
This is a repository copy of An advanced Lithium-ion battery optimal charging strategy 
based on a coupled thermoelectric model.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/132841/

Version: Accepted Version

Article:

Liu, K, Li, K, Yang, Z et al. (2 more authors) (2017) An advanced Lithium-ion battery 
optimal charging strategy based on a coupled thermoelectric model. Electrochimica Acta, 
225. pp. 330-344. ISSN 0013-4686 

https://doi.org/10.1016/j.electacta.2016.12.129

© 2016 Published by Elsevier Ltd. This manuscript version is made available under the 
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 / 31 

 

An advanced Lithium-ion battery optimal charging strategy based 

on a coupled thermoelectric model 

Kailong Liua, Kang Lia, Zhile Yanga, Cheng Zhanga, Jing Denga 

a SĐŚŽŽů ŽĨ EůĞĐƚƌŽŶŝĐƐ͕ EůĞĐƚƌŝĐĂů EŶŐŝŶĞĞƌŝŶŐ ĂŶĚ CŽŵƉƵƚĞƌ SĐŝĞŶĐĞ͕ QƵĞĞŶ͛Ɛ UŶŝǀĞƌƐŝƚǇ BĞůĨĂƐƚ͕ 
Belfast, BT9 5AH, United Kingdom (Email:{kliu02,k.li,zyang07,czhang07,j.deng}@qub.ac.uk).  

 

Abstract: Lithium-ion batteries are widely adopted as the power supplies for electric vehicles. A key but 

challenging issue is to achieve optimal battery charging, while taking into account of various constraints for safe, 

efficient and reliable operation. In this paper, a triple-objective function is first formulated for battery charging 

based on a coupled thermoelectric model. An advanced optimal charging strategy is then proposed to develop 

the optimal constant-current-constant-voltage (CCCV) charge current profile, which gives the best trade-off 

among three conflicting but important objectives for battery management. To be specific, a coupled 

thermoelectric battery model is first presented. Then, a specific triple-objective function consisting of three 

objectives, namely charging time, energy loss, and temperature rise (both the interior and surface), is proposed. 

Heuristic methods such as Teaching-learning-based-optimization (TLBO) and particle swarm optimization 

(PSO) are applied to optimize the triple-objective function, and their optimization performances are compared. 

The impacts of the weights for different terms in the objective function are then assessed. Experimental results 

show that the proposed optimal charging strategy is capable of offering desirable effective optimal charging 

current profiles and a proper trade-off among the conflicting objectives. Further, the proposed optimal charging 

strategy can be easily extended to other battery types. 

Keywords:  LiFePO4 battery, Battery energy conversion, Coupled thermoelectric model, Teaching-learning-

based-optimization 

 

1. Introduction 

To meet the unprecedented challenges on environmental protection and climate change, electric vehicles (EVs) 

and hybrid electric vehicles (HEVs) are developing rapidly in recent years [1]. Compared with conventional 

internal combustion engine (ICE) based vehicles, EVs are powered by batteries that may be charged from 

renewable power generated from the wind, solar or other forms of renewable sources [2]. Among all batteries 

types, Lithium-ion (Li-ion) batteries are preferable power supplies for EVs due to a number of favourable 

characteristics such as power density, less pollution, and long service life [3].  For Li-ion batteries, a proper 

battery charging strategy is essential in ensuring efficient and safe operations. 
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The charging strategy is a key issue in the battery management system (BMS) of EVs [4]. An optimal charging 

operation will protect batteries from damage, prolong the service life as well as improve the performance [5]. 

On the one hand, long charging time will inevitably affect the convenience of EV usage and limit its acceptance 

by customers [6]. However, too fast charging will lead to significant energy loss and battery performance 

degradation. It is therefore rational to consider the charging time as one of the key factors in designing the EVs 

charging control. Secondly, large energy loss implies low efficiency of energy conversion in battery charging, 

which needs to be addressed. Finally, both the battery surface and internal temperatures may exceed permissible 

level when it is charged with high current, and the overheating temperatures may intensify battery aging process 

and even cause explosion or fire in severe situations [7,8]. Thus, the battery charging time, energy loss, and 

temperature rises are important factors to be considered in designing the battery charging process. 

Conventional methods used for battery charging can be divided into constant current (CC) strategy, constant 

voltage (CV) strategy and Mas Law strategy [9,10]. The constant current strategy simply uses a small constant 

current to charge battery along the whole process to avoid the steep rise in both the battery voltage and 

temperature. However, it is difficult to achieve a proper current rate to balance the battery charging time and the 

desired capacity. Another simple charging strategy utilizes CV to avoid over-voltage. This strategy however 

requires a high current at the beginning of the charging process which can be quite harmful to the battery life. 

While the Mas Law strategy calculates the charge current based on the ‘Mas Three Laws’ principle [11,12] 

discovered by American scientist J. A. Mas in researching the maximum acceptable charge current. According 

to the Mas Three Laws, the charging receptivity is proportional to the square root of the discharging capacity 

and the logarithm of the discharging current. Further, the charging receptivity after several different discharging 

rates is equal to the total charging receptivity after each rate. It should be noted however that the Mas Law 

strategy is mainly used to develop pulse charging strategy for significantly improving the charging acceptance 

ability of lead-acid batteries rather than Li-ion batteries [13,14]. 

The constant-current-constant-voltage (CCCV) strategy, which integrates the CC strategy and CV strategy, has 

become the most popular strategy for Li-ion battery charging [15]. In this strategy, a CC is injected into battery 

first and the battery terminal voltage increases until the maximum safe threshold is reached. Then the battery 

starts to be charged at a CV until the battery capacity meets the target. Although the CCCV strategy is simple to 

apply, the open problem is to select an appropriate charging current at the CC stage. High current may cause 

large energy loss, and the temperature may exceed permissible levels especially in high power applications. On 
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the other hand, low charging current may prolong the battery charging time, affect the convenience of EV usage 

and limit its acceptance by customers. Therefore, it is vital to develop a better strategy based on CCCV to 

improve the overall charging performance and to guarantee the battery operation safety. 

Various approaches have been proposed to improve the battery charging performance in the literature. Methods 

involving computational intelligence techniques such as neural networks [16], gray prediction [17], fuzzy 

control [14,18], and ant-colony algorithm [19] have been proposed to optimize the charging current profile. 

Jiang et al. [14] propose a constant-polarization-based fuzzy-control charging strategy to adapt charging current 

acceptance with battery state of charge (SOC) stages. The charging time can be significantly shortened without 

obvious temperature rise compared to standard CCCV. Although these intelligent approaches are based on 

criteria such as fast charging and extended energy capacity, it is relatively expensive to tune the parameters in 

these algorithms. Further, none of the aforementioned charging approaches consider the energy loss during the 

battery charging process. 

Some other strategies consider the battery charging as an explicit optimization problem. Hu et al. [20] present a 

dual-objective optimal charging strategy for both lithium nickel-manganese-cobalt oxide (LiNMC) and lithium 

iron phosphate (LiFePO4) batteries to offer an optimal trade-off between the energy loss and the charging time. 

The effects of the battery maximum charging voltage, ambient charging temperature and battery health status 

are analyzed. Zhang et al. [21] use the dynamic programming (DP) method to solve the trade-off problem 

concerning the charging time and the energy loss. A database based optimization approach is also proposed to 

decrease the computation time during the optimization process. These two strategies have balanced the charging 

time and the charging efficiency, while the battery temperature during the charging process is not considered. It 

should be noted that the battery temperature is a key factor for battery charging as too high or low temperature 

would harm the battery. 

Abdollahi et al. [22] propose a closed-form optimal control solution to solve the optimal charging of a Li-ion 

battery. An objective function which considers the time-to-charge, energy losses and a temperature rise index is 

used to acquire the optimal CCCV solution. But some model parameters such as internal resistance are assumed 

to be constant in calculating the optimal charging current, this however will inevitably affect the efficacy of the 

method as variations of the battery internal resistance cannot be ignored due to its significant impact on the 

battery performance [23]. In addition, this strategy only considers the objective function for the CC stage in 

order to apply the variational method, and this inevitably affects the efficiency of the CV stage due to the fact 
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that the current profile at the CC stage is derived separately using a different objective function. As a result, the 

CCCV charging is unlikely optimal as a whole. It is therefore vital to optimize the whole CCCV process to 

achieve a desirable performance. 

In this paper, we propose to simultaneously consider the battery charging time, energy loss and battery 

temperature rise (both interior and surface) as three conflicting objectives, and a triple-objective function based 

on a battery coupled thermoelectric model is formulated. Our goal is to design a battery optimal charging 

strategy to determine an optimal CCCV profile with a satisfactory trade-off among the three conflicting 

objectives. This is however a challenging and difficult issue. Our earlier study [24] proposes the coupled 

thermoelectric battery model where the battery thermal behavior especially the battery internal temperature and 

electric behavior (SOC and voltage) are simultaneously considered. Besides, variable parameters such as the 

internal resistances can be calculated for different operation conditions. Based on our early developed 

thermoelectric model, this paper first proposes a multiple triple-objective function which is optimized under 

highly time varying and nonlinear conditions, subject to various battery constraints, such as the battery SOC, 

voltage, current and some other physical limits during the operation. Then, meta-heuristic methods, in particular 

a modified TLBO algorithm, are applied to solve the nonlinear, time varying complicated battery charging 

problem. The effects of different weight settings in the objective function, including charging time weight, 

energy loss weight and temperature rise weight on the battery charging results are also evaluated and analyzed. 

The remainder of this paper is organized as follows. The coupled thermoelectric model for a LiFePO4 battery 

and the corresponding battery parameters are proposed in Section 2. Section 3 presents the triple-objective 

function and the corresponding constraints for the battery charging process. Then the principles of TLBO and 

the detailed implementation procedure for battery optimal charging strategy (charge current optimization) are 

presented in Section 4. Section 5 gives the experiment results including the comparison of optimization methods 

and verification of the optimal strategy, where the impacts of various weights on the battery charging 

performance are also analyzed. Finally, Section 6 concludes the paper. 

2. LiFePO4 battery model and parameters 

In this section, the battery coupled thermoelectric battery model is presented firstly, followed by the illustration 

of corresponding parameters for the proposed coupled model.  
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2.1 LiFePO4 battery thermoelectric model 

2.1.1 Battery RC electric sub-model 

Various battery models have been proposed so far, including black-box models (e.g., stochastic fuzzy neural 

network model [16]), grey-box models (e.g., electrical circuit model [25]), and white-box models (e.g., battery 

electrochemical model [26]). The dynamics of the electrical states of Li-ion batteries can be precisely modeled 

using electrical battery models. These electrical models use resistances or a combination of a resistance and RC-

elements connected in series with a voltage source [24,27]. A second-order RC electric circuit model, shown in 

Fig.1, is adopted to represent the electric dynamics of the LiFePO4 battery in this study. 
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Fig.1. Battery RC electric circuit model. 

The second-order RC model is comprised of a battery open circuit voltage ܷை, a battery internal resistance ܴ, 

and two battery resistance-capacitance (ܴଵCଵ , ܴଶCଶ) networks connected in series. ܷை  is the battery ideal 

voltage source representing the open-circuit behavior of a battery. The internal resistance  ܴ  stands for the 

electrical resistance of different battery units with the loss and accumulation in the electrical double-layer, it 

mainly represents the resistive behavior of the electrolyte and contacts etc. The resistances ܴଵ ǡ ܴଶ  and 

capacitances ܥଵ ǡ  ଶ account for the battery diffusion resistances and diffusion capacitances respectively. It isܥ

generally believed that the first RC-element is related to the charge transfer processes occurring in the middle of 

the frequency range, while the second RC-element is responsible for reproducing the diffusion processes. 

Suppose the injected current ݅ remains constant during the same sampling time period, then the battery SOC 

level, the voltages of RC networks ଵܸ, ଶܸ , the battery terminal voltage ܸ can be calculated using  

۔ە                                                          
ۓ ሺ݇ሻܿݏ ൌ ሺ݇ܿݏ െ ͳሻ െ ݊ܥȀݏܶ כ ݅ሺ݇ െ ͳሻܸͳሺ݇ሻ ൌ ܽͳ כ ܸͳሺ݇ െ ͳሻ െ ܾͳ כ ݅ሺ݇ െ ͳሻܸʹሺ݇ሻ ൌ ܽʹ כ ܸʹሺ݇ െ ͳሻ െ ܾʹ כ ݅ሺ݇ െ ͳሻ  ܸሺ݇ሻ ൌ ܸͳሺ݇ሻ  ܸʹሺ݇ሻ  ݅ሺ݇ሻ כ ܴ   (1)                                                              ܸܥܱܷ
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where ܽ ൌ exp ሺെ ௌܶȀሺ ܴ כ ሻሻ,  ܾܥ ൌ ܴ כ ሺͳ െ ܽሻ, ݆ ൌ ͳǡʹǤ ܥ is the battery nominal capacity (unit: Ampere 

hour [Ah]), ௦ܶ is the sampling time period (unit: second [s]), and the value of ܷை  is a function of the battery 

SOC level.  

2.1.2 Battery lumped thermal sub-model 

It is assumed that the battery thermal sub-model mainly consists of two parts, namely the thermal transfer and 

thermal generation. The thermal conduction is supposed to be the only thermal transfer type within and outside 

the battery. The heat generation is uniformly distributed within the battery. The battery internal temperature and 

surface temperature are both supposed to be uniform, then a two-stage approximation of the radially distributed 

thermal model for the battery cells can be described as 

                                                      ቊܦଵ כ ሶܶ ൌ ݅ଶ כ ܴ  ݇ଵ כ ሺ ௦ܶ െ ܶሻ                      ܦଶ כ ሶܶ௦ ൌ ݇ଵ כ ሺ ܶ െ ௦ܶሻ  ݇ଶ כ ሺ ܶ െ ௦ܶሻ                                        (2) 

where ܦଵ and ܦଶ  are the battery internal and surface thermal capacity respectively.  ܶ  and ௦ܶ  represent the 

battery internal and surface temperature respectively. ሶܶ  and ሶܶ௦  represent ሶܶ ൌ ݀ ܶȀ݀ݐ , ሶܶ௦ ൌ ݀ ௦ܶȀ݀ݐ 

respectively. ܶ  denotes the battery ambient temperature.  ݇ଵ  and ݇ଶ  are the battery thermal conduction 

coefficients.  

Here, we adopt a simplified equation ܳ ൌ ݅ଶ כ ܴ to calculate the battery generated thermal power, where ܳ is 

the battery thermal dissipation. Let ሶܶ ሺ݇  ͳሻ ൌ ሺ௭ିଵೞ் ሻ כ ܶሺ݇ሻ ൌ ଵ்ೞ כ ሺܶሺ݇  ͳሻ െ ܶሺ݇ሻሻ, the two-stage thermal 

sub-model for the LiFePO4 battery can be finally described as 

                  

൜ ܶሺ݇  ͳሻ ൌ ሺͳ െ ௦ܶ כ ݇ଵȀܦଵሻ כ ܶሺ݇ሻ  ௦ܶ כ ݇ଵȀܦଵ כ ௦ܶሺ݇ሻ  ௦ܶȀܦଵ כ ݅ଶሺ݇ሻ כ ܴ                     ௦ܶሺ݇  ͳሻ ൌ ௦ܶ כ ݇ଵȀܦଶ כ ܶሺ݇ሻ  ሺͳ െ ௦ܶ כ ሺ݇ଵ  ݇ଶሻȀܦଶሻ כ ௦ܶሺ݇ሻ  ݇ଶ כ ௦ܶ כ ܶȀܦଶ                          (3) 

2.1.3 Battery coupled thermoelectric model 

Following the introduction of the battery RC electric sub-model and lumped thermal sub-model, a battery 

coupled thermoelectric model can be achieved by combining Eq.(1) and Eq.(3) shown as follows, 

                                               ൜ݔሺ݇  ͳሻ ൌ ܣ כ ሺ݇ሻݔ  ሺ݇ሻ                                        ܸሺ�ሻܤ ൌ ଵܸሺ݇ሻ  ଶܸሺ݇ሻ  ܴ כ ݅ሺ݇ሻ  ܷ௩                                                             (4) 

where 
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ሺ݇ሻݔ ൌ ሾܿݏሺ݇ሻǡ ଵܸሺ݇ሻǡ ଶܸሺ݇ሻǡ ܶሺ݇ሻǡ ௦ܶሺ݇ሻሿ் 

A ൌ ێێۏ
ͳۍێ Ͳ Ͳ Ͳ ͲͲ ܽଵ Ͳ Ͳ ͲͲ Ͳ ܽଶ Ͳ ͲͲ Ͳ Ͳ ͳ െ ௦ܶ כ ݇ଵȀܦଵ ௦ܶ כ ݇ଵȀܦଵͲ Ͳ Ͳ ௦ܶ כ ݇ଵȀܦଶ ͳ െ ௦ܶ כ ሺ݇ଵ  ݇ଶሻȀܦଶۑۑے

ېۑ
 

ሺ݇ሻܤ ൌ  ሾെ ௦ܶȀܥ כ ݅ሺ݇ሻǡ െܾଵ כ ݅ሺ݇ሻǡ െܾଶ כ ݅ሺ݇ሻǡ ܴ כ ௦ܶ כ ݅ଶሺ݇ሻȀܦଵǡ ݇ଶ כ ௦ܶ כ ܶȀܦଶሿ் 

This coupled thermoelectric model can simultaneously represent the interactions between the battery electric 

and thermal behaviors. With this model, the battery specific triple-objective function considering both the 

battery electrical and thermal behaviors especially the battery internal temperature can be formulated. Some 

parameters in this coupled model such as resistances can also be identified under different operation conditions 

(e.g. battery surface and internal temperatures, SOC level) to improve the optimization performance. 

2.2 LiFePO4 battery testing parameters 

In order to design the battery optimal charging strategy, the first key step is to identify the parameters of the 

battery coupled thermoelectric model. Under laboratory test conditions, a LiFePO4 battery cell which has a 

nominal operation voltage 3.2V and a nominal capacity 10Ah is used in this study. According to our 

experimental characterization and model identification at different SOC and temperature levels, we find that ݇ଵ , ଵܥ  ,  ݇ଶ ଶܥ , , ߬ଶ ൌ ܴଶ כ ଶܥ  in Eq.(4) can be assumed constant. Other variable parameters have following 

features: 1) Resistance ܴ depends primarily on the temperature and only varies slightly with SOC (normally EV 

batteries are only cycled in a limited range, where ܴ does not change much as the SOC varies). The internal 

temperature directly affects the battery performance. Therefore we consider  ܴ  is a function of the internal 

temperature; 2) Resistances ܴଵ ǡ ܴଶ, however, depend on both the internal temperature and SOC, especially at 

low SOC level, ܴଵ and ܴଶ increase noticeably; 3) The battery time constant of the ܴଵܥଵ network, ߬ଵ ൌ ܴͳ כ  ,ͳܥ

depends on the battery SOC level; 4) Battery open circuit voltage ܷை  depends on the battery SOC level. 

The same method used to identify the model parameters in our previous work [24] is applied here. The battery 

internal resistance ܴ is identified by a least square (LS) method under various internal temperature ܶ and the 

relationship between ܴ ൌ ோ݂ሺ ܶሻ  and different internal temperatures is shown in Table 1. The battery 

resistances ܴଵ and ܴଶ are calculated under different internal temperatures and different battery SOC levels. The 

relationship between battery resistances ܴଵ ǡ ܴଶ and different situations are shown in Tables 2 and 3 respectively. 

Table 4 illustrates the relationship between the time constant ߬ଵ ൌ ܴͳ כ  .ͳ and different battery SOC levelsܥ
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Table 1.  

Battery resistance R[ohm] under different battery internal temperature ܶ  ࢀ [oC] -10 0 10 23 32 39 52 ࡾ[ŵё] 0.0259 0.0180 0.0164 0.0152 0.0125 0.0124 0.0120 

 

Table 2.  

Battery resistance R1[ohm] under different battery internal temperature ܶ and SOC levels 

SOC 0 oC[ohm] 10 oC[ohm] 23 oC[ohm] 32 oC[ohm] 39 oC[ohm] 52 oC[ohm] 

0.9 0.0067 0.0047 0.0037 0.0030 0.0032 0.0035 

0.79 0.0093 0.0067 0.0046 0.0036 0.0033 0.0026 

0.69 0.0098 0.0078 0.0048 0.0040 0.0037 0.0031 

0.587 0.0134 0.0087 0.0057 0.0046 0.0041 0.0033 

0.485 0.0195 0.0123 0.0080 0.0048 0.0043 0.0034 

0.38 0.0271 0.0181 0.0123 0.0063 0.0057 0.0046 

0.28 0.0369 0.0242 0.0155 0.0090 0.0082 0.0068 

0.19 0.0369 0.0286 0.0196 0.0120 0.0111 0.0093 

0.09 0.0370 0.0287 0.0234 0.0162 0.0148 0.0123 

0.05 0.0371 0.0287 0.0300 0.0167 0.0161 0.0150 

 

Table 3.  

Battery resistance R2[ohm]under different battery internal temperature ܶ and SOC levels 

 

SOC 0 oC[ohm] 10 oC[ohm] 23 oC[ohm] 32 oC[ohm] 39 oC[ohm] 52 oC[ohm] 

0.9 0.0098 0.0057 0.0034 0.0043 0.0034 0.0016 

0.79 0.0070 0.0062 0.0030 0.0040 0.0040 0.0024 

0.69 0.0068 0.0044 0.0029 0.0043 0.0037 0.0020 

0.587 0.0083 0.0047 0.0029 0.0040 0.0032 0.0017 

0.485 0.0116 0.0070 0.0041 0.0035 0.0029 0.0018 

0.38 0.0117 0.0079 0.0053 0.0042 0.0041 0.0038 

0.28 0.0099 0.0065 0.0055 0.0065 0.0056 0.0040 

0.19 0.0412 0.0180 0.0058 0.0076 0.0066 0.0048 

0.09 0.0413 0.0181 0.0231 0.0077 0.0073 0.0066 

0.05 0.0415 0.0181 0.0232 0.0087 0.0121 0.0230 

 

Table 4.  

Battery ߬ଵ under different SOC levels ࣎ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 ۱۽܁  50 35 30 30 25 25 20 15 10 
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As for the battery OCV, the battery voltages after one-hour relaxation during the charging and discharging 

process under a certain SOC level are taken as the battery charging and discharging OCV respectively. Their 

average value is finally used as the battery OCV shown in Table 5.  

Table 5.  

Battery OCV[V] under different SOC levels 

SOC ࢂࡻࢁ [V](charge) ࢂࡻࢁ [V](discharge) ࢂࡻࢁ [V](average) 

0.9 3.3303 3.3503 3.3403 

0.79 3.3232 3.3401 3.3317 

0.69 3.2989 3.3171 3.308 

0.587 3.2922 3.3071 3.2996 

0.485 3.2896 3.3048 3.2972 

0.38 3.2759 3.2996 3.28775 

0.28 3.2481 3.2775 3.2628 

0.19 3.2170 3.2422 3.2296 

0.09 3.0647 3.2154 3.14005 

0.05 3.0234 3.2154 3.1194 

 

After identification at different situations, the unknown parameters ܴ ൌ ோ݂ሺ ܶሻ , ܴଵ ൌ ோ݂ሺ ܶ ǡ ሻܥܱܵ , ܴଶ ൌ
ோ݂ሺ ܶ ǡ ሻ, ߬ଵܥܱܵ ൌ ݂ఛభሺܱܵܥሻ and ܷை ൌ ݂௩ሺܱܵܥሻ in the model can be calculated by the linear interpolation 

method based on the data listed in Tables 1 to 5 respectively. The constant parameters for the battery coupled 

thermoelectric model can be identified by the LS method based on the measured battery data. Details about the 

data used for the identification and the corresponding identification process can be found in our previous work 

[24] and will not be given due to the space limitation. The identification results of the constant parameters are 

shown in Table 6.  

Table 6. 

Parameter identification results for electric-thermal model 

 

Parameter Value ࣎ 598 ࡰ 286.35 ࡰ 30.9  1.6423  0.3102 

 

3 Triple-objective optimal charging formulation  

In this section, we present a triple-objective function based on our battery coupled thermoelectric model. This 

triple-objective function consists of three terms, including the battery charging time, energy loss and both the 
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battery internal and surface temperature rises. Besides, some constraints are also considered during the battery 

charging process. 

3.1 Triple-objective function 

To formulate the battery charging as an optimization problem, some performance indicators need to be defined. 

The battery charging time is a key charging performance indicator and it is preferred to be as short as possible. 

Another key indicator is the battery energy loss (power consumption) during the charging process. Large energy 

loss results in low battery charging efficiency. The battery charging time and energy loss are however two 

conflicting objectives. In addition, the rise of both battery interior and surface temperatures during the charging 

process is also an important indicator that has to be considered in the charging process. It should be noted that 

the difference of the battery internal and surface temperatures can be quite significant during the charging 

process. Excessive temperature especially the internal temperature leads to remarkable damage to the battery 

performance and service life, and can even lead to severe safety problem [24]. Therefore, the battery charging 

time, energy loss and temperature rise (both the interior and surface) should be taken into account in the 

objective function for optimizing the charging process. 

With the battery coupled thermoelectric model introduced in Section 2.1, the cost functions relating to the 

battery charging time (CT) and energy loss (EL) can be calculated respectively as follows: 

்ܬ                                                                             ൌ ௦ܶ כ ݇௧                                                                                         (5) 

ாܬ                                                          ൌ ௦ܶ כ σ ሺ݅ଶሺ݇ሻ כ ܴሺ݇ሻ  భమሺሻோభሺሻ  మమሺሻோమሺሻሻୀ                                                 (6) 

where ܬ் and ܬா are the cost function for CT and EL respectively.  ௦ܶ is the sampling time period (in seconds) 

during the battery charging process and ݇௧ denotes the time when the battery capacity reaches its final target. 

௦ܶ כ ݇௧ therefore accounts for the battery charging time. The voltages of the two RC networks, ଵܸ, ଶܸ can be 

calculated based on Eq.(4) respectively. 

Considering the battery lumped thermal model Eq.(3), we can simply define the battery internal temperature rise 

index  ෨ܶሺ݇ሻ ൌ ܶሺ݇ሻ െ ܶ  and the battery surface temperature rise index ෨ܶ௦ሺ݇ሻ ൌ ௦ܶሺ݇ሻ െ ܶ 

accordingly. Substituting ෨ܶሺ݇ሻ and ෨ܶ௦ሺ݇ሻ into Eq.(3), the relationship for these two temperature rise indexes 

can be formulated as  
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۔ۖەۖ                 
ۓ ෨ܶሺ݇  ͳሻ ൌ ሺͳ െ ௦ܶ כ ݇ଵȀܦଵሻ כ ෨ܶሺ݇ሻ  ሺ ௦ܶ כ ݇ଵȀܦଵሻ כ ෨ܶ௦ሺ݇ሻ  ௦ܶ כ ܴሺ݇ሻ כ ݅ଶሺ݇ሻȀܦଵൌ ଵܣ כ ෨ܶሺ݇ሻ  ଵܤ כ ෨ܶ௦ሺ݇ሻ  ܥ כ ܴሺ݇ሻ כ ݅ଶሺ݇ሻ                               ෨ܶ௦ሺ݇  ͳሻ ൌ ሺ ௦ܶ כ ݇ଵȀܦଶሻ כ ෨ܶሺ݇ሻ  ሺͳ െ ௦ܶ כ ሺ݇ଵ  ݇ଶሻȀܦଶሻ כ ෨ܶ௦ሺ݇ሻ                               ൌ ଶܣ כ ෨ܶሺ݇ሻ  ଶܤ כ ෨ܶ௦ሺ݇ሻ                                                                              (7) 

Assuming ܶሺͲሻ ൌ ܶ  and  ௦ܶሺͲሻ ൌ ܶ , we have ෨ܶሺͲሻ=0, ෨ܶ௦ሺͲሻ=0. 

The cost function ்ܬோ for the battery internal temperature rise (்ܬோ) and surface temperature rise (்ܬ௦ோ) can be 

defined as  

ோ்ܬ                                       ൌ ோ்ܬ  ௦ோ்ܬ ൌ ௦ܶ כ ሺσ ෨ܶሺ݇ሻୀ  σ ෨ܶ௦ሺ݇ሻୀ ሻ                                              (8) 

The final objective function  ܬ  is a combination of these three cost functions ܬ் ாܬ ,  and ்ܬோ . In other 

words, 

      
ܬ ൌ ்ܬ  ாܬ  ோ                  ൌ்ܬ ௦ܶ כ ݇௧  ௦ܶ כ σ ቀ݅ଶሺ݇ሻ כ ܴሺ݇ሻ  భమሺሻோభሺሻ  మమሺሻோమሺሻቁୀ  ௦ܶ כ ሺσ ෨ܶሺ݇ሻୀ  σ ෨ܶ௦ሺ݇ሻୀ ሻ                      (9) 

where the sampling time period ௦ܶ for this battery charging process is 1 second. The variable parameters can be 

achieved by the linear interpolation [24,28] and all terms in this triple-objective function  ܬ  can be 

calculated based on the previously introduced battery coupled thermoelectric model.  

3.2 Constraints and CCCV optimization formulation 

The optimization goal of the battery charging process is to find the suitable charging current profile ݅ሺ݇ሻ to 

minimize this triple-objective function ܬ  during the battery charging process. Hard constraints such as 

voltage, current and battery SOC level limits need to be met during the optimal charging process. The target of 

the battery optimal charging strategy can be described as follows. 

Minimize the triple-objective function ܬ , subject to: 

۔ۖەۖ                                             
ሺ݇ሻܿݏۓ ൌ ሺ݇ܿݏ െ ͳሻ െ ௦ܶȀܥ כ ݅ሺ݇ െ ͳሻ                                  ଵܸሺ݇ሻ ൌ ܽଵ כ ଵܸሺ݇ െ ͳሻ െ ܾଵ כ ݅ሺ݇ െ ͳሻ                                    ଶܸሺ݇ሻ ൌ ܽଶ כ ଶܸሺ݇ െ ͳሻ െ ܾଶ כ ݅ሺ݇ െ ͳሻ                                   ෨ܶሺ݇  ͳሻ ൌ ଵܣ כ ෨ܶሺ݇ሻ  ଵܤ כ ෨ܶ௦ሺ݇ሻ  ܥ כ ܴሺ݇ሻ כ ݅ଶሺ݇ሻ෨ܶ௦ሺ݇  ͳሻ ൌ ଶܣ כ ෨ܶሺ݇ሻ  ଶܤ כ ෨ܶ௦ሺ݇ሻ                                                         (10) 

                                            ܸሺ݇ሻ ൌ ଵܸሺ݇ሻ  ଶܸሺ݇ሻ  ݅ሺ݇ሻ כ ܴሺ݇ሻ  ܷை                                              (11) 

                                                        ቊܿݏሺͲሻ ൌ ൯ݐ൫ܿݏ            ݏ ൌ ௧ ෨ܶሺͲሻݏ ൌ Ͳ           ෨ܶ௦ሺͲሻ ൌ Ͳ                                                         (12) 
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                                                               ൜ ݅  ݅ሺ݇ሻ  ݅௫ܸ  Vሺ݇ሻ  ܸ௫                                                                  (13) 

where the ݏ and ݏ௧  are the initial SOC state and final SOC state during battery charging process respectively. 

The ݅ and ݅௫ stand for the lower and upper bound limits of charge current ݅ሺ݇ሻ, and ܸሺ݇ሻ is the battery 

terminal voltage. The ܸ and ܸ௫ stand for the minimum and maximum bounds of  ܸሺ݇ሻ. In addition, the ݏ 

and ݏ௧ should be defined between 0 and 1 to represent the corresponding SOC level, whereas during the whole 

charging process, the voltage should not exceed the upper terminal voltage bound ܸ௫. Generally speaking, 

ܸ௫ is usually larger than the battery ܷை at the SOC target, and it is less than the upper limit of the battery 

voltage to avoid overcharging. 

In order to solve this optimal charging problem, we divide the battery charging process into two stages: a CC 

charging stage and a CV charging stage. During the CC stage, the terminal battery voltage begins to increase 

until it reaches the upper terminal voltage bound ܸ௫. After this, the battery begins to be charged at the CV 

stage until the battery capacity meets the required SOC target. It is also assumed that the battery terminal 

voltage ܸሺ݇ሻ rises up to the maximum bound ܸ௫ at time ݇ and then the charging process is switched into the 

CV stage. During the CV stage, the battery is charged at a constant voltage. The battery voltage is often 

maintained by power electronics in the charger while the current gradually decreases, and the dynamics of the 

CV stage charging current  ݅ሺ݇ሻ is formulated as follows, 

                                                 ݅ሺ݇ሻ ൌ ሺ ܸ௫ െ ଵܸሺ݇ሻ െ ଶܸሺ݇ሻ െ ܷைሻȀܴሺ݇ሻ                                            (14) 

At the CV stage, until the battery reaches the final charging state ݏ௧ for ݇ ൌ ݇ ǡ ݇  ͳǡ ǥ ݇௧, the battery 

terminal voltage is fixed at the constant value ܸ௫  and other elements including ଵܸሺ݇ሻǡ ଶܸሺ݇ሻǡ ܷை ǡ ܴሺ݇ሻ are 

also calculated using the coupled thermoelectric model. The charge current profiles  ݅ሺ݇ሻ in this stage are 

calculated by Eq.(14). Then the objective function ܬ̴ in the CV stage is calculated based on the charge 

current profiles ݅ሺ݇ሻ. 

As stated above, the goal of the battery optimal charging strategy can be defined as a new equivalent 

optimization problem described as follows, 

Minimize ܬ ൌ ̴ܬ   ̴ܬ

̴ܬ                   ൌ ௧ݓ כ ௦ܶ כ ݇  ாݓ כ ௦ܶ כ σ ா݂ሺ݇ሻିଵୀ  ்ݓ כ ௦ܶ כ σ ்݂ ோሺ݇ሻିଵୀ                          (15) 
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̴ೇܬ                   ൌ ௧ݓ כ ௦ܶ כ ሺ݇௧ െ ݇ሻ  ாݓ כ ௦ܶ כ σ ா݂ሺ݇ሻୀ   ்ݓ  כ ௦ܶ כ σ ்݂ ோሺ݇ሻୀ           (16)       

Subject to: 

                                                        ቊܿݏሺͲሻ ൌ ൯ݐ൫ܿݏ            ݏ ൌ ௧ ෨ܶሺͲሻݏ ൌ Ͳ           ෨ܶ௦ሺͲሻ ൌ Ͳ                                                      (17) 

                                                               ൜ ݅  ݅ሺ݇ሻ  ݅௫ܸ  ܸሺ݇ሻ  ܸ௫                                                               (18) 

where ா݂ሺ݇ሻ= ݅ଶሺ݇ሻ כ ܴሺ݇ሻ  ଵܸଶሺ݇ሻȀܴଵሺ݇ሻ  ଶܸଶሺ݇ሻȀܴଶሺ݇ሻ, ்݂ ோሺ݇ሻ= ݓ כ ෨ܶሺ݇ሻ  ௦ݓ כ ෨ܶ௦ሺ݇ሻ; ݇  is the 

time for battery terminal voltage ܸሺ݇ሻ first reaches the constant voltage ܸ௫ . ݇௧ is the time for the battery 

reaches its final charge state. ݓ௧ is the battery charging time weight, ݓா  is the battery energy loss weight, ்ݓ  is 

the battery temperature rise weight, ݓ  and ݓ௦ stand for the two battery temperature weights (one for interior 

temperature and the other for the surface temperature) respectively. 

This optimization problem aims to find a proper charge current profile  ݅ሺ݇ሻ at the CC stage which can 

minimize the ܬ for total battery charging process. It should be noticed that once  ݅ሺ݇ሻ is determined by 

an optimization algorithm, the values of ݇ and ݇௧ are determined accordingly. Then parameters including the 

resistances  ܴሺ݇ሻǡ ܴଵሺ݇ሻǡ ܴଶሺ݇ሻ , voltage ଵܸሺ݇ሻǡ ଶܸሺ݇ሻ  and temperature rises ෨ܶሺ݇ሻǡ ෨ܶ௦ሺ݇ሻ  which are used in 

calculating the objective functions ܬ̴  and ܬ̴  can also be obtained using the battery coupled 

thermoelectric model. In other words, the charging current at the CC stage determines the battery charging time, 

energy loss and temperature rise (both the battery interior and surface) and further determines the value of the 

battery triple-objective function ܬ . The charging current profile  ݅ ሺ݇ሻ thus plays an important role in the 

whole battery charging process and is chosen as our decision variables in minimizing the triple-objective 

function ܬ . 

In summary, the fitness functions ܬ̴ in CC stage and ܬ̴ in CV stage are both considered for the 

battery optimal charging problem. 

4. Optimal charging strategy  

In order to solve the battery optimal charging problem formulated in Section 3, the heuristic method, namely the 

TLBO, and its variants are introduced in this section, then the detailed procedure for implementing the heuristic 

methods to find the battery optimal charging profile is presented. 
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4.1 Teaching-learning based optimization and its variants 

Some parameters in the battery coupled thermoelectric model vary along the charging process, e.g. the battery 

OCV varies with the SOC level, and battery resistances ܴ, ܴଵ, ܴଶ also vary with the battery temperature and 

SOC level. The triple-objective function for the battery charging process has to be optimized under time varying 

and nonlinear conditions. This presents a significant challenge for traditional analytical optimization techniques 

such as the variational method to solve the complicated optimization problem. It calls for new tools to optimize 

these variables effectively. Meta-heuristic methods are generally flexible in solving non-convex non-linear 

problems and naturally immune to the irregular problem formulations and constraints. Among many heuristic 

methods developed so far, teaching-learning-based optimization (TLBO) is a latest powerful method free of 

specific parameter tunings proposed by Rao et al. [29] and has been applied in solving a number of single or 

multiple objectives industrial optimization problems [30,31]. The original TLBO and some efficient variants 

such as modified Teaching-learning based optimization (MTLBO) [32] and self-learning Teaching-learning 

based optimization (SL-TLBO) [ 33 ] are employed in this paper to solve the nonlinear, time-varying, 

complicated battery optimal charging problem. 

TLBO is a population-based method which mimics the nature of the teaching and learning processes in a class. 

The optimization process includes two phases namely the teaching phase and the learning phase. In the teaching 

phase, a teacher is elected first in each learning generation and the students learn knowledge from this teacher.  

A learning phase is designed for students to learn from mutual interactions with counterparts to gain potential 

useful information. It is convenient and simple to adopt this optimization algorithm for battery optimal charging 

strategy since there are no algorithm specific parameters that need to be adjusted by user for the algorithm 

implementation. The general framework of TLBO for the value optimization is shown in Fig. 2 [34]. 

In this paper, instead of using analytic optimization methods, TLBO is adopted to search for the best charge 

current ݅ሺ݇ሻ in the constant-current (CC) process through its two phases, aiming to minimize the triple-objective 

function ܬ  described in Section 3 and to obtain the suitable charge current profile for battery optimal 

charging.  

Besides, some latest variants of TLBO including MTLBO and SL-TLBO, both of which are specialized in 

solution space exploitations, are also employed to make a comparison. The best performed algorithm will then 

be adopted to solve the battery charging optimization problem accordingly.   
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Fig. 2. General framework of TLBO for the value optimization 

4.2 Implementation of heuristic methods for battery optimal charging problem 

Fig. 3 illustrates the flowchart of implementation of the heuristic methods for the battery charging optimization 

problem. The main procedures are presented in details as follow. 
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Fig. 3. Flowchart of implementing the heuristic methods for battery optimal charging strategy 

Step 1: Set the charging time weight ݓ௧ , energy loss weight ݓா , temperature rise weight ்ݓ , internal and shell 

temperature weights ݓ  and ݓ௦ in the battery triple-objective function ܬ. 

Step 2: Set the battery charging initial SOC level ݏ  and target SOC level ݏ  respectively. Set the hard 

constraints for battery charging process: ݅ and ݅௫  for charge current limits;  ܸ  and ܸ௫  for terminal 

voltage limits;  ܶ  for battery ambient temperature. 

Step 3: Set the population sizes ܰ, numbers of generations ܩ and the corresponding tuning parameters for the 

population-based heuristic methods (PSO, CFPSO,WPSO and SL-TLBO). Initialize the particles for heuristic 

methods. 

Step 4: For ݇ ൌ ͳ to ݇௫ do 
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1) At the CC stage, calculate the objective fitness ܬ̴ in each generation using Eq.(15) until the 

terminal voltage reaches the maximum threshold ܸ௫ , then the battery charging process will enter to 

the CV stage. 

2) At the CV stage, determine the charge current profile using Eq.(14) in each generation and then 

calculate the objective fitness  ܬ̴ using Eq.(16) until the battery SOC level reaches its final 

state ݏ . 

3) Evaluate the final triple-objective function ܬ  according to the sub-objective fitness ܬ̴ and ܬ̴. Check whether the maximum number of iterations is achieved, and the loop is terminated 

once the condition is met. 

4) Update the charge current in CC stage using the corresponding heuristic methods. When the terminal 

voltage reaches ܸ௫ , terminate the CC stage; When the battery SOC level reaches ݏ  which means 

the battery has been charged to the targeted capacity, terminate the CV stage. When the termination 

criteria have been satisfied, terminate the whole optimization process. 

      where ݇௫ is the maximum number of iterations. 

According to the above procedure, the optimal CCCV charge current profile can be obtained. This resultant 

current profile can charge the battery SOC level from initial ݏ to final ݏ  with the minimal cost of triple-

objective function ܬ . It balances the conflicts among the key indicators for the battery charging process. 

The numerical results achieved by the method are presented and analyzed in Section 5. 

5 Results and discussion 

In this study, comprehensive tests are first conducted based on the coupled battery thermoelectric model and the 

proposed battery optimal charging strategy presented in Section 4. The performance of the optimal charge 

current profile for the battery cell charging process is then analyzed. For the parameter settings, the sampling 

time period ௦ܶ is set to 1s. The maximum number of iterations ݇௫ is 3000. In practice, the battery charging of 

the EVs/HEVs normally will start  before the battery is fully discharged (SOC=0), as fully discharging will not 

only damage the life cycle of the battery, but also cause significant inconvenience to the users. On the other 

hand, in many applications, charging to 100% capacity is unnecessary due to the length of the charging time and 

travel necessity. Therefore, in this paper, the battery initial SOC level and the target level are selected as ݏ ൌ
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ͲǤͳ and ݏ= 0.9 respectively. The following hard constraints for battery charge current and terminal voltage 

are used: ݅ ൌ െ͵Ͳܣ, ݅௫ ൌ Ͳܣ, ܸ ൌ ʹǤܸ , ܸ௫ ൌ ͵Ǥͷܸ . The ambient temperature during charging 

process is fixed as ܶ ൌ ʹͻԨ. Three cases of tests are conducted, including (i) comparison study of various 

optimization methods; (ii) verification of the developed optimal charging strategy; (iii) study on the effects of 

various weights in the objective function.   

5.1 Comparison study of various optimization methods 

To choose an effective optimization algorithm, several population-based heuristic methods, including the basic 

TLBO, TLBO variants such as the SL-TLBO and MTLBO, as well as particle swarm optimization (PSO) and 

some PSO variants including WPSO, CFPSO [35] are compared in this case study. Moreover, the influence of 

the population sizes and the number of generations on the algorithm performance is investigated, including four 

population sizes 10, 20, 30 and 50, and the number of generations ܩ varying from 20 to 60. 

Table 7.   

Comparisons of TLBO(SL-TLBO,MTLBO) and PSO(WPSO,CFPSO) for different ܩ(number of generations) and ܰ(number of 

population) in terms of ܬ (triple-objective function) ࢋࢍ࢘ࢇࢎࢉࡶ ࡳ  ࡺ(TLBO) ࢋࢍ࢘ࢇࢎࢉࡶ (SL-TLBO) ࢋࢍ࢘ࢇࢎࢉࡶ (MTLBO) ࢋࢍ࢘ࢇࢎࢉࡶ (PSO) ࢋࢍ࢘ࢇࢎࢉࡶ (WPSO) ࢋࢍ࢘ࢇࢎࢉࡶ (CFPSO) 

10 20 42623.328 42624.354 42622.158 42642.188 42637.737 42655.958 

10 40 42623.328 42622.857 42622.009 42638.142 42631.306 42628.102 

10 50 42622.536 42622.857 42622.009 42628.672 42624.626 42628.101 

10 60 42622.280 42622.857 42622.009 42625.293 42623.388 42624.540 

20 20 42626.515 42624.601 42622.011 42640.747 42629.518 42647.280 

20 30 42622.088 42622.071 42622.009 42640.747 42629.518 42632.974 

20 50 42622.088 42622.028 42622.008 42633.518 42624.699 42631.408 

30 20 42622.850 42622.703 42622.132 42629.359 42631.993 42625.079 

30 30 42622.286 42622.454 42622.010 42629.359 42627.397 42625.079 

50 10 42623.252 42623.521 42622.236 42632.387 42629.895 42637.988 

50 20 42622.742 42622.363 42622.020 42630.297 42627.508 42629.182 

 

The comparative results of these algorithms for optimizing the battery charging objective function ܬ  are 

listed in Table 7, where the average fitness values of 10 independent runs on  ܬ  by each optimization 

method are presented. The weights ݓ௧ ாݓ , ்ݓ , ݓ ,  and ݓ௦ in objective function ܬ  were all set to 1 in this 

experiment. The self-learning weighting factor of SL-TLBO was set to 3. The cognitive and social factors of 

both PSO and its variants were set to 2, and the constriction factor of CFPSO was set to 0.729. The weight ݓ in 
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WPSO was chosen as the function defined as ݓ ൌ ͲǤͻ െ ͲǤͷ כ ሺܩȀܩሻ , where ܩ  and ܩ  are the current 

generation index and the number of generations respectively.  

It is clear from Table 7 that the basic TLBO and its variants SL-TLBO, MTLBO with different numbers of 

population produced better results of ܬ than the PSO and its variants WPSO, CFPSO. For the basic TLBO 

and its variants, different population sizes ܰ and numbers of generations ܩ would produce different optimal 

results for  ܬ. The results of MTLBO under the same ܰ, ܩ are better than TLBO and SL-TLBO, which 

means that MTLBO is less sensitive to the parameter settings and is more robust. The strategy produced by the 

MTLBO with the population size ܰ  = 20 and the number of generations  ܩ  = 50 gives the best result  ܬ ൌ ͶʹʹʹǤͲͲͺ , it can even achieve adequate good results when the population size is small.  

 

Fig. 4. Convergence characteristics of algorithms for battery triple-objective function optimization. 
 

Fig. 4 illustrates the convergence rates of different algorithms. The curves are the battery triple-objective 

function  ܬ  values against the number of generations  ܩ. The population size ܰ and generations number  ܩ are set to 20 and 50 respectively. The  ܬ  values in the graph are the averages of 10 independent runs. 

According to Fig. 4, the convergence speeds of the basic TLBO and its variants are faster than the PSO and its 

variants. Among the TLBO algorithms, MTLBO converges faster and produce better optimal results of the 

objective function. Accordingly, we choose MTLBO as the optimization algorithm for optimizing the battery 

charging objective function. ܰ and  ܩ are set to 20 and 50 respectively in this paper in following experiments. 
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5.2 Verification of the proposed optimization strategy 

We firstly divide the values of triple-objective function ܬ  into battery charging time ( ܬ் ), battery energy 

loss (ܬா) and battery temperature rise (்ܬோ ൌ ோ்ܬ   ௦ோ ) shown in Table 8. The values are calculated based்ܬ

on different selections of ܰ and ܩ to investigate the result of each sub-cost function when the weights ݓ௧ ாݓ , ்ݓ ,  ், nearly up to sixteen-fold and twenty-fold respectively. To ensure that the sub-costܬ ோ are much larger than்ܬ ா andܬ   are all set to 1.  It can be observed from Table 8 that in this test, values ofܬ  ௦ inݓ  andݓ ,

functions are fairly optimized, the following weights ݓ௧ ൌ ͳ, ݓா ൌ ͲǤͳ, ்ݓ ൌ ͲǤͳ, ݓ ൌ ͲǤͷ, ݓ௦ ൌ ͲǤͷ are 

used respectively, while the detailed impact of weight combinations will be addressed in sub-section 5.3. 

Table 8.   

Values of sub-cost function under different algorithm settings ࡾࢎ࢙ࢀࡶ ࡾࢀࡶ ࡾࢀࡶ ࡸࡱࡶ ࢀࡶ ࡳ  ࡺ 

20 50 1170 16572.282 24879.726 13950.948 10928.778 

10 60 1170 16572.464 24879.545 13950.776 10928.769 

30 30 1170 16572.376 24879.634 13950.815 10928.819 

 

After setting the appropriate weights for battery charging objective function ܬ , five different charging 

current profiles including the optimal current profile are compared to verify the performance of the charging 

current profile optimized by our strategy. These charging current profiles include the charging current trajectory 

during the CC stage until the battery terminal voltage reaches ܸ௫  and the charging current trajectory at the CV 

stage until the battery SOC reaches ݏ௧ . The optimal current profile is calculated based on our MTLBO 

algorithm, while other current profiles are calculated based on our coupled thermoelectric model with the 

charging current profile  ݅ ሺ݇ሻ being chosen randomly. Fig. 5 illustrates the results of the battery terminal 

voltage and the battery temperature (both the interior and surface) on these five different current profiles during 

the charging process to bring battery SOC from 0.1 to 0.9. It can be observed that larger current in the CC stage 

shortens the battery charging time and the battery terminal voltage reaches the ܸ௫  (here is 3.65V) in a shorter 

time. However, both the battery internal temperature and surface temperature rise up to a higher level rapidly 

when larger charging currents are applied during the charging process. 
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(a)                                                                               (b) 

 

(c)                                                                                   (d) 

Fig. 5. Different battery charging profiles (including the optimal profile): a) charge current profiles b) terminal voltage 
profiles c) internal temperature profiles d) surface temperature profiles 

 
The triple-objective function ܬ  and its sub-cost functions including charging time, energy loss and 

temperature rise with corresponding weights for these five current profiles are shown in Fig. 6. It shows that the 

current profile 3 (optimal current) has the lowest value 4049.157 for ܬ  compared with other current 

profiles. The triple-objective function ܬ  based on these five current profiles are divided into three parts of 

sub-cost functions with corresponding weights and are listed in Table 9. It reveals that, apart from the optimal 

current profile, either reducing or adding the current in the battery charging CC stage lead to an increase of the 

triple-objective function ܬ. For current profiles 1-2, smaller currents in the CC stage reduce the value of ܬா  during the battery charging process, but incur larger ܬ்  and ்ܬோ , and further increase the cost function ܬ  accordingly. For current profiles 4-5 with larger currents in the CC stage, ܬ் is decreased during the 

battery charging process but ܬா and ்ܬோ are increased significantly, further causing the rise of the overall cost 

function ܬ  accordingly. 
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Fig. 6. Triple-objective function and its sub-cost functions with weight for different battery charge current profiles 

Table 9.   

Values of sub-cost function ܬ், ܬா, ்ܬோ with weights and ܬ under some different charge current profiles 

Current profile No. ݐݓ כ ܧݓ ࢀࡶ כ ܶݓ ࡸࡱࡶ כ  ࡵ  ࢋࢍ࢘ࢇࢎࢉࡶ ࡾࢀࡶ

1 1311 1672.701 1337.885 4321.586 -22 

2 1201 1649.755 1252.199 4102.954 -24 

3 1105 1701.569 1242.588 4049.157 -26.088 

4 1068 1741.387 1247.621 4057.008 -27 

5 995 1839.738 1261.570 4096.308 -29 

 

5.3 Effects of triple-objective function weights 

The weights in the battery triple-objective cost function ܬ are crucial for the design of the battery charging 

strategy. In this subsection, tests are conducted to investigate the effects of these weights on the performance of 

the charging process. 

Tests with different weights for the charging time 

The results of tests using different battery charging time weights value ݓ௧  ranging from 0.2 to 2.2 are shown in 

Fig.7. These results include the optimal charging current profiles and the corresponding variables (battery 

terminal voltage, internal temperature and shell temperature). The other weights in the triple-objective function 

are set constant with ݓா ൌ ͲǤͳ ்ݓ , ൌ ͲǤͳ ݓ , ൌ ͲǤ ௦ݓ , ൌ ͲǤ͵  (The battery internal temperature directly 

affects the battery performance so we empirically set ݓ  slightly larger than ݓ௦).  It can be clearly seen that as ݓ௧  increases from 0.2 to 2.2, the total charging time which brings SOC from 0.1 to final state 0.9 becomes 

shorter due to the larger charge current profile. The optimal current in the CC stage is 29.969A when ݓ௧ ൌ ʹǤʹ 

compared with the value 24.636A when ݓ௧ ൌ ͲǤʹ. In other words, a large ݓ௧  means more emphasis on the 
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battery charging time and less emphasis on the battery energy loss as well as battery temperature rise during the 

charging process, and vice versa. Besides, the battery terminal voltage goes up to the threshold ܸ௫  more 

quickly and the battery temperature (both the interior and surface) increases higher and faster as larger ݓ௧  is 

adopted.  

It is also shown that when ݓ௧  exceeds 2.2, the optimal charge current in the CC stage is almost identical, and 

further increasing will not make noticeable difference to the battery charging current profiles. ݓ௧ ൌ ʹǤʹ is 

therefore taken as the upper limit case as the optimal charge current in the CC stage practically reaches its 

maximum threshold. 

 

(a)                                                                                (b) 

 

                                        (c)                                                                                    (d) 

Fig. 7.Effect of different charging time weights ݓ௧ (ݓா ൌ ͲǤͳ, ்ݓ ൌ ͲǤͳ, ݓ ൌ ͲǤ, ݓ௦ ൌ ͲǤ͵) 

Tests with different battery energy loss weights 

Fig. 8 illustrates the effects of varying the weight for the battery energy loss in the triple-objective function on 

the battery charging performance. Here the weights for the battery charging time, battery temperature rise, 

battery internal and surface temperatures are fixed at ݓ௧ ൌ ͲǤͳ, ்ݓ ൌ ͲǤͳ, ݓ ൌ ͲǤ and ݓ௦ ൌ ͲǤ͵ respectively, 
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only the battery energy loss weight ݓா  varies. The primary role for weight ݓா  is to suitably emphasize the 

battery energy loss during the battery optimal charging process. As ݓா  is changed from 0.05 to 1.6, it can be 

observed that the optimal charge current in the CC stage gradually decreases from 29.440A (ݓா ൌ ͲǤͲͷ) to 

23.921A (ݓா ൌ ͳǤ) to prolong the total battery charging time. Large ݓா  implies more emphasis on the battery 

energy loss and less emphasis on the battery charging time as well as battery temperature rise, which results in 

low charging current. It would further generate less energy loss to improve the charging efficiency, cause less 

rise on both battery interior temperature and surface temperature during the battery charging process. It is also 

shown that the battery charging current profiles will not change noticeably when ݓா  is outside the range of [0.05 

1.6], therefore these boundary values are chosen as the lower and upper limits cases for ݓா  during this battery 

optimal charging process. 

 

(a)                                                                                (b) 

 

 

                                           (c)                                                                                 (d) 

Fig. 8. Effect of different energy loss weights ݓா  (�௧ ൌ ͲǤͳ,  ்ݓ ൌ ͲǤͳ, ݓ ൌ ͲǤ, ݓ௦ ൌ ͲǤ͵) 

Tests with different battery temperature rise weight 
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Another test is conducted to investigate the effect of battery temperature rise weights ்ݓ  on the battery optimal 

charging performance, and the results are shown in Fig. 9. Here the battery charging time weight, battery energy 

loss weight and battery temperature weights were fixed to ݓ௧ ൌ ͲǤͳ ாݓ , ൌ ͲǤͳ ݓ , ൌ ͲǤ  and ݓ௦ ൌ ͲǤ͵ 

respectively. Six different battery temperature rise weights ்ݓ  (0.01, 0.05, 0.10, 0.50, 1.00, 5.00) were chosen in 

this test. When ்ݓ  increases from 0.01 to 5.00 gradually, the optimized charging current in the CC stage 

increases. Even though the battery internal temperature and surface temperature increase more rapidly under the 

increasing current with a larger ்ݓ , the total charging time ܬ் will be shortened and hence the sub-cost function ்ܬோ will decrease accordingly. It can be observed from Fig. 9 that a lower value of ்ݓ  can cause slower battery 

temperature rise but longer charging time, hence leading to a larger ்ܬோ, and vice versa. A high weight ்ݓ  

means more emphasis on the battery temperature rise, which results in high level of charging currents in the CC 

stage, thus reducing the battery charging time and achieve low value for battery temperature rising ்ܬோ through 

the whole battery charging process. 

 

  

 

(a)                                                                                (b) 

 

 

                                          (c)                                                                                  (d) 

Fig. 9. Effect of different temperature rise weights ்ݓ (�௧ ൌ ͲǤͳ,  ݓா ൌ ͲǤͳ, ݓ ൌ ͲǤ, ݓ௦ ൌ ͲǤ͵) 
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The effects of varying temperature weight ்ݓ  on the value of each cost term in the triple-objective function are 

shown in Fig. 10. It is clear that there exists a range where the change of ்ݓ  has more significantly effects on 

the cost terms, and while outside the range, further increase of ்ݓ  has little impact on these cost terms. In detail, 

it is evident that for the charging time and temperature rise (both ܶ rise and ௦ܶ rise), the optimal value of the 

objective function decreases dramatically as ்ݓ  is increased from 0 to 1. However, as ்ݓ  is increased from 1 to 

5, the optimal values do not change significantly. On the other hand, the energy loss is adversely affected by ்ݓ , 

it increases sharply as ்ݓ  decreases, and then the increase of the energy loss slows down as ்ݓ  is increased 

beyond 1. Further increasing ்ݓ  above 5 will not make noticeable difference for the battery charging profiles 

and the cost terms are almost constant, which implies that 5 is the maximum threshold for ்ݓ . 

 

 

 

 

 

 

Fig. 10. Charging time ܬ், energy loss  ܬா, temperature rise  ்ܬோ, ்ܬ௦ோfor different values of ்ݓ (�௧ ൌ ͲǤͳ,  ݓா ൌ ͲǤͳ, ݓ ൌ ͲǤ, ݓ௦ ൌ ͲǤ͵) 

As a result, different weights in the triple-objective function ܬ  will lead to different battery optimal 

charging profiles. The battery charging time and energy loss are two conflicting goals. By adjusting the weights 
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for the sub-cost function terms, the charging current profiles with different emphasises on either the battery 

charging time, energy loss or temperature rise (both interior and surface) can be identified separately. 

Generally speaking, in practice, EVs are mainly charged either at a charging station or at home. Charging EVs at 

a charging station is analogous to gasoline refueling for conventional vehicles. The customer requirement is 

often to charge the EVs within a short period that is comparable to the time needed for gasoline refueling of 

conventional vehicles. The priority is to use a relatively large charging current profile to achieve fast charging, 

thus a large ݓ௧  in the triple-objective function is required. On the other hand, for home charging, EV owners 

often charge EVs at night or during the off-peak periods, in favour of reduced costs and utilization of renewable 

energy, and the charging time is usually long (e.g., 6-8h) with low charging current. In this case, the priority in 

home charging could be the low energy loss which can be achieved by applying a large ݓா  in the triple-

objective function. Besides, the battery temperature increases noticeably in high power high current applications. 

The difference between battery surface and internal temperature would be significant (e.g., sometimes greater 

than 10oC). When the battery temperature exceeds the reliable operating range, battery performance will be 

severely damaged and even lead to battery failures and safety problems. So the temperature rise is one of the 

priorities in high power applications, and to low the temperature rise, the weight ்ݓ  in proposed charging 

strategy needs to be adjusted. 

 

6. Conclusion  

Charging strategy is a key issue in guaranteeing safe and effective operations of Li-ion batteries in electric 

vehicles. In this paper, an attempt has been made to apply heuristic methods especially the modified TLBO 

algorithm to optimize the LiFePO4 battery charging profile. Due to the lack of considerations of the battery 

internal temperature in the existing published work, this paper has proposed a specific triple-objective function 

which has embedded three conflicting but important objectives: battery charging time, energy loss, and 

especially the battery interior temperature rise. Then a proper CCCV current profile as a result for the best trade-

off of the triple objectives can be achieved by solving the highly nonlinear and time-varying optimization 

problem. It benefits from the universal optimization capability of the heuristic methods and the capture of the 

battery thermoelectric behavior using the coupled thermoelectric model. In the optimization procedure, different 

heuristic methods such as TLBO (both basic and variants), and PSO (both basic and variants) are compared.  

The results revealed that the MTLBO converges faster and produces better objective function values than other 

alternatives. The impacts of various weights for the charging time, energy loss, and temperature rise on the final 
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optimal charging current profiles are also investigated. By adjusting the weights of sub-cost terms in the triple-

objective function, the charge current profiles with different priorities can be obtained by the proposed battery 

optimal charging strategy. 

In summary, the main contributions of this work are as follows: 1) a triple-objective function is proposed, 

considering the battery charging time, energy loss, and particularly the internal temperature rise of batteries 

which is important for safe and efficient operation of electric vehicles, especially for some high power 

applications where the difference between surface and internal temperatures can be quite large. 2) Both the CC 

and CV stages can be holistically considered using the meta-heuristic methods to solve the time varying and 

nonlinear optimization problem, and the adopted thermoelectric model also helps to improve the accuracy by 

taking into consideration the couplings between the battery thermal and electrical behaviors. All these can help 

to achieve more reliable and realistic charging strategies for EVs. 3) Several heuristic methods for searching the 

optimal battery charging current profile by minimizing the triple-objective function are investigated and 

compared, and a modified TLBO has shown to outperform other counterparts. 4) Charging current profiles with 

different priorities can be achieved by adjusting the weights in the triple-objective function, which brings extra 

benefits in that the resultant current profile can meet different requirements for various battery applications. 5) 

The proposed charging strategy combines the novel but generic thermoelectric model and meta-heuristic 

optimization methods, which can be easily extended to other battery types. Therefore, the results presented in 

this paper are not only novel in the methodology development, but also significant in practical applications. 
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Nomenclature 

ܸ           battery terminal voltage ܴଵǡ ܴଶ   battery diffusion resistances ܥଵǡ ଶ network voltage  ܷைܥଵ network voltage  ଶܸ          ܴଶܥଶ    battery diffusion capacitances ଵܸ          ܴଵܥ      battery open circuit voltage ݅             charge current ܴ           battery internal resistance ܿݏ        battery state of charge ܥ          battery nominal capacity ௦ܶ             sampling time period ܶ           battery internal temperature ௦ܶ            battery surface temperature ܶ         battery ambient temperature ܦଵ            battery internal thermal capacity ܦଶ            battery surface thermal capacity ݇ଵǡ ݇ଶ       battery thermal conduction coefficients ܳ               battery thermal dissipation  ܬ்            battery charging time cost function ܬா            battery energy loss cost function ்ܬோ            battery temperature rise cost function ்ܬோ          battery internal temperature rise cost function ்ܬ௦ோ          battery surface temperature rise cost function ܬ       battery charging triple-objectives cost function ݏ               battery charging initial SOC ݏ௧              battery charging final SOC ݅             battery minimum charging current ݅௫            battery maximum charging current ܸ           battery minimum terminal voltage ܸ௫            battery maximum terminal voltage ܬ̴   battery constant current process cost function ܬ̴  battery constant voltage process cost function 

 

 

 


