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Abstract

As one of the most successfully commercialized distributed energy resources,

the long-term effects of microturbines (MTs) on the distribution network has

not been fully investigated due to the complex thermo-fluid-mechanical energy

conversion processes. This is further complicated by the fact that the parameter

and internal data of MTs are not always available to the electric utility, due

to different ownerships and confidentiality concerns. To address this issue, a

general modelling approach for MTs is proposed in this paper, which allows for

the long-term simulation of the distribution network with multiple MTs. First,

the feasibility of deriving a simplified MT model for long-term dynamic analysis

of the distribution network is discussed, based on the physical understanding of

dynamic processes that occurred within MTs. Then a three-stage identification

method is developed in order to obtain a piecewise MT model and predict

electro-mechanical system behaviours with saturation. Next, assisted with the

electric power flow calculation tool, a fast simulation methodology is proposed

to evaluate the long-term impact of multiple MTs on the distribution network.

Finally, the model is verified by using Capstone C30 microturbine experiments,

and further applied to the dynamic simulation of a modified IEEE 37-node test

feeder with promising results.
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1. Introduction

The integration of distributed energy resources (DERs) has significantly

changed traditional design, operation, control and online management of electric

power systems [1, 2]. Microturbines (MTs), which can provide both electrical

and thermal energy, have been widely used as DERs in the electricity distribu-5

tion network (hereafter referred to as distribution network)[3, 4]. Due to the

advantages of high reliability, low emission, and high efficiency, an increasing

number of MTs have been installed in the distribution network worldwide, and

this has greatly enhanced interdependencies between the distribution network

and natural gas network. Also, it has been observed that the gas network can10

significantly affect the operation of power systems through gas-fired generators

[5]. Therefore, it is important to model the behaviours of various MTs, as well as

to evaluate the impacts of large integration of MTs on the distribution network,

in order to ensure a secure and reliable system operation.

In the study of energy systems, it is usually not possible to conduct large-15

scale physical experiments due to economic and security reasons. This promotes

the popularization of using simulation as a tool to analyse the energy system

behaviour under various scenarios [6, 7, 8]. In order to describe behaviours

of the whole system, both network and coupling unit models are required for

simulating the system. As one of the main energy networks in urban areas,20

distribution networks have been investigated by way of modelling [9], simulation

[10], planning[11], scheduling[12], etc. Several packages have been developed to

study their dynamic behaviours [13, 14, 15]. Dynamic load models, such as heat

pumps [16] and air conditioners[7], are embedded in the packages. Considering

the interactions between the electricity network and the gas network, a suitable25

dynamic MT model is required, so as to analyse its coupling function. However,

the existing literature, with a few exceptions [17, 18], has mainly focused on the
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network analysis in steady states [6, 19, 20]. The dynamics of gas-fired generator

and how they affect the interactions between the two networks are not well

explored. In addition, in practice, the gas network information is usually not30

accessible to distribution network operators, which makes it difficult to analyse

the impacts of natural gas pressure and other ambient conditions on distribution

networks through MTs.

Due to the complex thermo-fluid-mechanical energy conversion processes

[21], building MT models has become a significant but challenging work when35

analysing dynamic impacts of natural gas networks and MTs on the distribution

network. One important direction of the MT modelling is to conduct mechanism

analysis, using available packages in commercial software, such as DIgSILENT,

PSCAD and MATLAB/Simulink [18, 22, 23, 24, 25, 26] For example, Rowen

proposes a gas turbine mechanical model in [22], which describes the thermo-40

mechanical process of the MT prime mover. In [23], the correlation between the

electro-mechanical and thermo-mechanical subsystems is modelled. The impact

of MTs on the distribution network is analysed under a range of load conditions

[24]. Further, dynamic behaviours of hybrid MT and other distributed genera-

tion system are investigated by using simulation studies and small-scale physical45

experiments [25]. As a prime energy source, natural gas is also critical for MTs’

operation. Hence, natural gas flow is incorporated into the thermo-mechanical

model of gas turbines in [26]. An improved MT model is developed to reflect the

interactions between power and natural gas systems [18]. However, in practice,

MTs may have different brands and capacities. The parameters and models are50

not the same for each MT. Moreover, some of the design parameters for MTs

are confidential, and therefore are hardly accessible.

In order to handle the unknown parameters and the strong nonlinearity, an-

other direction of the MT dynamic analysis is based on black-box approaches,

where system identification techniques are commonly employed. By correlating55

input and output data, these techniques can help to build a simplified model

of the complex process and to predict its behaviours without requiring much

prior knowledge [27]. A variety of techniques have been proposed to describe
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the dynamics of gas turbines. These include polynomial models, such as nonlin-

ear autoregressive moving average with exogenous inputs models and nonlinear60

autoregressive exogenous [28, 29], neural network models [30, 31, 32], and adap-

tive network-based fuzzy inference system [33]. These models are effective in

correlating the fuel and mechanical power output for a specific MT, and are

used in analysing the transient stability of distribution networks [9]. However,

it is difficult for the electric utility to obtain the operation data of MTs owned65

by different third parties in distribution networks. Thus, system operators can

hardly build identification models or estimate the internal states of the MTs,

which play a key role in the security analysis of distribution networks.

In this paper, a simplified compact MT model is developed for the long-term

dynamic analysis of distribution networks, considering different requirements70

and data availability for utilities and customers. The main contributions can be

summarised as follows: 1) Dynamic characteristics of the MT are analysed in

order to identify the model with the state space form and the piecewise method;

2) An electro-mechanical system model of the MT is derived using a three-stage

subspace identification method to predict the MT power output under different75

operating conditions; 3) Based on the obtained model, a fast simulation method

is proposed to the evaluate dynamic impact of MTs on the distribution network.

Numerical examples show that the proposed model can capture MT power and

heat output behaviours well over a wide operation range, and reflect the impact

of multiple MTs on the distribution network.80

The rest of this paper is organized as follows. Section II describes the feasibil-

ity of the model simplification and the three-stage model identification method.

Section III presents a fast simulation method based on the proposed MT model.

In Section IV, physical and numerical tests are performed to illustrate the accu-

racy and effectiveness of the proposed method. Finally, the conclusion is given85

in Section V.
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2. Identification of the MT model

In this study, the MT model is developed for the long-term dynamic analy-

sis of distribution networks with multiple MTs. To achieve this goal, the model

should be able to capture dominant characteristics of the eletro-mechanical sub-90

system of the MT, while simple enough for large-scale applications. To trade-off

model complexity versus accuracy, a novel modelling method for the MT will be

proposed in this section, based on mechanism analysis of the MT and black-box

approaches.

2.1. Dynamic characteristic analysis95

This paper investigates a single-shaft MT which is widely used to supply both

heat and power in local areas [34]. As illustrated in Fig. 1, the MT is composed

of thermo-mechanical and electro-mechanical subsystems. The dynamic model

of the MT can be expressed as





ẋt = ft(
∂xt

∂p
, xt, yt, u, xe, ye)

ẋe = fe(xt, yt, u, xe, ye)

0 = g(xt, yt, u, xe, ye)

(1)

where ft and fe represent thermo-mechanical and electro-mechanical subsystem100

models, and g links the two models algebraically. xt and yt represent thermo-

Figure 1: An overview of the MT configuration.
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mechanical subsystem state and algebraic variables, including component tem-

perature, fuel flow pressure, engine speed, exhaust exit temperature, flow rate,

etc. p represent position variables. xe and ye stand for electro-mechanical sys-

tem state and algebraic variables, including generator angle, converter control105

system states, generator power output, voltage, etc. u represents the control

signal of the MT.

Due to the slow response actions, thermo-mechanical subsystem variables

xt can be seen as frozen during the electro-mechanical analysis process. Exist-

ing studies have shown that some state variables dominate the MT dynamics110

[35]. Based on the singular perturbation theory, the MT can model be further

expressed as follow





ẋes = fes(xt, yt, u, xe, ye)

ǫẋef = fef (xt, yt, u, xe, ye)

0 = g(xt, yt, u, xe, ye)

(2)

where ǫ is a small non-negative scalar. xes and xef stand for slow and fast

variables of the electro-mechanical subsystem. fes and fef stand for slow and

fast models of the electro-mechanical subsystem.115

For the long-term dynamic analysis, the fast dynamics can be described by

setting ǫ = 0 in (2). The key dynamics of the electro-mechanical system can

then be expressed as





ẋes = fes(xt, yt, u, xe, ye)

0 = fef (xt, yt, u, xe, ye)

0 = g(xt, yt, u, xe, ye)

(3)

2.2. State space model and system identification

In normal operating states, the engine speed of MTs is usually operated120

above a certain range in order to ensure high efficiency. Also, it has been

demonstrated that the electro-mechanical system shows a good linearity in the

operating range [35]. Therefore, it is reasonable to describe the MT model (3)
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with the following linear state space model in a certain operating range. For

different MTs, the range can be obtained by monitoring actual operation.125





x̂es(k + 1) = Ax̂es(k) +Bu(k) + ω(k)

ŷe(k) = Cx̂es(k) +Du(k) + υ(k)
(4)

where A, B, C, and D represent the system model matrices, x̂es(k), u(k) and

ŷe(k) represent state, input and output vector at time k, ω(k) and υ(k) are vec-

tors of Gaussian distributed, zero mean, white noise sequences, k = 1, 2, ..., Ne,

Ne is the length of the electro-mechanical system data record.

In this paper, the subspace identification method is employed to model the130

MTs, which could estimate model outputs and state variables simultaneously

with the state space form. It is capable of handling the measurement noise

and extracting the model from real operation data. Further, optimisation is

not required in the subspace modelling [36], unlike some other black-box mod-

elling approaches. And this will significantly enhance its applicability to real135

applications, especially when it is used for online applications. By choosing dif-

ferent orders, the accuracy and the complexity can be compromised according

to different model requirements.

Both normal and low pressure natural gas source can be utilised to feed

the MT [37]. The fuel intake pressure level is maintained at a certain level by140

controlling the compressor and valve positions. When the fuel pressure is too

low, the adjustment ability may reach its upper bound, which will further cause

MT output saturation. Mechanism analysis shows that key states of the MT,

such as the engine speed, is closely related to the MT outputs, which indicates

it is possible to estimate the MT internal state with its outputs. With the145

subspace identification method, dominant states of the MT can be estimated.

The obtained model is thus able to predict the output saturation, and analyse its

dynamic impacts of MTs on distribution networks. Although the internal states

of MTs may not be available, both system states and outputs of the obtained

model can still be corrected directly or indirectly, by using the observed inputs150

and outputs online.
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Based on the characteristics of the practical operation data, a piecewise

method can be utilised to identify the behaviours of the MT in various operating

range. The saturation range can be incorporated as a nonlinear extension of

the piecewise linear models of the MT.155

2.3. Three-stage identification method

As shown in Fig. 2, a three-stage identification method, which takes into

account both linear and saturation operating range, is developed in this paper

so as to model the MT electro-mechanical subsystem.

Considering the disturbance caused by the external environment, the sub-160

space state space system identification (N4SID) [38] is used to obtain the model

in (4). The saturation of system state variables is identified and estimated

based on the operation data. A detailed description of the modelling process is

described as follows.

Stage I: Pre-processing.165

Step 1: Fundamental mechanism analysis. The time scale and linearity

characteristics of the MT is analysed in order to estimate the system order in

(4).

Step 2: Input and output signals selection. To maximize the efficiency and

reduce operational costs, MTs are often used for cogeneration, creating both170

electricity and heat [39]. The power output can be adjusted by changing load

signals of the MT. Since the impact of electric output is more critical for the

distribution network analysis, the load signal and the power output are defined

as input and output signals.

Step 3: Data recording. If the field condition allows physical experiments,175

then design various scenarios for system identification. Otherwise, the sys-

tem operation data will be obtained from online monitoring. For utility owned

MTs, detail informations are acquired by specially designed experiments. For

customer owned MTs, historical and real-time operating data can be obtained

by monitoring the interface between customers and utilities. To ensure the MT180

operation security, the engine speed is also monitored.
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Step 4: Data extraction. The obtained data are divided into several datasets,

and further classified into modelling and validation sets.

Stage II: Model identification.

Step 5: As mentioned in Step 1, the load signals and MT power outputs data185

are recorded as input U0, U1, ..., U2i−1 and output Y0, Y1, ..., Y2i−1 data vectors.

Step 6: System order nx specification. In the N4SID, the number of rela-

tive large singular values is usually used as an estimation of the system order.

However, there is no distinct boundary between large and small values in some

scenarios. Thus, nx is firstly analysed based on the priori knowledge. If it can190

be specified, nx is utilized in the N4SID to model the electro-mechanical sub-

system. Otherwise, Akaike Information Criterion (AIC) defined by (5) will be

used to estimate the system order [27].

AIC = ln(J(1 + 2
d

N
)) (5)

where d is the total number of estimated parameters, N is the length of the data

record. J is the estimated residual of the model, calculated by J =
∑t=t1

t=t0
[y(t)−195

ŷ(t)]2, t0 and t1 represent the start and end of the sampling time.

Step 7: Estimate the system matrix A, B, C, D by solving a set of overde-

termined equations.

Stage III: Saturation incorporation.

Step 8: Saturation capture. The MT engine is coupled with the compressor200

by the shaft. When the fuel intake level is low, the engine speed will be increased

in order to absorb more fuel. It may reach its upper bound which will also

constrain the MT output power. Therefore, the saturation region of the speed

is monitored to indicate the MT output upper bound and adjust the model

developed in Stage II.205

Step 9: Upper bound incorporation. The engine speed upper bound ωupper

is estimated by comparing the estimated states with the normalized observed

states X̂i+1. In this paper, two main external factors (natural gas network and

temperature) that affect the MT operation are incorporated in the modelling
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process. Considering the slow dynamics of the two factors, a upper bound210

obtained from practical operation data will be used to adapt to the external

environment variation. Then the model output Pout can be estimated as follows:

Pout =





Yi, X̂i+1 ≤ ωupper

P
upper
out , X̂i+1 ≥ ωupper

(6)

AIC maximum

Model input and output selection

Input and output data collection

Subspace 

identification

Y

Increase 

system order

Fundamental mechanism analysis 

N

Stage I: 

Pre-processing

Stage II: 

Model 

Identification

Stage III: 

Saturation

Incorporation

Check if 

saturation exists

Output upper bound incorporation

Y

N

Model output

A, B, C, D and K

Subspace 

identification

System model 

estimation

System order 

available?

MT characteristics

Experiment

design feasible?
Online monitoring

Y

N

System order estimation

Data extraction

Figure 2: Flowchart of the electro-mechanical system identification process.
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3. Dynamic analysis of distribution networks based on the identified

MT model

In a distribution network, multiple MTs may exist with very limited data215

available to utilities. To address this issue, an online data acquisition and model

identification method is presented to simulate dynamic behaviours of various

MTs in a distribution network. As shown in Fig. 3, the proposed method can

then be summarized as follows.

Step 1: Input data. Collect distribution network and MT historic operation220

data including MT load signals, power outputs, and operating states.

Step 2: Identify the MT model. Based on MT operating modes, a mathe-

matical MT model can be obtained using the three-stage identification method

proposed above to build the electro-mechanical model for MTs.

 !∀#∃%&∋(∃)#∗+∗,−#∗.)&

/−∀∃(&0.(∃1∗)2

 !∀#∃%&∋!(&)

∃∋#∗+%#,−

.)!/!∗0∃1/∗/#∃+∗0+20∗/!&)
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>
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:

>
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Figure 3: Flowchart of MT modeling and fast simulation process
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Step 3: Initialize MT state variables and simulation parameters.225

1) Initialize state variables of the obtained MT model and let t = 0.

2) Set the simulation step tsim and the scheduling period tsch.

Step 4: Generate MT power output series.

1) Select an array of MT set-points.

2) Generate MT output response: Generate the power output and system230

state array using the model obtained in Step 2 with step size tsim.

Step 5: Update system states and MT outputs. If either system states or MT

outputs exceed the bounds, the model will be corrected using (6). Otherwise,

continue.

Step 6: Calculate the power flow.235

1) Set MTs which are integrated into the distribution network to active-

reactive power control mode1, and the bus embedded with MTs as a load bus

in the electric power flow calculation.

2) Call the power flow time series model to simulate the distribution system.

Step 7: Stop criterion. If a pre-determined time horizon is reached, output240

results; otherwise, let t = t+ tsch, and go to Step 4.

4. Experimental studies

4.1. MT model test

Fig. 4 shows a Capstone C30 MT at the Smart Grid Lab of Tianjin Univer-

sity. The MT obtains fuel from the local gas network, and supplies both power245

and heat to the lab. It is observed that the MT output cannot follow the load

signal, when the gas pressure level is low. In this section, we apply the proposed

identification method to model the MT under both the normal operating state

and the saturation state. The MT was operated in the grid-connected mode,

in order to use the obtained model in analysing the impacts of MTs on dis-250

tribution networks. The rated electric output and shaft speed are 30 kW and

1In practice, the MT can also be used in other control modes, which can be solved by

changing bus types in the power flow calculation of distribution networks
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Figure 4: Capstone C30 MT experimental platform.

96000 RPM. Other parameters supplied by the manufacture can be found in

[37]. The experimental data was collected by remote monitoring software of the

MT. The sampling rate was set at 4 Hz. To ensure the MT efficiency, the load

signal ranging from 5 kW to its rated power was selected to cover the normal255

operating range. The reactive power output of the MT was set to zero in the

whole process. For identification and validation purposes, three groups of field

measurement data were collected over various periods of time.

4.1.1. Model identification

In the proposed methodology, the system order, which plays a key role in the260

modelling process, can be determined by the mechanism analysis or the AIC.

Thus, both the dominant order model and the AIC maximummodel were tested.

In previous studies, MTs are shown to have 2nd order dynamic characteristics

[35, 40], which implies that two state variables dominate the MT dynamics. The

system order is thus set to be 2 in the dominant model. It should be pointed265

out that dominant orders of MTs might be different due to the existence of

complex system behaviours and control systems. For the AIC maximum model,

the overall trend of the AIC index decreases as the system order goes up, as

shown in Fig. 5. Because the AIC has almost no change when the system order

13
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Figure 5: The AIC of different system order.

is above 7, the order of the AIC maximum model is chosen to be 7 in the270

following studies. For real applications, the system order of the MT model can

be estimated based on the priori knowledge and accuracy requirements.

Following the algorithm shown in Fig. 2, we firstly analyse the first group

of data, which is used to identify the model in the normal operating range. As

depicted in Fig. 6, the AIC maximum model (the dashed green line) which has275

higher order captures the short-term fluctuation better than what the dominant

order model does (the dotted red line). However, higher order indicates larger

calculation burden. In order to use the model for the long-term simulation

of large-scale systems, the dominant order model, which has lower order, is

chosen to simulate the MTs accessed to distribution networks. It should be280

noted that a distinct mismatch (as depicted in the dashed brown line) happens

when the power output is close to 25 kW, although the MT can still follow

the load signal after a short term adjustment. This phenomenon implies that

the MT output is driven near the saturation region in the current situations.

The border line between the unsaturation state and the saturation region could285

be different, when external conditions change. With the system identification

method, the border line could be distinguished and corrected based on the real

time data, which makes the proposed method an effective tool in predicting

the behaviours of the MT, especially for the long-term simulation. Moreover,
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Figure 6: Identification results of the electromechanical system in normal states.

although measurement noise exists in the studied data recorded from physical290

experiments, the behaviours of the MT output can still be approximated well. It

indicates that the proposed method has the ability to handle the measurement

noise, which is critical for practical applications.

In order to cover the saturation region, we also examine the MT output

under the conditions of low gas pressure. The studied MT is accessed to a295

natural gas network, which also supplies gas to a restaurant. The pressure

level of the gas level goes down during lunch and dinner periods, and the MT

outputs may not be able to follow the load signal in these periods, as shown in

Fig. 7. According to the analysis in Section 2, the MT output saturation can be

reflected by generator speed constraints. To predict the saturation occurrence,300

state variables obtained by the N4SID were utilized to estimate the MT engine

speed. As shown in Fig. 7a and Fig. 7b, an accurate approximation can be

observed for the MT speed and power output within the range between 5 kW

and 20 kW. The MT output saturation in Fig. 7a could be captured under

the predefined speed constraint, in which the speed constraints are not the305

same under different external environment. Since natural gas networks and
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Figure 7: Test results of the MT in the saturation state.

temperatures change much slower than the electric dynamics, it is reasonable

to estimate the speed constraints by observing the system operation in previous

data collection cycles. Therefore, the proposed modelling method could assist

in predicting the MT output saturation, and provide important guidance to310

further quantify the impacts of low gas pressure on MT outputs and distribution

networks.

4.1.2. Model validation

In order to demonstrate the generalization ability of the proposed modelling

method, more experimental data and model outputs are to be presented. To be315

different from the previous cases, the MT output were changed to lower levels

in this case, with a minimum output of 5 kW. As shown in Fig. 8, the identified

model can produce a good approximation of the experimental results in most

scenarios, when the MT output is above 5 kW. Similar results can be found

in Fig. 7. Thus, we can conclude that the suitable application range of the320

developed model for the studied MT would be between 5 kW and 25 kW. It

can also be seen from Fig. 8b that the proposed model approximates the engine

speed well when the power output is above 10 kW. As the power output goes

down, the speed deviates from the experimental results evidently, especially

when the power output is below 5 kW.325
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Figure 8: Generalization ability tests of the electromechanical model.

It should be noted that large deviations can be observed after 574 s, due to

an accidental shutdown of the MT caused by the fault of the gas pipeline, and

the MT output recovers after the fault is cleared. However, these deviations

cannot affect the effectiveness of the proposed modelling method, because the
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obtained model is used for long-term analysis of the MT, not for short-term fault330

diagnosis. In addition, the MT output during the fault period is below 5 kW,

which is the output of the effective range of the obtained model. Combining with

the previous two cases, we can conclude that the proposed modelling method is

robust in both the normal operating state and the saturation state.

4.2. Simulation of distribution networks with multiple MTs335

One of the important applications of the proposed modelling method is to

assist utilities and customers in analysing distribution networks with multiple

MTs. In this section, we apply the proposed modelling and simulation method

 !∀
 !#

 !∃

 !%

 !&

 !∋

Figure 9: The IEEE 37-Node test feeder augmented with six groups of MTs.
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to simulate the behaviours of the IEEE 37-Node system. Six groups of parallel

Capstone C30 MTs are accessed to buses 724, 725, 729, 731, 735, and 741 of340

the system, as shown in Fig. 9. Active load (from buses 724, 728, 709, 736, and

740) variations are considered in the tests. To be simplified, all the five loads

are assumed to follow the same change pattern, as shown in Fig. 10. During the

simulation, MTs were operated under the active-reactive power control mode

and scheduled to balance the load variations. An average load sharing scheduling345

algorithm was employed to smooth tie-line power fluctuations. For simplicity,

the scheduling objective was to keep the power constant at the point of common

coupling of the distribution network to the main grid (bus 701). All MTs were

scheduled with the same load signals. Based on the identified results, the states

of MTs were marked as either normal or saturation state.350
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Figure 10: Electric load demand variation curve in the five buses.

Because the dominant order and the AIC maximummodels are both involved

in the modelling process, the two models are investigated and compared with

each other. Considering that local distribution networks are usually coordinated

as a microgrid in the smart grid environment, the power flow of the tie-line

is thus a key index in the distribution network studies. As one of the most355

successful commercialised DERs, MTs are usually used in smoothing the power

exchange within the tie-line. With the proposed simulation method, dynamic

variation of the tie-line power could be demonstrated as shown in Fig. 11.
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Figure 11: Comparison of the tie-line power fluctuation.

It is clear that the fluctuation dynamics can be captured by the proposed

model accurately, which is crucial for evaluating dynamic impacts of the MTs on360

the distribution network. The results also show that the electric characteristics

obtained by the two models are quite close. Compared with steady state simula-

tion results, it can be found that both the two models can capture the dynamic

fluctuation. Since higher order model provides better approximation results,

there exist some mismatches between simulation results of the two models, as365

shown in Fig. 11. Therefore, it is rational to integrate the proposed models in

the long-term analysis of a distribution network with multiple MTs, in order to

balance the requirements of the model accuracy and computational costs.

As mentioned above, the outputs of various MTs could saturate simulta-

neously when the pressure of the accessed gas network is low. To take this370
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into account, a simplified test was carried out by assuming that the saturation

occurs at buses 724, 729, and 735. The ambient conditions of the associated

MT inlets were assumed to be the same as those of the identified MT model in

Section 4.1. With the obtained model, the system is simulated for a period of

24 hours. As illustrated in Fig. 12, the MT model output without saturation375

(see the dotted blue line) follows the desired MT model output (see the red

line) well. Nevertheless, the mismatch that exists between the normal output

and the saturation output significantly affects the scheduling results of the dis-

tribution network. It can be seen from Fig. 12 that the MT output saturation

can be well captured by the model at 19 h, as depicted in the the dotted green380

cycle. The relative tie-line power with MT output power saturation is shown

in Fig. 11. The mismatch between saturation and unsaturation cases confirms

that it is necessary to model the MT saturations and estimate the impacts of

the natural gas system, as discussed earlier in this paper. Also, it can be seen

that the proposed simulation method is able to analyse the negative effects of385

the natural gas network on the distribution systems, including the network,

loads, and other DERs. If used online, the proposed model can also help the

Figure 12: Comparison of MT power output with and without saturation
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operators to predict the saturation caused by the low gas pressure, and to avoid

the scheduling failure of MTs.

It is worth mentioning that although the same type of MTs were studied390

and scheduled with the same signals in this paper, the proposed method is

still effective for MTs with various brands and capacity, as long as the MT

information and scheduling signals are obtainable.

5. Conclusion

This paper investigates the long term impact of multiple MTs on the dis-395

tribution network. A three-stage modelling method is developed to describe

the MT electric output characteristics. The feasibility of using the state space

model to predict the MT electric output is investigated based on the time-scale

characteristics as well as the linear characteristics of the MT within a certain

operating range. The resultant model is then integrated into a fast simulation400

scheme to evaluate the performance of the distribution network with multiple

MTs. Experimental and numerical examples were conducted to demonstrate

the effectiveness and accuracy of the obtained models under different operation

scenarios. The experimental results conform that the new lower order MT model

can accurately predict the MT power output, and well capture its saturation405

caused by low gas pressure. This allows the simulation of dynamic behaviours

of MT electric output with a lower level of model complexity, which is difficult

to achieve when using traditional MT models. With the obtained model, the

influence of multiple MTs on the distribution network was analysed numerically

with promising results.410

Although this paper focuses on the incorporation of MTs into dynamic anal-

ysis of distribution networks, the developed method can also be utilised for dis-

tribution networks with other energy conversion units, such as air-conditioners

and heat pumps, where simplified system models and parameters need to be

identified. By embedding the proposed modelling method into simulation pack-415

ages, it is possible for planners and operators to analyse dynamic impacts of
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energy conversion units on distribution networks. Since the obtained model can

be built for most of the operating ranges, it can also be used for control system

design of MTs in coupled energy systems.
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