.A. orcid.org/0000-
0002-9230-9739 et al. (1 more author) (2015) The optimisation of stochastic grammars to
enable cost-effective probabilistic structural testing. Journal of Systems and Software. pp.
296-310. ISSN 0164-1212

https://doi.org/10.1016/j.jss.2014.11.042

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The Optimisation of Stochastic Grammars to Enable

Cost-Effective Probabilistic Structural Testing

S. Pouldinga,b,∗, R. Alexanderb, J.A. Clarkb, M.J. Hadleyb

aBlekinge Institute of Technology, 371 79 Karlskrona, Sweden
bUniversity of York, Heslington, York, YO10 5DD, United Kingdom

Abstract

The effectiveness of statistical testing, a probabilistic structural testing strategy,
depends on the characteristics of the probability distribution from which test
inputs are sampled. Metaheuristic search has been shown to be a practical
method of optimising the characteristics of such distributions. However, the
applicability of the existing search-based algorithm is limited by the requirement
that the software’s inputs must be a fixed number of ordinal values.

In this paper we propose a new algorithm that relaxes this limitation and
so permits the derivation of probability distributions for a much wider range of
software. The representation used by the new algorithm is based on a stochastic
grammar supplemented with two novel features: conditional production weights
and the dynamic partitioning of ordinal ranges. We demonstrate empirically
that a search algorithm using this representation can optimise probability distri-
butions over complex input domains and thereby enable cost-effective statistical
testing, and that the use of both conditional production weights and dynamic
partitioning can be beneficial to the search process.

Keywords:

search-based software engineering, software testing, statistical testing,
probabilistic structural testing, grammar-based testing

1. Introduction

Probabilistic testing strategies generate test inputs by random sampling from
an input profile: a probability distribution over the input domain of the software-
under-test (SUT). The most straightforward probabilistic strategy is uniform
random testing in which test inputs are sampled from a uniform distribution,
i.e. one in which all possible inputs for the SUT have the same chance of be-
ing selected. Generating test data using uniform random testing requires only

∗Corresponding author
Email addresses: simon.poulding@bth.se (S. Poulding), rob.alexander@york.ac.uk

(R. Alexander), john.clark@york.ac.uk (J.A. Clark), mjh130@york.ac.uk (M.J. Hadley)

Preprint submitted to Journal of Systems and Software October 31, 2014

*Manuscript

Click here to view linked References

knowledge of the bounds on the input domain; other information about the
SUT, such as the source code structure or the software’s functionality, is not
required. Thus applying uniform random testing to most software is relatively
simple and the data generation process has little overhead.

The ease of data generation for uniform random testing is often a trade-off
with the poorer fault-detecting efficiency of the strategy: for some (though not
necessarily all) software larger test sets may be required to detect as many faults
as deterministic techniques such as partition testing (Duran and Ntafos, 1984;
Boland et al., 2003). When the cost of running each test case is expensive, for
example because executing the software with the test case is time-consuming or
checking the correctness of the output requires a manual oracle such as a human
domain expert, the larger test sets required of uniform random testing would
significantly increase the overall testing costs.

In the 1990s, Thévenod-Fosse and Waeselynck described a more sophisti-
cated probabilistic testing strategy called statistical testing which, by using more
information about the SUT, has better fault-detecting efficiency (Thévenod-
Fosse and Waeselynck, 1991, 1993; Thévenod-Fosse et al., 1995). Statistical
testing uses an input profile specifically tailored to the SUT so that all mem-
bers in a chosen set of coverage elements—typically structural elements such as
branches in the source code or functional elements based on the specification—
have a high chance of being exercised by a test input sampled from the input
profile. Thévenod-Fosse and Waeselynck showed that when this adequacy crite-
rion is satisfied, statistical testing often detects more faults than uniform random
testing using test sets of the same size.

Having derived a SUT-specific profile for statistical testing, the test data gen-
eration process is as straightforward as random testing. However, it can be very
difficult to derive the SUT-specific profile for software of realistic size: existing
approaches are either manual, and therefore expensive if they are tractable at
all (Thévenod-Fosse et al., 1995), or semi-automated model-based approaches
that are limited in their applicability and which scale poorly (Gouraud et al.,
2001). It is this problem that motivates our investigation of automated search-
based algorithms that can cheaply derive SUT-specific input profiles for use in
statistical testing: by reducing the cost of deriving the profile, the potential
fault-detecting efficiency of statistical testing may then be realised.

We described one such search-based algorithm in our previous work (Pould-
ing and Clark, 2010; Poulding et al., 2011). The algorithm represented input
profiles as a Bayesian network in which each node corresponded to one input
argument. The algorithm, while otherwise effective, was restricted by this repre-
sentation to software whose inputs were a fixed number of arguments that each
had a numeric (or other ordinal) data type—for example, a function with two
integer arguments. This limited the applicability of the algorithm since many
SUTs have inputs that are more complex than this.

The first contribution of this paper is a new algorithm that removes this lim-
itation so that input profiles may be derived for a much wider range of software.
The new algorithm uses stochastic grammars in place of Bayesian networks to
represent input profiles. Grammars are capable of describing input domains in

2

which the inputs vary in size—for example, variable-length sequences, strings,
or arrays—and in which the inputs may have data types other than ordinal,
including data types that must satisfy complex constraints on their structure—
for example, data formatted as XML or JSON. We demonstrate how the new
algorithm can be applied to three real-world SUTs that have complex input
domains with these characteristics.

The grammar-based representation used by the algorithm incorporates two
novel features: conditional production weights that permit a limited form of
context-sensitivity, and dynamic partitioning of grammar variables that repre-
sent ordinal data types. We hypothesise that these extensions facilitate the
derivation of input profiles by the algorithm and thus further reduce the cost.
The second contribution of the paper is a rigorous empirical assessment of the
effect of these two features on algorithm, both singly and in combination, in
order to test this hypothesis.

The paper is structured as follows. In section 2 we explain the technique
of statistical testing, and outline the algorithm using the Bayesian network
representation from our previous work. The new algorithm using the grammar-
based representation is described in section 3. An empirical demonstration of
the algorithm and an evaluation of the novel extensions to the representation
are presented in section 4. In section 5, we discuss our proposed algorithm
in relation to other methods for deriving input profiles, and summarise our
conclusions in section 6.

2. Background

2.1. Statistical Testing

Statistical testing requires that the input profile for the particular software-
under-test (SUT) satisfies an adequacy criterion. The criterion is expressed in
terms of a set, C, of coverage elements such as structural elements of the SUT’s
source code or functional elements of the SUT’s specification. For each coverage
element, ci ∈ C, let pi be the probability that the coverage element is exercised
by a single input chosen at random from the given input profile, and pmin be
the minimum of the set {pi}. We will refer to pmin as the minimum coverage

probability. The adequacy criterion is that the minimum coverage probability
should be above a suitably high target value.

The rationale for this criterion is efficient coverage of the structural elements.
Let Qi be the probability that the coverage element ci is exercised by at least
one test case in a test set of size N , and Qmin be the minimum of the set
{Qi}. Adapting a result given by Thévenod-Fosse and Waeselynck (1993), the
relationship between Qmin, pmin, and N is given by:

Qmin = 1− (1− pmin)
N (1)

For effective testing, Qmin should have a value close as possible to 1 so that it
is likely that all coverage elements are exercised by the test set. Maximising
the minimum coverage probability enables either an increase in Qmin for a given

3

test set size (which might improve the fault-detecting ability); or a reduction in
the test size (and thus the testing costs) while maintaining an acceptable value
of Qmin.

A number of techniques have been proposed for deriving input profiles that
satisfy the adequacy criterion. Gouraud et al. (2001) describe a static technique
which assigns weights to edges in the SUT’s control-flow graph in order to sam-
ple execution paths in a manner that satisfies the adequacy criterion. However,
computationally expensive constraint-solving is required to derive test inputs
which exercise the sampled paths, and many of sampled paths are unfeasible in
practice. Both these factors limit the scalability of the technique. Thévenod-
Fosse et al. (1995) describe a dynamic technique. The minimum coverage prob-
ability of a candidate input profile is estimated by executing an instrumented
version of the SUT with inputs sampled from the profile. The results are used
to guide the manual adjustment of the profile, and the process repeated until
a suitable value of the minimum coverage probability is attained. However,
Thévenod-Fosse et al. speculate that this technique is unlikely to be practical
for large SUTs in its manual form. The lack of scalability inherent in both
these techniques motivates the use of an automated search-based algorithm for
deriving input profiles.

2.2. Deriving Input Profiles Using Search

We have previously demonstrated that metaheuristic search can automate
the dynamic profile-derivation technique of Thévenod-Fosse et al., and thereby
reduce the cost of deriving suitable input profiles for statistical testing (Poulding
and Clark, 2010).

In this earlier work, an assumption was made that inputs to the SUT were
a fixed number of numeric (or other ordinal data type) arguments. This as-
sumption enabled input profiles to be represented as Bayesian networks: di-
rected acyclic graphs in which nodes correspond to input arguments, and edges
describe conditional dependence between arguments. The conditional distribu-
tions at each node were represented by partitioning the domain of the corre-
sponding argument into a number of intervals and assigning a probability to
each interval. To derive input profiles using this Bayesian network represen-
tation, random mutation hill-climbing was used to optimise the edges between
nodes, the number and size of intervals at a node, and the probabilities assigned
to each interval.

In subsequent work, we demonstrated an enhancement to the search algo-
rithm that improved performance by a factor of five for some SUTs (Poulding
et al., 2011). The enhancement—which we called ‘directed mutation’—used ad-
ditional information obtained from executing the instrumented SUT to bias the
mutation operators to parts of the candidate input profile that exercised the
coverage element(s) having the lowest coverage probability.

Although this work has shown that metaheuristic search is an effective and
cost-efficient approach to deriving input profiles, the assumption that inputs
consist of a fixed number of ordinal values limits the SUTs to which this ap-

4

proach may be applied. It is this limitation we seek to remove using the new
grammar-based reprentation described in this paper.

3. Proposed Search Algorithm

In this section we describe the three components of the proposed search
algorithm: the representation, the fitness metric, and the search method.

3.1. Representation

3.1.1. Stochastic Context-Free Grammars

Formal grammars define a language of strings: sequences of symbols drawn
from a set of terminal symbols. The grammar restricts valid strings to be a
subset of all the possible sequences of terminals by means of production rules:
only those strings that can be constructed by the application of the grammar’s
production rules are valid. The productions of context-free grammars, on which
our representation is based, have the form:

V → X1 X2 ...Xn

where V is one of an additional set of symbols called variables, and the Xi are
either variable symbols or terminals.

The generation of a valid string from the grammar begins with a string
consisting of a single copy of the designated ‘starting’ variable symbol, usually
denoted S. Generation proceeds by considering the leftmost variable in the cur-
rent string. A production is chosen which has this variable on the left-hand side,
and the variable is replaced in the string with the symbols on the right-hand
side of the production rule. The process of replacing variables continues until
the string contains no variable symbols.

As an example, consider the following context-free grammar for defining
simple arithmetic expressions. (For clarity, we surround terminal symbols in this
and subsequent grammars by single quotes. We also use the standard notation
of concatenating productions with same left-hand side variable, separating the
alternative right-hand sides using vertical bars: X → Y | Z is equivalent to the
two productions X → Y and X → Z.)

S → Expr

Expr → Num | Expr Op Expr

Num → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’

Op → ‘+’ | ‘-’ | ‘*’ | ‘/’

This grammar generates valid strings such as ‘4 + 3 * 5’, but does not gen-
erate invalid strings such as ‘- * 3 /’.

In a stochastic context-free grammar (SCFG), each production is addition-
ally annotated by a weight. During string generation, if more than one produc-
tion could be applied, the weights are interpreted as a probability distribution
and one of the productions is chosen at random according to this distribution.

When used as a representation for input profiles, the grammar productions
define the valid inputs to the SUT, and the weights are used to define the

5

probability distribution over the inputs. (We note, however, that some types of
input structures cannot be represented using context-free grammars.)

3.1.2. Conditional Production Weights

Context-free grammars are so-called because the set of productions that may
be applied to a variable does not depend on the symbols occurring before or after
the variable in the string during the generation process; this is a consequence of
only a single variable being permitted on the left-hand side of production rules.

The context-free property simplifies the grammar representation, but limits
the types of input profiles that may be represented using the weights of a SCFG.
Consider again the example grammar for generating simple arithmetic expres-
sions. If an optimal input profile must avoid too many divide-by-zero arithmetic
operations (i.e. the substring ‘/ 0’), the only mechanism available to do this is
to assign a low weight to the production Op → ‘/’, or to the production Num

→ ‘0’. However such weights would also reduce the probability of otherwise
desirable substrings such as ‘/ 2’ and ‘+ 0’.

To overcome this limitation, we enhance the standard form of SCFGs by
introducing conditional weights for the productions. A ‘child’ variable may be
identified as having one or more ‘parent’ variables (the set of which may include
the child variable itself) on which it is dependent. The distribution of weights
over the productions for the child variable is then conditionally dependent on
which of the parent variables’ productions were most recently applied.

For example, the variable Num in our example grammar may be dependent
on the variable Op. The weights over the 6 productions for Num are then con-
ditionally dependent on which production was most recently applied to Op. In
effect, there are 5 (potentially different) distributions of weights over the pro-
ductions of Num: one for each of the 4 possible productions of Op, plus a further
distribution that is used if no production has yet been applied to Op.

The conditional dependency of weights extends the types of input profiles
that may be represented by introducing a limited form of context-sensitivity
(but only in the weights; the grammar itself remains context-free). It would, for
example, enable divide-by-zero errors to be avoided more accurately by setting
the weight of Num → ‘0’ to a low value only in the conditional distribution used
when the most recent production applied to Op was Op → ‘/’, but retaining a
normal weight for Num → ‘0’ for all the other productions of Op.

The conditional dependency between variables—which parents are related
to which child variables—is discovered by the search algorithm; it does not need
to be specified a priori.

3.1.3. Dynamic Partioning of Ordinal Ranges

Some variables in the grammar may be used to represent a range of an
ordinal data type. For example, the variable Num in the example arithmetic
expression grammar above represents an integer in the range [0, 5]. If the data
type is discrete, and the cardinality of the range is small, it may be feasible
to use a separate production for each possible value in the range. However,
for much larger ranges such an approach would create an excessive number of

6

productions and associated weights: it would be impractical to optimise such
a large representation using search. An alternative could be to simply sample
a value from the range using a fixed probability distribution, e.g. a uniform
distribution, but such an arbitrary distribution may not result in an effective
input profile.

Our proposed solution is to partition the variable’s range into a small number
of intervals that we term ‘bins’, and create a production rule for each bin. Since
each production has a (potentially conditional) weight assigned to it, a number
of different probability distribution over the variable’s range can be represented.
Moreover, the search algorithm can modify the production weights in order to
find a suitable distribution. The representation is therefore more expressive and
flexible than a fixed arbitrary choice such as a uniform distribution. We refer
to variables represented in this way as ‘partitioned variables’.

For example, if the variable Num in the arithmetic expression grammar had
a much larger range of [−32768, 32767], it might be partitioned into three bins,
and three production rules, as follows:

Num → [−32768,−2480] | [−2479, 238] | [239, 32767]

When one of these three productions is chosen during the generation of a string
from the grammar, the output is not the bin, but a value picked at random from
a uniform distribution across the bin. For example, if the production Num →
[−2479, 238] is applied, then the output is a single integer between -2479 and
238 chosen at random.

The number of bins, and the boundaries between bins, are dynamic: both
of these aspects can be modified by the search algorithm. Thus, the number
and lengths of bins need not specified a priori : the search algorithm attempts
to derive a suitable partitioning.

We note that this partitioning into bins is different, both in purpose and
construction, from partition testing strategies, such as the approach of Richard-
son and Clarke (1981). Firstly, the partition used for partition testing consists
of equivalence classes in the context of functional or structural coverage; in the
algorithm proposed in this paper, the partition is used to define a histogram
probability distribution over the ordinal input argument that the grammar vari-
able represents. It is possible that the bins derived by the algorithm may align
with structural equivalence classes since inputs in the same class would be sam-
pled with the same probability by the optimal profile for statistical testing, but
there is no requirement that they do. Secondly, partition testing approaches
typically identify partitions by static analysis; in this algorithm the partition is
dynamically derived during the search process.

3.2. Fitness Metric

The fitness metric is an estimate of the minimum coverage probability in-
duced by the candidate input profile. It is evaluated by sampling a number, K,
of inputs from the stochastic grammar, and executing an instrumented version
of the SUT with the inputs. For each coverage element ci, the estimated cover-
age probability, pi, is the proportion of the K inputs that exercised the element

7

one (or more) times. The lowest value of pi across all the coverage elements is
an estimate of the minimum coverage probability. Therefore the fitness metric,
f , is given by:

f = min
ci∈C

1

K

K
∑

j=1

ei;j

(2)

where C is the set of coverage elements; and ei;j is an indicator variable set to 1
if the jth execution of the SUT exercised coverage element ci, and 0 otherwise.

Since the sample of inputs is of finite size, the fitness metric is only an
approximation of the minimum coverage probability and may sometimes be
higher than the ‘true’ value for the candidate input profile. In this situation,
the input profile may in effect form an artificial local optimum and be retained
in error over many iterations of the search. In our previous work, we were able
to minimise this effect by continuing to evaluate the current input profile (for
up to µeval hill-climbing iterations), and re-calculating a more accurate estimate
of the fitness from the accumulated instrumentation data (Poulding and Clark,
2010; Poulding, 2013).

3.3. Search Method

There is some correspondence between the new grammar-based represen-
tation and the previous Bayesian network representation. For this reason, we
propose a hill-climbing search similar to that used in our earlier work (Poulding
et al., 2011), and reinterpret the beneficial features of that search method in the
context of the new grammar-based representation.

3.3.1. Random Mutation Hill-Climbing

The search begins from a random input profile constructed by choosing pro-
duction weights, conditional dependencies between variables, and the number
and size of bins for partitioned variables at random. The algorithm parameters
specify upper limits for the number of parent variables on which any one vari-
able may be conditionally dependent (µprnt), and for the number of bins that
a partitioned variable may have (µbins): both the initial random profile and
neighbours created by mutation respect these limits.

At each iteration of the hill-climb, a small number, λ, of neighbours to
the current input profile are created by applying one of the following mutation
operators:

Mprb increases or decreases a single production weight by a factor ρprb;

Madd adds a conditional dependency between two grammar variables;

Mrem removes a conditional dependency;

Mlen increases or decreases the length of one bin of a partitioned variable by a
factor ρlen;

Mspl splits a bin into two new bins;

8

Mjoi joins two adjacent bins.

The mutation operators were chosen to enable the search to make small
changes to the weights of the stochastic grammar (Mprb, Madd, Mrem) and to
the bins of ordinal variables (Mlen, Mspl, Mjoi), and thereby permit the deriva-
tion of an optimal probability distribution over the grammar and partitioning
of ordinal input arguments, respectively. For each mutation operator there is
a corresponding operator that reverses its action (e.g. Madd and Mrem; Mprb

reverses itself when increasing the weight by the factor rather than decreasing,
and vice versa) in order to ensure that all parts of the search space are reach-
able from any other. We note that these are not the only mutation operators
that could be used: for example, rather than mutating a production weight by
multiplying it by a constant (operator Mprb), a constant could be added (or
subtracted) from the weight. However similar operators to these were found to
be effective for the older algorithm that used a Bayesian network representation
(Poulding, 2013).

Each mutation operator Mx has an associated weight, wx: operators with
higher weights are more likely to be applied when creating a neighbour.

The neighbours are evaluated, and if the fittest neighbour is fitter than the
current input profile, the neighbour becomes the current profile in the next
iteration.

3.3.2. Directed Mutation

We incorporate an enhancement to the search method that we describe as
‘directed mutation’. This enhancement was discussed in section 2.2 above, and
is explained in detail in our previous work (Poulding et al., 2011). When the
fitness of the current input profile is evaluated, data is maintained as to which
productions gave rise to inputs that exercised the coverage element(s) with the
minimum coverage probability. The weights (and bins, if a partitioned variable)
associated with these productions are then mutated with a higher likelihood
when creating neighbours of the current input profile.

Directed mutation is implemented by grouping the mutation operators into
three groups:

Gedge operators that modify conditional dependencies: Madd and Mrem;

Gbins operators that modify production weights and bins directly: Mlen, Mspl,
Mjoi, and Mprb;

Gdrct consists of the same weight- and bin-modifying operators as Gbins, but
applies them only to production weights and bins that contributed strings
that exercised the coverage element(s) with the lowest coverage probabil-
ity.

Each group Gx has associated weight Wx. When choosing a mutation oper-
ator to apply, a group is first chosen at random according to the group weights,
and then a mutation operator is chosen at random from that group according to

9

the mutation operator weights. The group weights thus control the ‘strength’
of directed mutation effect.

If the minimum coverage probability is zero, one or more coverage elements
must not have been exercised by any of the sampled inputs and so there is no
data available with which to apply directed mutation. In this situation, the
algorithm foregoes the local mutation operators described above and constructs
entirely random neighbours in the same way as the initial random profile. The
objective is to ‘jump’ directly to a new random point in the search space in the
hope that the minimum coverage probability is non-zero around this new point
and thus directed mutation will be effective.

4. Empirical Demonstration

4.1. Objective

The objective of the empirical demonstration described in this section is to
evaluate the following propositions:

Proposition 1 The proposed search algorithm is able to derive effective input
profiles for testing software that takes complex inputs. In this context,
we define ‘complex’ to mean inputs that vary in length or which include
data with types other than ordinal, including data types that must satisfy
constraints on the structure of the test data. We contrast such inputs
with the relatively simple input domains—a fixed number of numeric (or
other ordinal) data types—that could be accommodated by the algorithm
described in our previous work (Poulding and Clark, 2010; Poulding et al.,
2011). Our measure of the efficacy is the minimum coverage probability
of the input profile: the higher this probability, the smaller the test set
required to exercise all of the chosen coverage elements. We cannot know
the optimal minimum coverage probability for the SUTs considered in this
work—the software is too complex to permit such a static analysis—and
so instead we assess the efficacy of an input profile derived by the proposed
algorithm by comparison with the best profile that can be derived by a
random search using equivalent computational resources. Such a compar-
ison will also verify that the problem is sufficiently difficult that a simple
search algorithm such as random search is ineffective, and so the more
sophisticated search algorithm proposed in this paper is required. (As a
point of clarification, we note that the random search algorithm, in which
profiles are sampled at random from the entire search space, is not the
same as uniform random testing.)

Proposition 2 The two novel features of the grammar-based representation,
conditional production weights and dynamic partitioning, facilitate the
derivation of effective input profiles. We assess the effect of these features
by the change in efficacy of the algorithm when they are removed from
the representation.

10

4.2. Software-Under-Test

We use the following four SUTs as representative examples of software to
which the algorithm could be applied. The first three SUTs—epuck, replace,
circBuff—take ‘complex’ inputs that could not be represented by the Bayesian
network used by the older algorithm. In all cases, the inputs are variable-length
sequences consisting of both categorical and ordinal data types, and there are
constraints on the valid ordering of the data within the sequence. The input
domain of the fourth SUT—tcas—could be represented by a Bayesian network
since its inputs consist of twelve numeric arguments, and is included here to
demonstrate that the new algorithm is also practical for such SUTs.

The algorithm requires a context-free grammar that defines valid inputs to
the software, and so in the following description of each SUT we also describe
a grammar that specifies valid inputs. For software taking ‘complex’ inputs of
this type, any automated test data generation method including random testing
would require a grammar (or equivalent formal specification) if it is to generate
valid inputs. We note, however, that the construction of such a grammar, if it
does not already exist, does add to the cost of applying the algorithm proposed
by this paper.

Ideally we would have used a larger number of example SUTs in order that
we may more confidently generalise the empirical results to other software. In
addition, a larger set of SUTs would have reduced the potential for overfitting
the parameter settings that we tune for each algorithm variant (see section 4.5);
the risk of such overfitting is discussed in (Arcuri and Fraser, 2011). However,
we are constrained by the computing resources available: a large number of trials
are performed in order to set algorithm parameters in a principled manner and
to ensure a reliable assessment of performance given that the stochastic nature
of the algorithm. Additional example SUTs would have further increased the
number of trials, and thus computing resources, required for the empirical work.

The instrumented version of each of the SUTs is available at: http://www.
cs.york.ac.uk/~smp/supplemental/.

4.2.1. SUT: circBuff

circBuff is the implementation of a circular buffer container in the BOOST
C++ library, version 1.50. The testing objective is coverage of all branches in
the public methods of the public interface class of the container. (We omit the
copy constructor and assignment operator in order to avoid a step-change in
the complexity of the grammar since these methods take a further container
object as a parameter.) The number of branches to be covered is 78. The
public methods of the class constitute approximately 700 lines of code, but not
all methods include branched code.

Since the container object maintains state between method calls, it is not
sufficient for the test case to be a single method call. Instead, we consider a
test input to be a sequence of method calls and we use the grammar shown in
figure 1 to create such inputs. The grammar defines a valid structure for the
sequence of method calls: a constructor, method calls to the constructed object

11

S → Constructor FillMethods Methods ‘destructor’
Constructor → ‘circular buffer[0]’ BufferCapacity

| ‘circular buffer[1]’ BufferCapacity BufferSize
FillMethods → FillMethod FillMethods | FillMethod
FillMethod → ‘push front’ | ‘push back’

Methods → Method Methods | Method
Method → ‘push front’ | ‘push back’

| ‘linearize’ | rotate’ IteratorPos
| ‘set capacity’ BufferCapacity
| ‘resize’ BufferSize
| ‘rset capacity’ BufferCapacity
| ‘rresize’ BufferSize
| ‘insert[0]’ IteratorPos
| ‘insert[1]’ IteratorPos Number
| ‘rinsert’ IteratorPos | ‘erase[0]’ IteratorPos
| ‘erase[1]’ IteratorPos IteratorPos
| ‘rerase[0]’ IteratorPos
| ‘rerase[1]’ IteratorPos IteratorPos
| ‘pop front’ | ‘pop back’
| ‘front’ | ‘back’ | ‘operator[]’ Number

BufferCapacity → [0,9]
BufferSize → [0,9]

IteratorPos → [0,9]
Number → [0,9]

Figure 1: The grammar defining inputs to circBuff

that fill the buffer, method calls that operate on the buffer, and finally a call to
the destructor. Terminals, such as ‘push front’, specify method calls. (The
suffixes of the form [n] distinguish between overloaded methods.) Parameters
to method calls are represented by the four partitioned variables at the end of the
grammar. Recursion in the grammar enables the generation of variable-length
sequences of method calls.

It is possible that one extremely long sequence of method calls could cover
most, if not all, branches in a single test case. However, such a test case may
be impractical in terms of applying an oracle, i.e. checking that the observed
behaviour of the SUT is correct. We therefore place a pragmatic upper limit of
64 symbols on strings sampled from the grammar (as well as on intermediate
strings during the sampling process) 1.

The strings generated by the grammar are interpreted by a test harness and
applied to an instrumented version of the container class. The object returned
by a call to a constructor method is stored by the harness and subsequent
method calls are made to that object.

4.2.2. SUT: epuck

‘E-pucks’ are small, relatively cheap robots used in robotics research. The
SUT epuck is controller code that forms part of a lightweight simulator for e-
puck robots written in C by Paul O’Dowd of the University of Bristol. Features
supported by the simulator include infra-red proximity detection, communica-

1As alternative to a limit, Fraser and Arcuri (2013) evaluate mechanisms as part of the
search process itself to avoid this issue of extremely long sequences arising during search-based
test data generation.

12

S → EpuckCluster ObjClusters
EpuckCluster → EpuckClustAzimuth EpuckClustDist Epucks

Epucks → Epuck
Epuck → EpuckAzimuth EpuckDist EpuckAngle

ObjCluster → ObjClustAzimuth ObjClustDist Objects
ObjClusters → ObjCluster | ObjCluster ObjClusters

Objects → Object | Object Objects
Object → Obstacle | Patch

Obstacle → ObstAzimuth ObstDist ObstRadius
Patch → PatchAzimuth PatchDist PatchRadius

EpuckClustAzimuth → [0,359]
EpuckClustDist → [0,199]

EpuckAzimuth → [0,0]
EpuckDist → [0,0]

EpuckAngle → [0,359]
ObjClustAzimuth → [0,359]

ObjClustDist → [400,599]
ObstAzimuth → [0,359]

ObstDist → [0,99]
ObstRadius → [10,99]

PatchAzimuth → [0,359]
PatchDist → [0,99]

PatchRadius → [10,99]

Figure 2: The grammar defining inputs to epuck.

tion between robots, the detection of coded patches on the floor, and static
obstacles in the environment.

The controller code has two significant conditional statements: the first tests
whether an obstacle is nearby and if so, directs the robot to take an avoiding
action; the second tests for the presence of coded ‘food’ patches on the floor and
if a patch is detected, attempts to maintain position over the patch. The testing
objective is to exercise the four branches from these two conditional statements
during a short ‘mission’ lasting the equivalent of 10 seconds in the simulation.

A test input is a configuration of the robot’s environment in which the
mission occurs, consisting of fixed circular arena and a number of obstacles
and patches.

The configuration is described by the grammar listed in figure 2, which
defines obstacles and patches in terms of groups we call object clusters. An
example of two clusters is shown in figure 3. The objects in the cluster—
obstacles and patches—are defined using distances and angles from the centre
of the cluster.

The recursion in the grammar permits different numbers of object clusters,
each with different numbers of obstacles and patches, to be generated. Parti-
tioned variables are used to generate the positions of clusters, obstacles, patches,
and e-pucks; and the radii of obstacles and patches.

Strings generated by the grammar are interpreted by a test harness and used
to configure the simulated environment. To avoid unrealistic environments, only
the first three obstacles and first three patches are configured. The grammar is
able to define the initial positions of multiple e-pucks, but in this empirical work
only the first e-puck specified by the generated string is added to the arena.

The controller code itself consists of 53 lines of code, but the testing process
requires the code to be executed as part of the much larger simulator. The

13

object cluster

arena centre

cluster centre

arena

patch

obstacle

Figure 3: The mission environment specified in terms of object clusters.

mission duration of 10 seconds is equivalent to 500 time steps in the simulation.
While the real-world elapsed time for each simulated mission is much less than a
second, this is nevertheless much longer than the execution of time of the other
SUTs used in this empirical work.

4.2.3. SUT: replace

The C program replace takes three arguments: a target string, a regular
expression, and a replacement string. The program subsitutes the replacement
string for each substring matching the regular expression in the target string.

A regular expression is highly structured and so a grammar is a natural
choice for representing the input domain of this SUT. The grammar we use for
this purpose is shown in figure 4.

The grammar emits a string of terminals that is split by the test harness
into the three arguments; the terminal ‘argSep’ marks the points at which this
split occurs. The target string argument is constructed by the rules for variables
Lines, Line, and PrintableChar that emit a string that may include new line
control codes (terminal ‘newline’). Optional recursion in these rules enable
the generation of strings of different lengths and spanning different numbers
of lines; the rules producing the terminal epsilon, which is interpreted by
the test harness as the empty string, avoid infinite recursion. The variable
PrintableChar is the only partitioned variable in the grammar and outputs an
integer that is interpreted by the test harness as a single ASCII character; the
range 32 to 126 corresponds to the printable ASCII characters.

The regular expression argument is constructed as a sequence of elements
by the rules for the variable ‘Regex’. The elements may be:

• a literal printable character (variable Literal);

14

• literals or ranges of literals (optionally negated by the metacharacter ‘^’)
enclosed in square brackets that match a single occurence of any of the
literal characters in the target string (variable BracketExpression);

• an element followed by the metacharacter ‘*’ that matches zero or more
occurrences of the element;

• the metacharacter ‘%’ that matches the start of the target string;

• the metacharacter ‘$’ that matches the end of the target string;

• the metacharacter ‘?’ that matches a single occurrence of any character.

(Note that some of the metacharacters used by the replace SUT are non-
standard: for example, the POSIX standard uses ‘^’ to match the start of the
string, and ‘.’ to match a single occurrence of any character.)

In order to check the parsing and error-handling code in the SUT, it is nec-
essary to generate, in addition to well-formed regular expressions, expressions
that are ‘nearly’ well-formed such as a bracketed expression missing the closing
square bracket. This is achieved by rules associated with variables whose names
have the prefix Maybe. As an alternative to returning the correct metacharacter,
these variables may omit it, either by preceding it with the escape metacharac-
ter, ‘@’, to revert the metacharacter to a standard character, or by returning
the empty string, ‘epsilon’, instead.

The replacement string argument is constructed by the variable Replacement.
It emits a variable-length sequence consisting of printable characters, escape
metacharacters, a metacharacter ‘&’ that is expanded on replacement by the
substring of the target matched by the regular expression, and special character
sequences for new line and tab control characters respectively.

In the absence of a functional specification for the SUT, this grammar was
constructed using a knowledge of standard regular expressions and a manual re-
view of the SUT’s code. For example, the (somewhat non-standard) metachar-
acters are defined at the beginning of the code.

This SUT was chosen as a case study since the grammar requires only one
partitioned variable, in contrast to the four or more partitioned variables in the
grammars used for the preceding two SUTs. We therefore suspect that there
may be little, if any, benefit in the use of dynamic partitioning. In addition,
both well-formed and malformed structured inputs, as well as inputs that exceed
the size of working buffers, are required to fully exercise the program and this
requires a relatively complex grammar that we speculate may be hard for the
search algorithm to optimise.

The code is provided by the Software-artifact Infrastructure Repository (Do
et al., 2005) and is a standalone executable that takes the target string argument
from standard input and the other two arguments from the command line. To
facilitate experimentation, the code was modified to be a function that could be
linked with the search algorithm and to which all three arguments are passed
as strings. The number of branches to be covered is 115. This set of coverage
elements excludes a small number branches in two code sections that report

15

S → Target ‘argSep’ From ‘argSep’ To
Target → Lines

From → Regex
To → Replacement

Lines → Line | Line ‘newline’ Lines | ‘epsilon’
Line → PrintableChar Line | ‘epsilon’

PrintableChar → [32,126]
Regex → Element Regex | ‘epsilon’

Element → Literal | BracketExpression | Element ‘*’ | ‘%|’ | ‘$’ | ‘?’
Literal → MaybeEscape PrintableChar

MaybeEscape → ‘@’ | ‘epsilon’
BracketExpression → MaybeBracketOpen BracketedElements MaybeBracketClose
MaybeBracketOpen → MaybeEscape ‘[’ | ‘epsilon’

MaybeBracketClose → MaybeEscape ‘]’ | ‘epsilon’
BracketedElements → BracketedElement BracketedElements

| ‘^’ BracketedElement BracketedElements | ‘epsilon’
BracketedElement → Literal | LiteralRange

LiteralRange → Literal MaybeRangeDash Literal
MaybeRangeDash → MaybeEscape ‘-’ | ‘epsilon’

Replacement → ReplacementChar Replacement | ‘epsilon’
ReplacementChar → PrintableChar | ‘@’ | ‘&’ | ‘@’ ‘n’ | ‘@’ ‘t’

Figure 4: The grammar defining inputs to replace.

argument errors and read from standard input: these were the code sections that
were modified from the original standalone version of the SUT; the remaining
instrumented functions constitute 530 lines. In addition, four branches that were
identified as unreachable in the code, as well as in notes provided with the source
code in the Software-artifact Infrastructure Repository, are also excluded from
the set of coverage elements. (As a check on the correctness of this identification,
assertions were added at the end point of each of these unreachable branches.
None of these assertions failed during the experimentation even though the SUT
was exercised many billions of times with a wide variety of randomly generated
inputs.)

4.2.4. SUT: tcas

The previous Bayesian network representation could be applied only to SUTs
with inputs consisting of a fixed number of ordinal arguments (Poulding and
Clark, 2010; Poulding et al., 2011). In order to demonstrate that the new
grammar-based representation is also practical for SUTs with this type of input
domain, we include a common example from the testing literature: the Traffic
Collision Avoidance System (TCAS) used by commercial aircraft. The code is
provided by the Software-artifact Infrastructure Repository.

The SUT takes 12 integer arguments, and thus the grammar consists only
of 12 partitioned variables—one for each argument—plus the start variable (fig-
ure 5). This simple grammar always processes each variable exactly once and
always in the same order. For this (and similar) grammars, the fixed generation
order enables the search space to be reduced by setting an algorithm param-
eter that restricts the conditional dependencies between variables: the parent
variable must be processed earlier than child for a dependency to be created,
otherwise the dependency would have no effect.

The testing objective is coverage of all reachable 62 conditions (atomic

16

S → A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
A1 → [0,39999]
A2 → [0,1]
A3 → [0,1]
A4 → [0,39999]
A5 → [0,4999]
A6 → [0,39999]
A7 → [0,3]
A8 → [0,39999]
A9 → [0,39999]

A10 → [0,2]
A11 → [1,2]
A12 → [0,1]

Figure 5: The grammar defining inputs to tcas.

Boolean predicates) in both conditional and assignment statements.

4.3. Algorithm Implementation

The search algorithm was implemented in C++, and the instrumented SUTs
were linked with the algorithm to form a single executable. It would be possible
to run the SUTs as separate executables, but the empirical work described below
in section 4.4 requires very many algorithm trials and so the overhead of com-
munication between the algorithm and SUT running in different processes could
increase the time required for the experimentation significantly. The algorithm
uses a 64-bit implementation of Marsaglia’s XORShift algorithm (Marsaglia,
2003) to generate pseudo-random numbers. Each trial described in the empiri-
cal work used a different seed to the generator; the random seeds were obtained
from the QRNG Service (Humboldt-Universität zu Berlin, 2013).

4.4. Empirical Method

To evaluate the two propositions described above, we consider five variants
of the algorithm:

1. The full algorithm as described in section 3 (we denote this variant Afull).

2. A variant in which conditional production weights are omitted (we denote
this variant A/cond to indicate conditional production weights have been
removed).

3. A variant in which dynamic partitioning of ordinal ranges is omitted;
instead a single bin is used for the entire range of the variable (A/part).
We do not explicitly consider a variant in which there is a bin for each
single value: for SUTs with large ranges such as tcas, it is clear that
such a representation would be infeasibly large. Instead, we consider here
the alternative solution proposed in section 3.1.2: that of a fixed uniform
distribution over the range of the variable.

4. A variant in which both conditional production weights and dynamic par-
titioning are omitted (A/both).

5. A variant of the full algorithm that uses random search in place of hill
climbing (Arand). This is implemented by creating an entirely random
profile for each neighbour in the hill-climb rather than applying the local

17

mutation operators. The random neighour is generated in the same way
as the initial random profile (see section 3.3.1).

By measuring the difference in performance between the full algorithm Afull,
and the three variants, A/cond, A/part, A/both, that omit one or both of condi-
tional production weights or dynamic partitioning, we may evaluate our hy-
pothesis that these features of the grammar-based representation facilitate the
search algorithm.

The variant Arand evaluates a large number of different, randomly-chosen in-
put profiles. We will interpret the best minumum coverage probability attained
by this variant as indicative of the probability achievable by an arbitrarily-
chosen profile, and use it as a baseline against which to assess the benefit of
using full search algorithm to optimise the profile.

Our measure of performance in comparing the algorithm variants is the
computing resource required to derive an input profile satisfying the adequacy
criterion of statistical testing, i.e. a profile with a minimum coverage probability
equal to or greater than a target value. To aid replicability of the experiments,
we measure the computing resource in terms of the total number of times the
instrumented SUT is executed for the purpose of evaluating fitness of candidate
profiles. Alternative measures of the computing resources consumed, such as
the wall-clock or processor time, would be dependent on the algorithm’s imple-
mentation and the hardware on which it executes. Since the execution of the
instrumented SUT is the most resource-intensive part of the algorithm, the num-
ber of SUT executions correlates well with the computing resource consumed,
but is independent of both implementation and hardware.

The performance of each algorithm variant is likely to be highly dependent
on its parameters—of which there are 10 of consequence for the full algorithm
variant—and so we must consider how to set the parameters so as to permit a
reliable comparison between the algorithm comparisons. A possible approach is
to choose arbitrary parameter settings and use these settings for all five of the
algorithm variants. While such an approach would not intentionally introduce
a bias in favour of any of the variants, it is nonetheless possible that these
arbitrary settings may by chance be near-optimal for one of the variants, but
not the others. The comparisons between algorithm variants would be unreliable
if such a bias were to occur.

We therefore take a more principled approach: different algorithm settings
are used for each of the variants and these settings are tuned prior to evaluating
the performance of each of the algorithms. For each algorithm variant, the same

tuned parameter settings are used for all four SUTs, and thus the goal of the
tuning process is identify the settings that give the best performance averaged
across the example SUTs. An alternative would be tune each combination
of algorithm variant and SUT independently, but this differs from how the
algorithm would be used in practice: the tester would be unlikely to invest time
and resources in tuning the algorithm for each new SUT to be tested before
deriving a profile, and instead re-use the same generic parameter settings that
had previously been shown to give acceptable average performance.

18

The empirical method therefore consists of two steps: first the parameter
settings are tuned for each of the algorithm variants, and then the performance
of the algorithm variants are measured at the tuned parameter settings. These
steps are described in detail in the following two subsections.

4.5. Parameter Tuning

4.5.1. Approach

A form of response surface methodology is used to tune the algorithm pa-
rameters. Response surface methodologies enable the relationship between the
response (here, the algorithm’s performance) and the factors on which the re-
sponse depends (here, the algorithm’s parameter settings) to be modelled math-
ematically; Myers et al. (2004) provide a survey of these techniques. We have
previously found the use of such methodologies effective in tuning the param-
eters of metaheuristic search algorithms (White and Poulding, 2009; Poulding
et al., 2011), and they have a number of advantages over more naive approaches
such as tuning one factor at a time while fixing the remaining parameters.
Firstly, an appropriate choice of mathematical model can accommodate the de-
pendencies between the parameter settings that are likely to exist. Secondly, by
choosing efficient experimental designs—i.e. the different parameter settings at
which the algorithm is run—an accurate model may be created from the results
of relatively few algorithm runs. Thirdly, we can ensure that an equivalent ef-
fort is applied to tuning each of the algorithm variant by using the same type
of experimental design for each, even though the number of parameters differs
between variants.

The methodology we use here has three phases:

• Algorithm trials are performed at a number different parameter settings
and the response of the algorithm, i.e. its performance across all four
SUTs, recorded.

• A mathematical model is fitted to the results that describes how the re-
sponse changes with the parameter settings.

• The parameter settings that optimise the response of the model are de-
rived analytically. If there is a reasonable fit between the model and the
true response surface, these settings should also be near-optimal for the
algorithm.

4.5.2. Parameters

The algorithm parameters to be tuned are listed in table 1. The effect of
each of these parameters is described in section 3. Note that the weights Wbins

and wprb take fixed values, and the other weights are expressed as ratios relative
to these fixed values. The parameters Wedge and wadd are not used by variants
A/cond and A/both; the parameters ρlen, wjoi, wspl, and wlen are not used by the
variants A/cond and and A/both.

We do not optimise separately for the Arand variant since it evaluates a se-
quence of random profiles and therefore does not apply the mutation operators.

19

Parameter Range of Interest
evaluation sample size, K 200–600
neighbourhood sample size, λ 2–20
production weight mutation factor, ρprb 2.0–100.0
bin length mutation factor, ρlen 2.0–100.0
Gedge group weight, Wedge (relative to Wbins) 0.05–0.5
Gdrct group weight, Wdrct (relative to Wbins) 1.0–20.0
Madd mutation weight, wadd (relative to wrem) 0.6–1.667
Mjoi mutation weight, wjoi (relative to wprb) 0.6–1.667
Mspl mutation weight, wspl (relative to wjoi) 0.6–1.667
Mlen mutation weight, wlen (relative to wprb) 0.6–1.667

Table 1: Tunable algorithm parameter settings.

For Arand, we will use the tuned values of the evaluation sample size, K, and
neighbourhood sample size, λ, for the variant Afull in order to enable a fair
comparison between these two variants.

The column ‘Range of Interest’ in the table specifies sensible (although nec-
essarily subjective) minimum and maximum settings for each parameter. We
make the assumption that the optimal parameter setting lies within this range,
and therefore fit the model only over a ‘region of interest’ in the parameter space
defined by these ranges.

Table 2 lists algorithm parameter settings that are fixed. The parameters
µprnt, µbins, and µeval are upper limits on the number of parents per child and
the number of bins in a partitioned variable (see section 3.3), and the number of
times a profile may be resampled (section 3.2), respectively. Since these limits
are likely to have an effect during relatively few of the algorithm trials and may
not be reached in most others, they are difficult model using response surface
methodology; for this reason we set them instead to fixed values that were found
to be effective for the previous Bayesian network representation in our earlier
work (Poulding, 2013).

The parameters τpmin
, τexec, and τproc specify the termination conditions for

the algorithm. τpmin
is the SUT-specific target minimum coverage probability,

and is set to approximately 80% of the best value observed in earlier work or
during exploratory experimentation: the algorithm terminates if a candidate
profile with this fitness or better is found. The algorithm also terminates once
τexec executions of the instrumented SUT have been performed. This is a practi-
cal consideration: it avoids excessively long-running algorithm trials should the
algorithm fail to derive a suitable input profile. The setting of this parameter
for epuck is much lower for this SUT than the three others since an execution
of epuck takes substantially longer: each execution is a complete run of the
simulation.

The maximum number of executions specified for circBuff, epuck, and tcas

are equivalent to algorithm (wall-clock) run times of approximately 10, 18, and
0.5 minutes respectively, and the variance in these run times is relatively small.
However, when applied to the SUT replace, the algorithm run times are much
more variable since some inputs to the SUT can cause a single execution of

20

Parameter SUT Setting
max. parent variables per child, µprnt (all) 1

max. bins per partitioned variable, µbins (all) 2
√

|C|
max. evaluations per profile, µeval (all) 10
target minimum coverage probability, τpmin

circBuff 0.096
epuck 0.56
tcas 0.078
replace 0.05

max. instrumented SUT executions, τexec epuck 1× 106

(all others) 5× 107

max. processor time, τproc (all) 240 minutes

Table 2: Fixed algorithm parameter settings. (|C| is the number of coverage elements.)

the SUT to take multiple seconds or even minutes. (An example of such an
input is a regular expression which contains both literals and a long series of
the ‘*’ and ‘?’ metacharacters. We suspect the long execution time is because
the SUT must evaluate a very large number of possible matches to this regular
expression in the target string.) Thus while the algorithm can take as little
as a minute to perform 5 × 107 executions of the SUT, other trials may not
terminate after many hours should they, by chance, generate inputs that cause
the execution time of the SUT to be of the order of seconds. For this reason, the
parameter τproc specifies that the algorithm should terminate after 240 minutes
of processor time.

4.5.3. Model

A quadratic linear model is used to describe the relationship between the
algorithm’s performance and the parameter settings. This model has the form:

y = β0 +
∑

i

βixi +
∑

i

∑

j<i

βi,jxixj +
∑

i

βi,ix
2
i + ǫ (3)

The independent variables, xi, are the settings taken by the tunable parame-
ters to the algorithm variant (i is an index between 1 and the number of tunable
parameters). The independent variable, y, is the algorithm’s performance. The
coefficients, β, specify how the performance changes with the parameter set-
tings, and it is the value of these coefficients that specify the model and must
be estimated from the results of performing a number of algorithm trials at
selected values of the settings. The random variable ǫ accounts for variance (or
‘noise’) in the observed performance that cannot be described by the model.
For this algorithm, the only source of noise arises from the stochastic nature
of the algorithm: different performances will be observed for repeated trials at
the same parameter settings since the algorithm uses a different sequence of
pseudo-random numbers for each trial.

The quadratic linear model is used since it is relatively simple and there-
fore requires few algorithm trials to fit the model, but is nonetheless capable of
describing a curvature in the response surface, such as a smooth peak with its
centre at the optimal parameter settings. The modelling of the response surface

21

as a smooth peak is likely to be simplification; our earlier work on tuning the pa-
rameters of the algorithm using the Bayesian network representation suggested
a much more rugged surface (Poulding, 2013). As a result of this simplication,
the tuned parameters resulting from the methodology used here are unlikely to
be the optimal parameter settings. However, the objective of the tuning is only
to find ‘near-optimal’ parameter setting specific to each algorithm variant so
that a reliable comparison can be made between variants; it is not necessary to
find the true optimal parameters. Therefore, we accept the use of the relatively
simple quadratic linear model.

For the mutation factor (ρ) and weight (W and w) algorithm parameters,
we equate the model parameter, xi, to the logarithm of the corresponding algo-
rithm parameter value. The motivation is that these algorithm parameters are
ratios—either as a result of their action (the mutation factors) or because they
are expressed relative to fixed weight (the group and operator weights)—and we
argue as follows that the logarithm is a natural transformation for ratios in a
linear model. It is reasonable to expect that a change in such a ratio parameter
from 1.0 to 1.1 would have more of an effect on algorithm performance than a
change from 10.0 to 10.1. However, in the absence of a logarithm transforma-
tion, the model would predict the same change in algorithm performance for
both since the model is linear in the parameters. By applying a logarithm trans-
formation, the model predicts that a ratio parameter change from 1.0 to 1.1 will
now have the same effect as a change of 10 to 11 since, after the transformation,
it is the multiplicative rather the additive difference in the algorithm parameter
that is modelled.

4.5.4. Experimental Design

A faced central composite design is used to determine the parameter settings
(design points) at which to run algorithm trials for the purpose of estimating
the model coefficients.

This experimental design specifies design points that are combinations of
the ends and midpoints of the range of interest of each algorithm parameter
(listed in table 1). A central composite design is effective for determining the
model coefficients of a quadratic linear model, but requires fewer algorithm
trials than, for example, a full factorial design, for the relatively large number
of parameters that the algorithm variants have. A central composite design
for the 10 parameters tuned for Afull specifies 178 design points, while a (two-
level) factorial design specifies 1024 design points. Moreover all of the design
points of the factorial design are corners of the region of interest, while the faced
central composite additionally explores midpoints of faces and the interior of the
region. (The NIST/SEMATECH e-Handbook of Statistical Methods provides
good overview of the central composite design and the faced variant (National
Institute of Standards and Technology, 2013).)

In order to reduce the effect of the stochastic noise, i.e. the variation in
algorithm performance at the same parameter settings owing to the sequence
of pseudo-random numbers, 16 trials were performed at each design point for
each of the SUTs. Since there are four SUTs, a total of 178× 16× 4 = 11, 392

22

algorithm trials were run in order to tune the settings for algorithm variant
Afull. The total number of trials run to tune the variants A/cond (which has 8
parameters and so a smaller central composite design), A/part (6 parameters),
and A/both (4 parameters) was 6, 400; 3, 776; and 2, 304 respectively.

4.5.5. Response Measure

As discussed above, our chosen measure of algorithm performance is the
total number of executions of the instrumeted SUT required by the algorithm
to derive an input profile that has the target minimum coverage probability.

However, it is possible that a significant proportion of the algorithm trials
may not derive such an input profile before the trial is terminated as result of
reaching the limit on the number of executions or on the processer time. Such
‘failed’ trials do not provide a measure of algorithm performance according to
the definition above. Nevertheless we can obtain some useful information from
such trials: if at parameter settings S, the best profile derived by a trial has
a higher minimum coverage probability than the best profile derived by a trial
at parameter settings T , then even though neither profile attains the target
probability, we may infer that settings S are better than T . To incorporate this
guidance, we calculate the following response, y for each trial:

ytrial = Nexecs ·
τpmin

min{pmin, τpmin
}

(4)

where Nexecs is the total number of SUT executions performed when the algo-
rithm terminated, τpmin

is the target minimum coverage probability, and pmin is
the minimum coverage probability of the best profile derived by the trial. If the
trial terminated as a result of attaining the target probability, then this equa-
tion simply returns the number of executions as the response. Otherwise, the
response is adjusted to a larger value in the proportion to the degree to the trial
missed the target probability. For trials that terminated as a result of exceeding
the limit on processor time, Nexecs is set to the value of the parameter τexec, the
limit on the number of executions on the conservative assumption that the trial
would have made no further improvement even if it had been permitted further
processor time.

At each design point, a summary response is calculated for each SUT as the
median value of the values of ytrial, calculated according to equation (4), across
the 16 algorithm trials for that SUT. This summary response will contain less
stochastic noise than the individual trials. The summary responses for the four
SUTs are then combined using a geometric mean to give a single response for
the design point:

ypoint = (ycircBuff · yepuck · ytcas · yreplace)
1

4 (5)

where ycircBuff is the summary reponse for the SUT circBuff, etc. The use of
the geometric rather than arithmetic mean avoids a potential bias to the SUTs
whose responses have the largest values. In particular, the much smaller number
of executions taken by the algorithm when applied to the SUT epuck would be

23

overwhelmed by the responses of the other SUTs if they were combined using
the arithmetic mean.

Finally the single response at the design point is transformed by taking the
logarithm. It was found that by applying this transformation, the variance in the
noise term, ǫ, of the fitted model is similar at all magnitudes of the response, and
the distribution of the noise is less skewed. Both these characteristics facilitate
a more accurate estimation of the model coefficients.

4.5.6. Computing Environment

The algorithm trials were run on a computing grid of 380 CPU cores. The
servers forming the grid had a variety of hardware specifications, but resources
available for each trial were typical of a desktop PC: a CPU core with a clock
speed between 2 and 3 GHz, and a minimum of 1 GB of RAM.

4.5.7. Analysis

Linear regression was used to fit the quadractic linear model from the results
obtained from the algorithm trials. The input to this analysis was the exper-
imental design and the measured responses calculated as described above; the
output was the estimated values of the model coefficients, i.e. the β coefficients
of equation (3).

The optimum parameter settings were predicted from the fitted model using
a sequential quadratic programming optimisation algorithm that constrains so-
lutions to the region of interest defined by the parameter ranges of table 1. The
optimum settings are those that the model estimates will permit the algorithm
to find input profiles in the fewest number of executions of the instrumented
SUT.

The linear regression and sequential quadratic programming analyses were
performed in Matlab, using the functions regress and fmincon (using the ‘sqp’
algorithm), respectively.

4.5.8. Parameter Tuning Results

The tuned parameter settings for each of the four variants are listed in
table 3. (As discussed above, we do not independently tune the parameter
settings of the Arand variant: instead, the settings for K and λ are taken from
the settings of Afull, and the other parameters are not applicable.)

The objective of the tuning process was to apply an equivalent effort to
finding the best parameter setting for each of the variants, and given the relative
simplicity of the quadratic linear model, we do not expect the tuned parameters
to necessarily be optimal. Nevertheless it is possible to quantify how well the
model fits the observed algorithm performance at each design point using the
coefficient of determination (R2) statistic reported by the regression analysis.
This statistic measures the proportion of the total variance across the response
surface that is explained by the model rather than the noise variable; it takes
values between 0 and 1, and values closer to 1 indicate a better fit of the model.
Across the four algorithm variants, the coefficient of determination ranges from

24

Parameter Afull A/cond A/part A/both

evaluation sample size, K 384 600 514 542
neighbourhood sample size, λ 10 2 8 2
production weight mutation factor, ρprb 100.000 2.000 12.125 4.414
bin length mutation factor, ρlen 100.000 30.391 N/A N/A
Gedge group weight, Wedge (relative to Wbins) 0.500 N/A 0.050 N/A
Gdrct group weight, Wdrct (relative to Wbins) 20.000 1.000 20.000 1.000
Madd mutation weight, wadd (relative to wrem) 0.600 N/A 1.667 N/A
Mjoi mutation weight, wjoi (relative to wprb) 0.600 0.830 N/A N/A
Mspl mutation weight, wspl (relative to wjoi) 1.477 1.111 N/A N/A
Mlen mutation weight, wlen (relative to wprb) 1.667 1.001 N/A N/A

Table 3: The tuned parameter settings for each of the four algorithm variants. ‘N/A’ indicates
that the parameter is not applicable to the algorithm variant.

0.948 for the model for Afull which we argue is indicative of a good fit given the
stochastic nature of the algorithm, to 0.678 for A/part, which is a poorer fit.

4.6. Algorithm Performance Measurement

4.6.1. Method

In the second step of the empirical method, the performance of each the
five tuned algorithm variants is measured for each of the four SUTs. For each
combination of algorithm variant and SUT, 64 trials were run, each using a
different seed to the pseudo-random number generator. The parameters were
set to the tuned values listed in table 3.

As discussed above, our chosen measure of performance is the computing
resource required to derive an input profile with a minimum coverage probability
equal to or greater than a target value. However, the comparison between
algorithm variants could be dependent on the specific target chosen for the
probability. To avoid this threat to validity, we do not set a target, but instead
run each trial for a fixed number of executions of the instrumented SUT, and
after each iteration of the search, record the best minimum coverage probability
derived so far and the number of SUT executions made. This data enables
us to compare the number of executions required to attain a range of target
probabilities. The limit on the number of SUT executions, τexec, was 2×106 for
epuck, and 1×108 for the other three SUTs: twice the values used in the tuning
trials (table 2). Correspondingly, the processor time limit, τproc, was set at 480
minutes. When analysing the results we make the conservative assumption
that for trials terminated by processor time criterion, the minimum coverage
probability that would have been attained if the trial had been permitted to
run for more SUT executions is the probability that was attained at the point
of termination.

4.6.2. Algorithm Performance Results

The results are summarised in figures 6–9. The lines indicate median mini-
mum coverage probability (calculated over the 64 trials) on the y-axis attained
by the search after executing the instrumented SUT the number of times shown

25

on the x-axis. The shaded ribbons surrounding the lines indicate 95% con-
fidence intervals for the median value and these intervals were calculated by
bootstrap resampling. We will consider differences in the probabilities of lines
for which the ribbons do not overlap as statistically significant. (The raw data
from the algorithm trials is available at: http://www.cs.york.ac.uk/~smp/

supplemental/.)

4.7. Discussion

In this discussion, we interpret figures 6–9 as follows. If we were, a priori,
to set a limit on the computing resources consumed by the search algorithm
(expressed in terms of the number of executions of the instrumented SUT),
the graphs indicate the efficacy (expressed in terms of the minimum coverage
probability) that we may expect of the best profile found by the search within
that limit. These enables us to compare the impact of the algorithm variants
across a wide range of limits on computing resource.

4.7.1. Proposition 1

Our first proposition was that the search algorithm is able to derive effec-
tive input profiles in comparison to arbitrary profiles chosen at random. This
proposition may be assessed by comparing the minimum coverage probability
attained by the full algorithm variant (Afull) with that achieved by the random
algorithm (Arand): the latter algorithm returns the best profile from a large
number of profiles chosen at random. For all four SUTs, the profiles derived by
Afull have significantly higher minimum coverage probabilities than Arand for
almost all limits on the number of SUT executions.

The practical implication of these differences in efficacy may be illustrated by
picking a specific limit on SUT executions and calculating the size of the test set
generated from the profiles that is necessary to ensure that the value of Qmin—
the minimum probability of any coverage elementbeing exercised by the test
set, defined in section 2.1—is suitably close to 1 so that there is a good chance
that all the coverage elements are exercised by the test set. We select a limit on
SUT executations at the midpoint of the graphs of figures 6–9, i.e. 1 × 106 for
epuck, and 5× 107 for the other three SUTs, and assess the minimum coverage
probability attained at the limit. We choose a value for Qmin of 0.99, and
calculate the corresponding test size using equation (1). These test sizes are
shown in table 4. For all SUTs, the profile derived by search enables a test set
size that ranges from 4 times smaller (epuck) to 16 times smaller (replace) than
the best random profile. As discussed in section 4.5.2, the search algorithm with
these limits on the number of SUT executions takes approximately 20 minutes
for these SUTs (although sometimes longer for replace) on a single CPU core.
Thus substantial savings in test set size are possible at the cost of the relatively
small amount of computing resource required to run the search algorithm.

4.7.2. Proposition 2

Our second proposition is that the two novel features of the grammar-based
representation, conditional production weights and dynamic partitioning, facil-

26

0.00

0.05

0.10

0.15

0 20 40 60 80 100

SUT Executions (millions)

M
in

im
u

m
 C

o
ve

ra
g

e
 P

ro
b

a
b

ili
ty

Algorithm Variant

full

/cond

/part

/both

rand

Figure 6: Median minimum coverage probabilities plotted against the number of executions for
each algorithm variant applied to the SUT circBuff. (full is the full proposed algorithm; the
variants /cond, /part, and /both omit, respectively, conditional production weights, dynamic
paritioning, and both these features; rand is the random search algorithm.)

0.0

0.2

0.4

0.6

0.8

0 0.5 1.0 1.5 2.0

SUT Executions (millions)

M
in

im
u

m
 C

o
ve

ra
g

e
 P

ro
b

a
b

ili
ty

Algorithm Variant

full

/cond

/part

/both

rand

Figure 7: Median minimum coverage probabilities plotted against the number of executions
for each algorithm variant applied to the SUT epuck. (full is the full proposed algorithm; the
variants /cond, /part, and /both omit, respectively, conditional production weights, dynamic
paritioning, and both these features; rand is the random search algorithm.)

27

0.00

0.02

0.04

0.06

0 20 40 60 80 100

SUT Executions (millions)

M
in

im
u

m
 C

o
ve

ra
g

e
 P

ro
b

a
b

ili
ty

Algorithm Variant

full

/cond

/part

/both

rand

Figure 8: Median minimum coverage probabilities plotted against the number of executions for
each algorithm variant applied to the SUT replace. (full is the full proposed algorithm; the
variants /cond, /part, and /both omit, respectively, conditional production weights, dynamic
paritioning, and both these features; rand is the random search algorithm.)

0.000

0.025

0.050

0.075

0.100

0 20 40 60 80 100

SUT Executions (millions)

M
in

im
u

m
 C

o
ve

ra
g

e
 P

ro
b

a
b

ili
ty

Algorithm Variant

full

/cond

/part

/both

rand

Figure 9: Median minimum coverage probabilities plotted against the number of executions
for each algorithm variant applied to the SUT tcas. (full is the full proposed algorithm; the
variants /cond, /part, and /both omit, respectively, conditional production weights, dynamic
paritioning, and both these features; rand is the random search algorithm.)

28

min. coverage prob. test set size
SUT Afull Arand Afull Arand

tcas 0.091 0.0104 49 440
circBuff 0.0990 0.0104 45 440
replace 0.0417 0.00260 109 1767
epuck 0.563 0.154 6 28

Table 4: The size of test sets necessary to ensure that, with high probability, all coverage
elements are exercised by the test set.

itate the search in deriving the most effective input profiles.
The algorithm variant A/cond omits conditional production weights in the

profile representation. For the SUTs circBuff and tcas, this variant derives
less effective profiles than the full algorithm across a wide range of limits on
the number of SUT executions, Afull. The greatest difference is observed for
circBuff where the profiles derived by Afull have twice the minimum coverage
probability of those derived by A/cond. For epuck any difference between the
two variants is, in general, not statistically significant (the confidence intervals
overlap). For replace, the A/cond variant is, at higher number of SUT execu-
tions, better than the full algorithm. We speculate that this may be a result
of the much larger space of candidate profiles available to Afull than to the
A/cond variant: for SUTs such as replace, where conditionality is not required
to represent the best profiles, this larger search space (and perhaps the higher
likelihood of encountering local optima in this space) may account for the poorer
performance of Afull at the higher number of SUT executions. We conclude that
the use of conditional production weights can improve the efficacy of the profiles
returned by the algorithm, but for some SUTs the use of this feature may be
deterimental.

The algorithm variant A/part omits dynamic partitioning of the profile rep-
resentation. For all SUTs, this variant derives profile that are very much worse
than the full algorithm, Afull. For tcas, the performance of the A/part is even
worse than that of a random variant. This is not unexpected given that gram-
mar for this SUT consists solely of partitioned variables and that the random
algorithm variant retains dynamic partitioning. We also note the particularly
poor performance of A/part for replace. This is unexpected since the gram-
mar only includes one partitioned variable. Further analysis suggest that this
may be a consequence of using the same tuned parameters for all SUTs: tuning
the parameters of the variant A/part specifically for the SUT replace results
in a performance similar to that seen for the variant A/both on this SUT. This
may be indicative of inaccuracies in the tuning process, or alternatively that the
A/part variant is brittle to the specific choice of parameter settings. Nevertheless
this does not affect our ability to conclude that, in general, the use of dynamic
partitioning improves the efficacy of profiles returned by the algorithm.

The algorithm variant A/both omits both conditional production weights and
dynamic partitioning. For the SUTs apart from replace, the performance of
this algorithm is similar to that of A/part and much worse that than of the full
algorithm. For replace, however, for most choices of the limit on the number

29

of SUT executions there is no statistically significant difference between A/both

and Afull. We may therefore conclude that there is, in general, no benefit in
omitting both conditional production weights and dynamic partitioning.

4.7.3. A Comment on Performance

The proposed advantage of the new algorithm (using a stochastic grammar
representation) compared to the one investigated in our earlier work (which
used a Bayesian network representation) is its applicability to a wider range
of SUTs rather than any difference in performance. Indeed we are unable to
make a robust comparison of performance between the two algorithms since
the older algorithm cannot be applied to three of the four SUTs used in this
empirical work. Even though the older algorithm can be applied to tcas, we
would be unable to perform the equivalent parameter tuning since this process
(section 4.5.2) considers the average performance across all four SUTs in order
to avoid overfitting to any single SUT.

Instead, we provide an informal comparison using results obtained in earlier
work (Poulding, 2013). In this earlier work the target was a minimum coverage
probability of 0.078. This target was obtained by the older (Bayesian network)
algorithm in a median of 13.5 × 106 executions of the SUT using algorithm
parameters tuned across four SUTs (which did not include tcas), and 8.37×106

executions when parameters were tuned specifically for tcas. Using the data
used to plot Figure 9, the new algorithm obtains the same target probability
in 10.5 × 106 executions (using algorithm parameters tuned across four SUTs,
one of which was tcas). For this SUT, the performance of the new algorithm
(using a stochastic grammar representation) is thus broadly equivalent to the
older algorithm (using a Bayesian network representation).

5. Related Work

The use of grammars to generate test inputs is an established practice known
as grammar-based testing. It is motivated by the need to generate test data for
SUTs for which the nature of valid inputs is highly constrained. For example,
grammar-based testing can be used to generate test inputs—source code—for
compilers and interpreters (McKeeman, 1998; Godefroid et al., 2008). Inputs
consisting of random sequences of characters would almost always raise errors
in the lexer or parser phases of a compiler and the code of subsequent compila-
tion phases would therefore remain untested. A grammar, however, ensures the
construction of syntactically correct source code, enabling the compiler func-
tionality to be fully tested.

In many cases, the grammar is deterministic and input data is generated by
bounded-exhaustive enumeration: all valid language strings are generated up
to a chosen size-related bound. However, a few techniques sampled inputs at
random from stochastic grammars. Applications of this probabilistic approach
include: testing of hardware arithmetic circuits in simulation (Maurer, 1990);
differential testing of compilers (McKeeman, 1998); and testing the bytecode

30

verifier in Java Virtual Machine implementations (Sirer and Bershad, 1999). In
all these examples, the grammar’s production weights were manipulated manu-
ally to achieve desirable properties in the randomly-sampled test inputs.

In this paper we have demonstrated the use of automated search—rather
than manual manipulation—to adjust the weights of a stochastic grammar for
this purpose; the desirable property in our case being a high value of the mini-
mum coverage probability.

In this respect, our approach is most similar to the recent work of Beyene
and Andrews (2012). Although the approach of Beyene and Andrews is not
framed explicitly in the context of statistical testing, it achieves similar ob-
jectives. Grammars for structured HTML and XML inputs are converted to
stochastic data generation programs, and the weights in the generation pro-
grams are optimised by metaheuristic search for high coverage of the SUTs.
Our proposed search algorithm differs from Beyene and Andrew’s technique in
two notable aspects. Firstly, we use a grammar representation that incorporates
two novel extensions: conditional production weights and dynamic partitioning.
Secondly, the adequacy criterion in Beyene and Andrew’s experiments was the
relatively simply one of statement coverage, and the objective was to improve
coverage: between 50% and 73% of the statements were covered using large test
sets of size 1000. Our empirical demonstration uses the much stronger adequacy
criteria of branch and condition coverage, and moreover requires coverage of all
the elements: the objective is to minimise the size of the test set that achieves
this full coverage.

6. Conclusion

In this paper we proposed a new grammar-based representation for input
profiles, and demonstrated that a search algorithm using this representation is
capable of efficiently deriving effective input profiles. For statistical testing—the
probabilistic structural testing technique used as an exemplar in this work—the
input profiles derived by search enable the use of much smaller test sets than
arbitrarily-chosen profiles, and thus can improve the cost-effectiveness of testing.
The grammar-based representation permits the algorithm to be applied to a
wide range of software, including software with structurally complex inputs. For
the example software used in the empirical work, the algorithm took only a few
minutes to derive suitable input profiles using computing resources equivalent
of a desktop PC, and thus the additional costs involved in applying the search
algorithm are relatively small.

The new representation supplements stochastic context-free grammars with
two novel features: conditional production weights and dynamic partitioning of
variables representing ordinal ranges. The empirical results provide evidence
that both of these features can facilitate the search process, although the use of
conditional production weights may not be beneficial for all SUTs.

The grammar-based representation and associated search algorithm provide
a generic mechanism for describing and optimising probability distributions over
the input domain of a SUT: they could be applied to problems other than

31

statistical testing for which the objective is to induce a desirable probability
distribution over the executed software. For example, the objective could be
to exercise particular parts of the software that have been neglected by earlier
testing; to focus on components that have a history of faulty behaviour; or to
explore non-functional properties such as execution time. As future work, we
are investigating the use of the algorithm for these types of testing objective,
and representations for input profiles that are more flexible than the context-free
grammars used in this work.

Acknowledgements

This research was funded by the MOD Centre for Defence Enterprise and
EPSRC grant EP/J017515/1, DAASE: Dynamic Adaptive Automated Software
Engineering. The authors would like to thank Paul O’Dowd of the University
of Bristol for providing the e-puck simulator code, and the reviewers whose
valuable feedback has improved this paper.

References

Arcuri, A., Fraser, G., 2011. On parameter tuning in search based software
engineering. In: Cohen, M. B., Ó Cinnéide, M. (Eds.), Search Based Software
Engineering. Vol. 6956 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 33–47.

Beyene, M., Andrews, J., 2012. Generating string test data for code coverage.
In: Proc. IEEE Int’l Conf.. on Software Testing, Verification and Validation
(ICST 2012). pp. 270–279.

Boland, P. J., Singh, H., Cukic, B., Jan 2003. Comparing partition and random
testing via majorization and Schur functions. IEEE Trans. Software Eng.
29 (1), 88–94.

Do, H., Elbaum, S., Rothermel, G., 2005. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering 10 (4), 405–435.

Duran, J., Ntafos, S., 1984. An evaluation of random testing. IEEE Trans. SE-
10 (4), 438–444.

Fraser, G., Arcuri, A., 2013. Handling test length bloat. Software Testing, Ver-
ification and Reliability 23 (7), 553–582.

Godefroid, P., Kiezun, A., Levin, M. Y., 2008. Grammar-based whitebox
fuzzing. In: Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI 2008). pp. 206–215.

Gouraud, S.-D., Denise, A., Gaudel, M.-C., Marre, B., 2001. A new way of
automating statistical testing methods. In: Proc. IEEE Int’l Conf. on Auto-
mated Software Eng. IEEE.

32

Humboldt-Universität zu Berlin, 2013. QRNG service. Available at: http://

qrng.physik.hu-berlin.de/download [Accessed 1 December 2013].

Marsaglia, G., 2003. Xorshift RNGs. Journal of Statistical Software 8 (14), 1–6.

Maurer, P., July 1990. Generating test data with enhanced context-free gram-
mars. IEEE Software 7 (4), 50 –55.

McKeeman, W. M., 1998. Differential testing for software. Digital Technical
Journal 10 (1), 100–107.

Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., Kowalski,
S. M., Jan 2004. Response surface methodology: A retrospective and litera-
ture survey. J. Quality Technology 36 (1), 53–77.

National Institute of Standards and Technology, Oct 2013. NIST/SEMATECH
e-Handbook of Statistical Methods - 5.3.3.6.1. Central Composite Designs
(CCD).
URL www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

Poulding, S., 2013. The use of automated search in deriving software testing
strategies. Ph.D. thesis, Dept. Computer Science, University of York.

Poulding, S., Clark, J. A., 2010. Efficient software verification: Statistical testing
using automated search. IEEE Trans. Software Eng. 36 (6), 763–777.

Poulding, S., Clark, J. A., Waeselynck, H., 2011. A principled evaluation of the
effect of directed mutation on search-based statistical testing. In: Proc. 4th
Intl. Workshop on Search-Based Software Testing (SBST 2011). pp. 184–193.

Richardson, D. J., Clarke, L. A., 1981. A partition analysis method to increase
program reliability. In: Proc. 5th Intl. Conf. Software Eng. (ICSE ’81). pp.
244–253.

Sirer, E. G., Bershad, B. N., Dec. 1999. Using production grammars in software
testing. SIGPLAN Not. 35 (1), 1–13.

Thévenod-Fosse, P., Waeselynck, H., 1991. An investigation of statistical soft-
ware testing. J. Software Testing, Verification and Reliability 1 (2), 5–26.

Thévenod-Fosse, P., Waeselynck, H., 1993. Statemate applied to statistical test-
ing. In: Proc. Int’l Symp. Software Testing and Analysis (ISSTA’93). pp.
99–109.

Thévenod-Fosse, P., Waeselynck, H., Crouzet, Y., 1995. Software statistical test-
ing. Tech. Rep. 95178, Laboratoire d’Analyse et d’Architecture des Systèmes
du CNRS (LAAS).

White, D. R., Poulding, S., 2009. A rigorous evaluation of crossover and muta-
tion in genetic programming. In: Proc. 12th European Conference on Genetic
Programming. EuroGP ’09. Springer-Verlag, pp. 220–231.

33

Simon Poulding

Simon is a postdoctoral researcher in the Department of Software Engineering at the Blekinge Institute

of Technology, Sweden. He participates in the collaborative project "Testing of Critical System

Characteristics" (TOCSYC) that is investigating the testing and verification of performance efficiency

and robustness properties of software systems. His research interests include metaheuristic

optimisation, search-based software engineering, software testing, general purpose computation on

GPUs, and the use of reliable empirical methods in computer science.

Rob Alexander

Dr Rob Alexander is a Lecturer in the High Integrity Systems Engineering (HISE) group in the

Department of Computer Science at the University of York. His main research focus is the safety

validation of autonomous robotics algorithms, with a particular emphasis on simulation and

automated testing. He is currently supervising research projects on mutation testing of multiagent

systems, justifying the dependability of safety decision support systems, and automated robot testing

using simulation and metaheuristic search.

John A Clark

John is Professor of Critical Systems in the Department of Computer Science at the University of York,

and a holder of a Royal Society Wolfson Research Merit Award. John’s research interests are cyber-

security, metaheuristic search techniques, non-standard computation, and artificial intelligence

applied to security and software engineering. John is a member of the "Dynamic Adaptive Automated

Software Engineering" (DAASE) project.

Mark J Hadley

Mark is a research student in the Department of Computer Science at the University of York. His thesis

topic is mutation testing, and he has published on the use of mutation testing in investigating the

effectiveness and optimality of test sets.

Biography

