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Analytical Iterative Multi-Step Interval Forecasts of
Wind Generation based on TLGP

J. Yan, Member, IEEEK. Li, Senior member, IEEE, E.W. Bai, Fellow, IEEE, X. Zh"doXue, Aoife
Foley, Member IEEE

Abstract—Probabilistic wind power forecasting has become an
important tool for optimal economic dispatch and unit
commitment of modern power systemswith significant renewable
energy penetrations. Ensemble forecasting based on Monte Carlo
simulation has been widely adopted by grid operators, but other
probabilistic approaches, such as multi-step iterative wind power
forecasting have not yet been fully explored. The associated
uncertainty analysis is an important yet challenging issue in this
area. This paper proposes to use an analytic interval forecasting
framework to estimate the forecasting uncertainty and its
propagation with multi-steps for two wind farms based on the
Temporally Local Gaussian Process (TLGP) model. The key
findings confirm that TLGP forecasting not only has better
accuracy but is also more reliable and sharp than other
benchmark models. This work provides an innovative analytical
framework for iterative multi-step interval forecasts.

Index Terms—probabilistic forecasting, Gaussian process,
uncertainty propogation, wind energy

I. NOMENCLATURE

The key symbols used in the paper are defined below )
quick reference while others are defined after their firdY

appearance as required.

x A deterministic input (state vector)
(X,Y) The available training dataset

0" The optimal hyperparameters

B, B; The cross-covariance vector

Cy,C;  The covariance matrix

u(x) The mean function of prediction under
o%(x) The variance function of prediction under
P The covariance function

x* A column vector of random input

U The expectation of*

T Thecovariance matrix ofk”

m(x*) The new mean output under random ingut
v (x*)  The new variance of output under random
E.[l  The expectation of underx”

Var (-) The analytical definition of variance
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Il. INTRODUCTION

A ccurate wind power forecasting plays a key role in modern
power systems to mitigate the impacts of the stochastic
and variable nature of wind energy][@]. Probabilistic
forecasting has been widely used in the research of energy
storage [3], reserve quantification [4], unit commitment and
market trading [5]In [6], probabilistic forecasting was used to
estimate dynamic operation reserve requirements based on the
uncertainty information in each forecasting interdélwas
found that probabilistic wind power forecasting, together with

a proper demand dispatch plan, can contribute significaatly
the efficient and economic operation of electricity markets and
improve unit commitment. In [7], optimal bidding strategies
were developed based on the probabilistic forecasting and
sensitivity modelling, which increase revenues for stakeholders
and maximize the benefits of wind power generation. Jrit[8
was shown that the uncertainty assessment of wind power
prediction using local quantile regression benefits the grid
erations when incorporated in real-time energy management
systems

Machine learning methods have been usedrobabilistic
wind power forecasting including the parametric methods such
as extreme learning machine (ELM) [9], sparse vector
autoregressive (SVAR) [1p], fuzzy neural netwdrksJ11] and the
nonparametric method such as the adaptive resanipling [12].
The evaluation metrics of probabilistic forecasting have been
defined including reliability, sharpness and the unique skill
score[ [13] There are several typical forms of probabilistic
forecasting: 1) probability distribution function (p.d.f) and
cumulative distribution function (c.d.f.); 2) quantiles and
intervals; 3) discrete probabilities; 4) moments of probability
distribution [14]. Among them, interval forecasts give a range
of intervals within which the observed variable is expected to
fall in with the pre-defined probabilities. The current interval
forecasts techniques include empirical error based methods,
such as the parametric method [15] which assumes the shape of
error distribution and the nonparametric method [12] which
does not. Both kinds of empirical approaches assume that future
uncertainty can be expressed from the recently witnessed
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behavior of the point prediction method and the error of poursed to estimate the mean value and the variance under a
forecasting are employed for further analysis. However, ttendom input.

resulted confidence intervals duot necessarily cover the

measurements, which is not in favor of the above assumption. 1ll. ANALYTICAL INTERVAL FORECASTS WITH TLGP

The other type of interval forecast is the direct interval forecastThere has been a lot of debates over the shape of the

[16-17]. The intervals are given without the prior knowledge @fredictive error distribution and the correct assumptions to
forecastlng'errors. !n [16 the prediction mtgrvals and .themake for the wind power forecastingn [20], Numerical
corresponding confidence levels are predicted by direCiyeather Prediction (NWP) method was used to predict wind
optimizing the reliability and sharpness with Extreme Learnl%eed first, and the wind power was obtained through the wind
Machine based methods. Only time series wind generation dgi®ine power curve. It was widely recognized that the
is employed for 90%, 95% and 99% interval forecasts t0 ensygigitional distribution of wind power forecasting errors based
computational efficiency for hourly ahead forecasting. In [173n weather condition and wind speed follows strongly a non-
the direct interval forecast is developed based on neuyssian distribution due to the transformatignthe wind
networks for 4 fixed very short-term horizons with a Confldeng%eed to wind power, though i1}, Gaussian distribution was
probability of 90% However, these methods train the modg|sed to represent the wind power forecasting error for systems
separately for multi-horizon point forecasting and bring iith significanty installed wind capacity, and a new approach
additional complex computation in the multi-horizon intervg|,;5 proposed to quantify the demand. 22][the authors
forecasts. Therefore, an iterative way of implementing thénp|oyeda persistence model for wind power forecasting and
probabilistic interval forecasts becomes necessary in termsf(ﬁﬁ])d that the predictive error was too fat-tailed to be Gaussian,
efficiency. This paper proposes iterative interval forecast 54 Beta distribution was used to fit the probability distribution.
method based on a variant of Gaussian Process. Itanalyses@,qwenergy storage system was designed to reduce the
the uncertainty propagates and accumulates with iterafjyigcertainty. In [23], a generalization of the logit-Normal
multi-step forecasting for the first time and the analyticglstripution was introduced in auto regression (AR) based
expression of the uncertainty for each prediction hqnzon fodels to describe the ddetbounded nature of wind power.
derived The results are evaluated and compared with othggever, it should be noted that two variables are discussed
benchmark models. Considering the computing-efficiency Qhove namely the predictive error and the wind generation
the |t§rat|ve fore(_:astlng, this TLGP based _mterval forecast V‘6thput. Generally speaking, the global distribution of the wind
benefit the real-time power system operation and managengdier generation is too skewed to be Gaussian empirically, and
due to its high accuracy, reliability and efficiency. the global forecasting error based on the wind turbine working
TLGP is a non-parametric method proposed to adapt to t8&e would not be Gaussian either.
time-varying characteristic of the wind power forecasting, 10 The Gaussian Process assumes Gaussian noise in the
enhance the local forecasting accuracy of the Gaussian Proggsg vations [24], the non-linear relationship between the wind
(GP) and to reduce the computational demand [18]. Moreovgieed and the resultant wind power implies that this assumption
TLGP like GP generates not only the mean value of thgyy no longer be valid. However, the wind turbine working
prediction for a certain horizon but also the varianqgve can be approximated by a series of piecewise linear
representing the uncertainty of the new prediction. '”mtf?egments and for each linear segment of the working curve, a
words, it provides the prediction intervals with the lower anf;,,ssian Process can be assumed. Thus. the wind power
upper bound and the predefined probabidfyfalling in the gynamics can be modelled by multiple local Gaussian
interval. TLGP is naturally tuned for interval forecasts. Processes. The original local Gaussian Process was proposed in
For multistep forecasting, the iterative method estimates TIQg] where the local data within the Euclidean space are
next wind output and employs that estimate for the furthgmployed for local regression. For time series wind power
forecasting step. It eliminates intensive-computation  forecasting where the system exhibits strong time-varying
reducing the computational time and thus increasing h&tyres and most recent measurements are mostly correlated to
efficiency [19]. The relevance of uncertainty propagation ithe following short-term generations, the TLGP proposed in
interval forecastmg using iterative mult!-step forecqstmg f‘PI8] where the temporally local data within a moving window
more accurate wind power forecasting is studied with a Ca§g tilized for short-term wind power forecasting, has shown
stu_dy of a wind fgrm in Ireland. T_he_r_esults are then evaluaigdhaye a superior performance in comparison with existing
using two metrics, namely reliability and sharpness, fghproaches. Within the short moving window, the wind turbine
probabilistic predictions in wind power forecastjig]. _ working curve will exhibit linear property rather than a
The remainder of the paper is organized into six sectiofgnlinear one, thus the temporally local Gaussian Process is
Section Il introduces the framework of analytical intervaje|| applicable for such situations. For the scenarios where the
forecasting using the TLGP. Sectiol/ develops the ying power generation changes dramatically and a ramping
uncertainty propagation for iterative multi-step TLGP und@ent occurs, then a hybrid method combining the most recent
random inputsSection V presents the results and analysis 0@ asurements and the similar historical data has been proposed
case study. Section VI discusses the probabilistic evaluatiops) The statistical analysis of the forecasting errors in the form
considering the case study and Section VII concludes the.pagekyrtosis and skewness of the distributions showed that TLGP
The Appendix in Section VIII provides the Taylor expansiogenerates the most Gaussian-like uncertainties in comparison



with other benchmark models [18]. It is worth noting that the D(Xp1, X)) e, D1, X pp)
Gaussian assumption in time series forecasting has been widely C; = : : @)
used in the literature. In [9][27], it has been demonstrated that DX gy Xp—1)y v s P(Xp—pgy X—pr)
even if the actual error distribution is hon-Gaussian, the time A = O(x, xp) (8)
series models based on Gaussian distribution assumption can Xei = Veeicts Veeiozs oo Veiot) T (9)

still be applied with satisfactory performance. Further, the work ysyally, non-parametric methods avoid assuming the type of
of [21] uses Gaussian distribution of forecasting error faew probabilistic distribution, however, this GP based
demand quantify and produces satisfactory performance. TAi§orithm makes use of the noisy time series generation and
paper mainly focuses on the uncertainty propagation of th&sumes the joint distribution between them. The new
TLGP for multi-step iterative forecasting, aiming to providgrediction is noisy-correlated to the previous measurement.
another innovative way for reliable interval forecasts of winflherefore, it becomes natural and possible for the new
power generation. prediction to automatically follow Gaussian distributitimder
For a wind power system, denojgly-, as the K such circumstances, the three prediction intervals become
measurement of the available generation output sequence, gishrent: Intervdl (u — o, u + o), Intervalll (u — 20, u + 20)
x, asthe corresponding state vector for the time series modgl Intervalll (u — 30, u + 30), with the nominal probability
which is made up of the previous wind power generation dagh68%, 95% and 99.7%, respectively. Therefore, three nominal
then proportions are naturally given without quantile definition. As
Vi = F(x) + vy 1) in (5), the uncertainty can be analytically expressed, leading to
a framework of analytical interval forecasting. It should be
wherev,, is a random noise with, ~ N(0,v,). The objective noted that here every new prediction has its individual
of wind power forecasting is to predict the output time t uncertainty/variance, which is different from the statistical
based on available historic datasgfsY) . According to analysis over all the forecasting error.
Rasmussen [24], Gaussian Process could be derived for ghe assumption of Gaussian distribution for TLGP has been
system with the Gaussian noise in (1) based on the Bayesiaidated in TLGP [18]. The principles and properties for
inference. For the TLGP used in this work, it breaks the overgibbabilistic iterative multi-step forecasting are further derived,
forecasting range into temporal regions and adapts to the tissgaluated and compared with standard Gaussian distribution in
varying characteristic of the wind power generations. Thgis work.
proposed TLGP proposed dynamically uses a set of local
Gaussian Process models to approximate the process WNh MULTISTEP PROBABILISTIC ITERATION UNDERA RANDOM
nonlinear noise. Locally the process is modelled as a Gaussian INPUT
process, though the global function can be far from GaUSSiRn'Probabilistic estimation for random inputs
The amplitude and the distribution analysis of forecasting errors ) ) )
in [18] has verified the effectiveness of this model. _Technically speaking, the model input (state vector) of
Gaussian Process makes new probabilistic prediction in {$§id power prediction at time t, whicfs often made of
where A B andC, are covariance between variables. It givgy€vious measurements or previous predictions is assumed to
the mean value of the new prediction as well as the uncertafify @ random variable following a Gaussian distribution

associated in terms of variance. One of the nmugular X ~N(ux,Zy) and white noisev, is presented in the
covariance functionsis shown in (3) wherev,,v,, and measurementd he uncertainty associated with the randomness

is propogated in the new wind power prediction. In particular,
in iterative multi-step prediction, the new estimation will be
utilized for the next step prediction. Thus such uncertainty is

w,4 represent each element of the hyper-parameter v cémd
d;; is the Kronecker delta function.

P(y.|Y,X,6%x,) =N(BC;'Y,A— BC;'BT) (2) accumulated in each step armhaot be ignored
Inspired by the method used in [28], the new variance and
cov(yi,y;) = ®(x, %) ) mean under a random input could be obtained by Talor
= v, exp (_§2g=1wd (xi(d) —xj(d)) )+v0-5i}.(3) expansion which is derived in the Appendix and shown as
The ‘moving window’ forecasting technique as shown in (4) follows:
- (9) was employed in TLGP, where t represents the time m(x") = p(uy) (10)
instants of predictionSimilar to GP, TLGP not only generates X 5 1 0262(x")
the mean value of prediction in (4), but also provides the v(x*) = 0*(uy) + Tr {Zx* (E prerresd +
variance/uncertainty of the prediction for one-step ahead - e
forecasting in (5) a”—’f a”—’ff >} (1)
Veoq ox X' =p ox X' =p
~ ~ | e, wherem(x*) is the new mean output under random ingut
Je = u(x) = B 'Y, = B.CTH| 7 (4)  andis calculated by the meaf) defined in (4) ana(x*) is the
Veem new variance of output under random inptitwhich includes
o%(x,) = A, — B,C;'BF (5) @ new term in comparison with (5). The calculation of (11)

B, = (®(xp, Xo_y), @(Xp Xy_3), ) DXy, Xear))  (6) depends on the derivitives of the expected mean and variance
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prediction for TLGP, as shown in1@) and (13). Such (18)
uncertainty propagation rules under a random input apply U\}ﬁerecovi- is the cross-covariance
same to GP. J
O _ 0B 12) COVyj = COVVkmis Verk-)) (19
0xg ~ 0xg Therefore, it follows th N
9262 (x") 0B(x") _ 0B(x")" erefore, it follows tha,,, ~ N(m(x;,,), v(xeei) +
Pk -2 o Cy, o vy), Similar to the distribution calculation §f, ;.
xg0x; dazB(x*) e P200) (13)  Therefore, it can be concluded that to gét.;), Z,,,
- 2———Cy'B(x)T + —— must be updated at every step. The covariance matrix of next
ox,0x; 't 0x;0x; s . .
- b i step predictiorL,,, .., can be obtained based By, .. First, by
Here, the subscribtiod, e represent thdande™elements of ) J ] ,
the input vectarFor the square exponential covariance functid@meving the last column and the last rofvZ,,; , Xy,

@ in (3), the first order and second order partial derivatives gsults Second, fie new cross-covariance terms that appear in
B can be written in the following form shown (i) and (13. the first column of %, =~ can be obtained by

dB'(x") : , constrictingcov(y, i, X+ ) as (20):
6x* = U)d (xlii - .uxfi)Bl(.ux*) (14) gc (yt+] t+1g”(x( ))
d X' =g _ _ t+j
azBi(x*) . R = Cov(yt"'j’ xt"’j) - axt+j ‘ th+j (20)
a * a * = wd [_6116 + (x:i xt+L=th+j
*a0Xe X =p ' . (15) Thus, resulting in the variance matrix foy, ;.; shown in
— Iy ) We (Xe — Pyt )] B (iy) (19), whereR’ is obtained by removing the last element of R.
v(xp4;) +vo RT
. 2 * —
whereB! refers to thé™® element in B, an f’(x*) =0. Zxprjor = R’ 5! 2D
x;0x, Xt+j

. S . . . With the new variancev(x.,;) calculated, the new
B. Uncertainty propagatioim iterative multi-step forecasting . I . .
. ) . ) . prediction will give the three interval forecasts directly based
Multi-horizon forecasting can be effectively achieved by, the Gaussian distribution assumptidfhe uncertainty

employing the multi-step iterative forecasting, where the ngjopagation for iterative multi-step forecasting can be outlined
estimationy, together with its variance? will be used to 35 follows:

construct the new input,.,, and furtherfo make the next stép  step 1. For one-step ahead predictions, a zero matrix of
predictiony,.,, until the desired steps are achieved. In thigyariance is initialized. The mean and variance §f are
procedure, the uncertainty of the new estimafign will be  estimated by TLGP with deterministic inputs as in (4) and (5)
passed to the next inpaf, ;, 41, and further introduce additional  Step 2. For thgt™® (k > j > 0) step ahead prediction, the
variance to the next estimatigp, ;,1, thus the uncertainty is previous outpug,. ; is used to construct the new input vector

propagated and continuously accumulated. X+ j+1 and further predict the mean value 38f ;. ; using
At the F'step,x, ~ N(ty,, Zy, TLGP as defined in (4)
Ve o - 0 Step 3. Estimat® with (20). Remove the last element of R
xt~N< 5 l[ D (16) and add up the variancéx,, ;) + v, of 9.,;, leading to the
Applying TLGP it fo}llltgvlvstthat%t - N((r)n(xt),V(xt) +vy). construction ofa new variancely, ., of x¢4j41@s shown in
wherem(x,) equals the mean prediction in (4) an€k,) (2D).
equals the variance in (5) Step 4. Estimate the new varianeg(x,, 1) + v, Of
At the 29 step, the inputx,.; ~ N(iy,,,,Z,,,) With Fesjer With (11) whereX,. =%, ., . Thus, the mean and
randomnesss variance ofy,, ;,, can be used for the next step prediction.
m(x)] [v(x) +vy = 0 Step 5. Decide whether the desired horizon has been
xt+1~N( : l[ : D (17) reached. Ihot go to Step 2, otherwise terminate
Yeto-L 0 0

It can be obtained th@,; ~ N(m(x41), v(X¢s1) + v0), V. CASE STUDIES AND RESULT ANALYSIS
wherem(x still equals the mean in (4) considering th .
mFer1) d (4) . 9 ™Z Wind farm 4’ in Ireland
Taylor expansion [23]. However, the uncertaim,, ) is ) ) ) )
made of the variance under the determistic input in (5) and an”OWer generation data from a wind farm in Donegal in North

extra part is determined by the covariance maljx, of input West Ireland is used to analyze the uncertainty propagation in
X;,1 as shown in théppendix in Section VIl wind power forecasting with TLGH he influence of the North

At the k+1 stepx,,, ~ N(nyk,Z ) in detail as follows Atlantic sea wind and lake-hill breeze at this wind farm mmake

Fttk wind power generation more unpredictable and thus more

MXri-1)] [V Kpspr) + V9 - covy; convincing for any conclusion drawn from the study. The
N( : ] : : ) deterministic forecasting of this wind farm and the parameter
m(Xeyr—1) Covyq o V(Xppp_r) + g optimization procedure has been addressed in [29]. Wind

generation data of one year were collected up to June 2004,



averaged with a time resolution of 15 minutes, and th ! ‘ _‘ i ‘ '
normalized by the full capacity to predict the output of the fir . 1 . i
3 days in July 2004 as in Fig.lh [29], the data used was in _ *°/ 1 A, CA RS
unit of MWHTr representing the overall wind energy output in %0_6 L, E. . o b + ‘ A
quarter of hour, thus the wind generation in [29] has simil§ s 1l ', ! | 3 ¢ A
shape with Fig. 1 of this paper, but shows a fixed ratio of 0..z 0.4 |4 fe¥® t B" 14Y  "%540
Based on the existing point forecasting results from [29], tt & ﬁ W '.:»," o AR il *" 5
work investigates the uncertainty propagation of iterative mul 0.2 4 ¥ ° 1 ' k" " H
step forecasting and determines the interval forecasting rest e
o ‘ ‘ . ‘ .
1) Model training and mean value forecasting 0 50 100 150 200 250 300
The squared exponential covariance function is still used éo.z ' ' ' ' ‘
TLGP for wind power forecasting. The trial-and-error methc & 0 M%WMW“\WMW
is used to identify the optimal parameters (L, M) in TLGF*" o 50 100 150 200 250 300

However, in this work further tests were carried under differe . samples (13 minutes)

(L, M) settings and the best results are given in Table |. TH& 1- One step ahead prediction with TLGP in wiawi“A” [23]

Optlmal model W|th the |east multi_step errors iS (8 6) WhicﬁABLE Il THE IMPROVEMENT OFTLGP OVER BENCHMARK MODELS IN WIND
i i ; FARM ‘A’

also shows a satisfactory one-step ahead forecasting—aics

N . . . max mean max mean
performance. Such findings agree with the experiment settinggprovement RMSE RMSE MAE MAE
in [29]. The input vector is required to include measurementdersistence 15.7% 12.8% 18.0% 12.9%

GP 9.13% 6.2% 11.9% 8.72%

from 2 hours ahead to implement TLGP.
In [23], the deterministic forecasting results of TLGP were 1.4
plotted to compare the forecasting performance with other,,|
benchmark models. The forecasting metrics were evaluated
with root mean square error (RMSE) and mean absolute erg@r r
(MAE). Metric comparison has shown the effectiveness of o.s
TLGP for point forecasting. In order to better show the intervag 06
forecasting results, in this work the result of point forecassing i
plotted again in Fig.1 as [29]. Further analysis shows that the !
maximum normalized error could reach 0.33 while the averageo.2 [ifi!
is 0.11. Table Il shows that TLGP made over 6% and 12% |
improvement over the deterministic forecasting results of the o 50
.GP ‘?”d persistence mOd(.al §epar§1tely. The uncertginty inVOI\Iéiech The one-step probabilistic forecasting resiflt\” by TLGP. The red
In th,ls mean value prediction will be dlscussed in the neaégéhéd line represents the real measurements whileadedsarea.represents
section. The benchmark models such as persistence, ABMA e predicted intervals with different confidence.
and neural network will be referenced based on which the ] (@) (b)

0.4

150 200
Samples (15 minutes)

250 300

N

2) Analytical interval forecasts with TLGP 2
Fig. 2 shows the three predictive intervals for one-step aheddos

prediction. Regionl represents prediction interval | with

nominal confidence probability of 68%. Region 1 afd (© (d)

empirical error will be investigated and interval forecasts wil < _—
be implemented. £ 09 N B T
5 0 s T T~—0

£

s

together refer to prediction intervidl of 95%and Region 12 & 1 < /

and 3 together represent prediction intedvalwith nominal € ©5 . g o| P
confidence probability of 99.7%, as illustrated in Section 11l € | T~ ¥ este®? < —

In most cases, the real outputs represented by the dashedﬁt%ql5 §_2

line stay within Region |, which is the darkest region in the o 5 10 15 0 5 10 15

Steps Steps

center. However, some predictions leave Region | and enter

; ; ‘e A ; i i ~at Fig. 3. The uncertainty propagatiofi‘A’ at the ¥ sample and the 8 sample
Regionll or even Regioiil . This gives an intuitive indication The solid lines represent the bounds of confident regithe dashed line

of the three prediction intervals with different coverage rate. without marker shows the multi-step prediction andihed line with marker

TABLE | THE OPTIMAL MODEL PARAMETERS FORTLGP IN WIND FARM A’ Shows the real measurement

LM (6. 8) 84 (10,15)  (15,15) - i i -
One step MAE 00297 00095 00295 0.0295 3) Unce_rta_lnty propagz_itlon for multi-step forecasting _
One step RMSE 00369 0.0367 0.0367 00367 - Prgdlctlon uncertainty propagates and accumulate_s in
(L, M) (6, 6) (8,6) (10,8) (15, 10) iterative multi-step ahead prediction. The uncertainty,
Multi-step MAE 0.0555  0.0585  0.0562  0.0591 represented by std (standard deviatiomjreases in multi-step
Multi-step RMSE 0.0676 00674  0.0681  0.0713

ahead predictions which is clearly shown in.RgWhile (a)
and (b) show thet+ ¢ and u + 30 bounds of the 12 step
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predictions based on thé! fime instants respectively, (c) andFor example, the uncertainty increases dramatically at¥he
(d) show thosef the 8F'time instantsThe bounds are enlargedthe 111" and the 207 samples, due to the rapid increaseind
as the number of steps increases. Besideg, $h8o interval power generation just before these time instants. Further, other
(Interval lll) in (b) and (d) cover broader area than (a) and (@)vious large increasdéa uncertainty occur at the ¥7the
(Interval 1). Further, as shown in (a), th@ @al measurement 178", and the 248 points, which are caused by a sudden drop
leaves Interval,lbut stays within the Interval Il of (b), showingof wind power generation before those time instants. Less
less reliability in the interval forecasting of this point. Howevetncertainty is observed when the wind power generation is
in (c) and (d) all the predictions stay withboth boundsof relatively stable.
Intervall and Intervalll, showing the reliability of predictions  For twelve-step ahead predictions, the uncertainty is shown
at the 81 time instants. in Fig. 6. It shows a few significant peak values including some
Fig. 4 shows the comparison of the multi-step predictigroints developed from the one-step ahead uncertainty peak
uncertainty at different time instants based on the derivepoints in Fig. 5. For example, the73he 207" and the 249
uncertainty propagation rule presented earlier. The uncertaiptynts in Fig. 6 are developed from thé"7the 207, and the
distributions of the one-step ahead predictions are relativé48" points in Fig. 5. It is interesting that these uncertainty peak
stable and only exhibit small variations at different pointpoints are shifted as in the multi-step ahead predictions. Thus,
However, for multi-step ahead predictions (such d%si@s it appears that uncertainties accumulate and shift forward along
ahead), the uncertainty begins to undulate severely and siiehiterative multi-step forecasting horizon. Some of the one-
uncertainties escalate with the number of prediction steps. Tétisp peak uncertainties are averaged out in the twelve-step
uncertainty information can be used to estimate other quantié®ad predictions, such as thd'4111", and 178 points. On
of new predictions and can help to develop better plans fbe other hand, at some points, the uncertainty accumulates very
economic dispatch and unit commitment of wind power. fast to generate some small peaks in th& $&p ahead

1 ‘ ‘ ‘ ‘ \ \ predictions, such as the 1point in Fig.6.
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Fig. 6. Real measurement (top) and the corresporidirgiep uncertainty of
forecasting with TLGP (bottomyf wind farm ‘A’

Wind Power /Pn
o
o

248th | B. Overall generatioof Ireland
Regional wind power forecasting is important in terms of

o

77th . 178th | .
50 100 150 200 250 300

0
‘ ; : : wind penetrating, energy scheduling and power grid stabilizing
28 4T e A 7 within large inter or intra areas. The accurate forecasting of
%o.m"l .-"!- ‘?.,‘. Ic“,w"“}_}‘g“ iy oy ., re_zglonal wm_d power WI|| bene_flt th<=T co_operatlpn betwegn
£ oral ™ e - 'n"""“""'t,\,,.;.:"‘“"" ", "”.".,",r';mq | different regions for grid balancing, wind integration, security
2 YO ¢ “? of energy supply. Time series forecasting show its unique
012 | sdth sein oo 2am 1 advantage regarding the dispersed wind distribution across the
0 50 100 150 200 250 300 region while NWP becomes out of effect for forecasting power
Samples as a whole. In [23], the authors looked at the accuracy of using

Fig. 5. Real measurement (top) and the correspondiegtep uncertainty of

forecasting with TLGP (bottomyf wind farm ‘A’ TLGP for whole Ireland wind power forecasting. In this paper,

) ) ] o ] the interval forecasts will be further developed withM)
4)Uncertainty analysis at different prediction points remaining the same as (10, 14) to minimize the average error of
Fig. 5 shows the standard deviation and the rerﬁhlti-step forecasting.
measurements for one-step ahead predictions. It shows that thene interval forecasting results for the wind power of Ireland
uncertainty/std is less than 0.04, e.g. less than 4% of the power shown in Fig. 7. Similar teind farm ‘A’, it has three
capacity. This is a very close fit with the real measuremergc/)babilistic intervals corresponding to 3 different confidence

Every prediction point shows similar uncertainty. It can also els, but show more confident (condense) interval estimation
seen that with the changes between every two consecutyg,its

points, the uncertainty grows rapidly during ramping events.



Fig. 8 shows half of the width of interval | at different time VI. PROBABILISTIC EVALUATION AND DISCUSSIONS

instants and various prediction steps for Ireland. It shows t

the peak values happen at about the same time instants for

at Wind farm ‘A’ in Ireland

different time horizons and a small bump for one stépSharpness/uncertainty evaluation and comparison
forecasting may get accumulated and become a significant peaks one the of evaluation metrics of probabilistic forecasting,
for multi-step forecasting. This is similar to the pattern intervélie sharpness refers to the mean size of the interval in interval

forecast for windarm “‘A”’.
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121 b

Wind power interval forecasts/Pn

0 . . . . .
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Samples (15 minutes)
Fig. 7. The three-step interval forecasting resultdrelind by TLGP. The
marked read line represents the real measurements, anthé¢helmded area
represents intervals with different confidence with thiddle line representing
the mean of probabilistic forecasting

0.6 T T
1st step
— — — -4th step
05F 8thstep H
—+—— 12th step
c 04 1
o
B}
£
© 03[ ]
@
o
=
0.2 1
M i A k
W 1 oY U A A R Y A T s
0.1 Pl Y v x/\'.r.’\.;l".\"‘\,\ AR R R NAVESE VAR SN YAl

0 . I .
0 50 100 150 200

Samples (15 minutes)
Fig. 8. The uncertainty of Interval | for the testipoints at varied steps with
TLGP for wind power of Ireland

The uncertainty distribution over the investigated period f
the whole Ireland wind power forecasting show similar tren
with that of wind farm ‘A’, only with more confident and
condense interval forecasts due to the smooth change
generation The interval forecast results in this section showe
the capability of proposed network in approximatin
uncertainty propagation for iterative multi-step forecasting.
the following sections, the interval forecast results will t
further analysed and compared with other benchmark mod:
If the conclusions stand for this small wind farm, then it will b
also effective for the whole island.

forecasts [13]. The size of each interval in this work is

proportional to the std with a coefficient ¢ of 2, 4 and 6

respectively in (22) where k refers to the prediction steps. As
Interval 1l and Ill have a very high coverage rate of 95% and
99.7%, which accounts for the extreme error and outliers in the
prediction, we will take Interval | and compare the sharpness of
different methods. The sharpness of the other two intervals will
be proportional to that of Interval I. The sharpness comparison
of Interval | with respect to the multi-steps is shown in Fig. 9.

gk = %th\[:l COtyk|t (22)

In [18], several benchmark forecasting models have been
assessed, including the persistence model, ARMA and the
neural network model. In [15], the authors providad
parametric framework of analyzing the empirical errors of these
deterministic forecasting methods and employing the
uncertainty of error for interval forecasts. The forecasting error
of these benchmark models were analyzed and the parametric
interval forecasts were implemented with the standard deviation
representing the uncertainty. The probabilistic forecasting
results of these benchmark models are compared with those of
GP and TLGP. As the five models show significantly different
prediction ranges, two y-axes are used. The right represents the
performance of GP, and the left is for the other models as shown
in Fig. 9. The sharpness of persistence model, ARMA and
neural network models are far better than GP for the iterative
multistep forecasting and even comparable to TLGP for the first
step prediction. However, these models are inferior to TLGP for
multi-step interval forecasts as the error accumulates. As these
methods only generate overall empirical uncertainty estimation
over the time space, no prediction interval can be estimated for
each individual time instance.

0.5
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=G ARMA 1
—&8—FRBF
——GP
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harpness o
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0.3

Sharpness of TLGP/Persistence/ARMA/RBF

0.25 . . ; ‘ .

0 2 4 5 8 10 12
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Fig. 9 The sharpness diagram with respect to the horizons for wind farm ‘A’

A better look at the interval forecast of GP and its

comparison with TLGP is shown in Fig. 10 and Fig. 11

respectively. The variance of noigghas a significant impact



on the uncertainty accumulation rate. In the uncertainty by =a—a (23)
analysis, the optimized, in both TLGP and GP are

approximatelyv the same. The uncertainty propagates ver fasFmpiricaI probabilities and estimated uncertainty (i.e. std) at
bp y ' Y propag Y '8&¢h horizon for TLGP forecasting are shown in Tabld=or

in multi-step ahead predictions for GP. For the One_St%%ger prediction horizons, the empirical probabilities tend to

predictions in Fig. 11 (a), TLGP shows higher predlcnocrj]ecrease slowly. This is because for TLGP, the uncertainty (std)

uncertainty than GP almost at every testing point. This Res not accumulate as fast as prediction error as the mean

because TLGP employs less data in each moving window for - .
value propagates. The average empirical probability over

prediction, thus produce results with less confidence. However, . 0 0 0
for multi-step ahead forecasting, TLGP starts to outperform E;ferent forecasting steps ahead are 61.4%, 90.5%, and 99.5%

: . : in Interval I, Il and Ill, respectively for TLGP.
with smaller uncertainty from the"®step as shown in (b). P y
Furthermore, for the twe|ve-5tep ahead prediction, tAABLE 11l THE EMPIRICAL PROBABILITIESOF DIFFERENT INTERVALS AND THE
advantages of TLGP become more obvious, for example thg—AYERAGE OF PREDICED STDOFTLGP FOR WIND FARM'A

. ; ) e “'Prediction
mean uncertainty of GP is approximately 7, while it is @8 steps 1 2 3 4 5 6
for TLGP. This analysis confirms that uncertainty accumulateiveraged 0.1456 01498 01528 0.1562 0.1595 0.1633
much more slowly for TLGP. std
12 . . . . . . Interval | 68.8% 64.3% 64.6% 64.3% 64.3% 63.9%
—iststep Intervalll  95.4% 93.5% 93.5% 92.4% 91.3% 90.8%
iy -~ 4th step Intervallll  100%  100% 99.6% 99.6% 100%  100%
I -~ Bth step ] Prediction
i —+—12thstep steps 7 8 9 10 1 12
a8 -
5 A"Zrtzged 0.1673 0.1718 0.1765 01797 0.1833 0.1872
o
g g i Interval | 65.0% 60.5% 59.3% 55.9% 55.5% 50.9%
B Intervalll  90.5% 89.7% 88.6% 87.1% 86.3% 85.9%
I Intervallll  99.6% 99.6% 98.5% 98.9% 98.9% 98.9%
5 4 .
] K ™ TABLE IV THE EMPIRICAL PROBABILITIESOF DIFFERENT INTERVALS AND THE
ol i,. ] AVERAGE OF PREDICTED STODF GPFOR WIND FARM ‘A’
e icti
\JWNV "«&“WMME. Prediction 1 2 3 4 5 6
it ey et s steps
D 1
0 50 100 150 200 250 300 Averaged 1595 01609 02293 0.3304 0.4750 0.6809
Samples std
Fig. 10. The standard deviation distribution of forecastingaried steps with ~ Interval I~ 68.4%  71.8% 84.8% 94.42% 99.63% 100%
GP for wind farm ‘A’ Intervalll  94.8% 95.2% 99.3% 100%  100%  100%
0.2 (a) 1st step uncertainty Intervallll 99.6% 100% 100% 100% 100% 100%
. . A . Prediction 5 8 9 10 11 12
015 [ena, ol 19\ Mg, Sade s steps
01l ‘ . . . - Averaged 9805 14172 20548 29713 43041 6.2327
£ 0 50 100 150 200 250 300 std
£ o (b) 2nd step uncertainty Interval | 100%  100% 100%  100%  100%  100%
5 ‘ ‘ ‘ = Intervalll ~ 100%  100%  100%  100%  100%  100%
€o1s Intervallll  100% 100% 100% 100%  100%  100%
g 0.1 L L I L I TABLE V THE MEAN EMPIRICAL PROBABILITY AND RELIABILITY BIAS AT
g 0 50 100 150 200 250 300 THREEINTERVALS WITH DIFFERENT METHODS FOR WIND FARMA’
20 ‘ (c) 12th s‘tep uncertalrrty ‘ Methods
Interval | Intervalll Intervallll
Y e W T e NN TLGP 61.4% 90.5% 99.5%
OO 5:0 160 15‘0 2(‘)‘0 250 3(‘)0 G_P 93.2% 99.1% 99.97%
Samples (15 minutes) Empirical Persistence 94.9% 100% 100%
Fig. 11. The standard deviation comparison of TLGP and GRréd steps probability ARMA 94.6% 100% 100%
for wind farm ‘A’ RBF 94.6% 100% 100%
. e . . i 0, 0, 0,
2) The reliability evaluation and comparison NTO[n(:;aI :io/j f‘zs %9'27;’
. . . . . (1] . 0 . (1]
Since th.e !ntervals have been deflngd in terms o_f the std.of -_— GP 25 206 4.1% -0.3%
each prediction (for one-step or multi-step), the interval it tl)i;l ity persistence  -26.9% 5% -0.3%
varying at d|fferent time instants and h_orlz_ons. Thg probability °'as ARMA 26.6% 5% 0.3%
of the real wind power generation falling in each interval can RBF -26.6% 5% -0.3%

be obtained. For a good prediction, the empirical (i.e. observed) . o ] ]
probability and the defined coverage rate (i.e. nominal Empirical probabilities and estimated uncertainty (standard

probability) should be as close as possible. This propertydg\/iation) at each horizon for GP are shown in Table IV.

referred to as reliability. Moreover, bias or deviatibp has Conversely, the probabilities in each region tend to increase as

been defined as the difference between the nomirﬂl_ghf fqrett:)astmg h?rlzcgnpmcr:]reases and stabilize f(ljnally at 10|O%'
probabilities « and the empirical probabilitieg;, as an IS 1S because for the uncertainty (i.e. std) accumulates

evaluation metric for reliability [13]. very fa_s_t SO althou_gh the forecasting error ha_s enla_rged, the
probability of the wind power generation falling in the interval
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is still increased. The average probabilities with respect Earstly, as shown in Table V is the averaged reliability over 12
different step forecasting in every region are 93.2 %, 99.1% dacdecasting horizons. It is apparent that the minor difference of

99.97% in Interval I, Il and lll, respectively for GP.
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Fig. 12 The reliability comparison of TLGP with other benchmarkdele for

wind farm ‘A’
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their reliability trends, as reflected in the first figure of Fig. 12,
is filtered out while averaging the reliability scores. Se¢gond
the distribution of the errors tends to be too long-tailed, so when
the standard deviation is used to evaluate the mean reliability,
the interval forecasting becomes over-confident with 100%
reliability. This reveals the difficulty of parametric interval
forecasts

B. Overall generation of Ireland

1) Sharpness/uncertainty evaluation and comparison

To evaluate the sharpness of interval forecast for the overall
wind generation of Ireland, the same method was implemented
for Interval |1 and compared with the other benchmark models
as in part A. GP again shows quick uncertainty accumulation
but the trend slows down in comparison with that of wind farm
‘A’. The sharpness of TLGP shows slowest accumulation with
iterative multi-step forecasting and generates sharpest interval
forecasts. Similar to part A, we will further illustrateeth
detailed interval forecasts at various time instants for multi-
horizons with GP and the comparison with that of TLGP in Fig.
14 and Fig. 15. Although TLGP shows more uncertainty for one
step forecasting due to the limited data used, but the uncertainty
accumulates is the slowest among the five models used for
iterative multi-step forecasting. The sharpness comparison
show very similar resultwith that of wind farm ‘A’.

2) The reliability evaluation and comparison

The reliability of different interval forecast methods are
evaluated and compared in this part. Similar to the results for
wind farm ‘A’, the reliability of TLGP shows most Gaussian-
like behavior, which verifies the assumption of local Gaussian
Processes in each time window. The reliability trend of

The abOVe Observations are further i”ustrated in F|g 12. Taqﬁerent methods are Shown in F|g 16 and the re“ab”'ty bias
empirical probability resultsof TLGP tend to decrease withfor three predicted intervals is listed in Table VI. It is worth
multi-stepswhereas for GP they tend to increase and for othgkting the interval forecasts with TLGP show better qualities,
benchmark models, they tend to stay the same. Furthermoregthg. sharpness and reliability bias for the wind generation of
uncertainty accumulation for all the benchmark models are v@gMole Ireland in comyrison with that of a small wind farm ‘A’
fast and the confidence probability approaches 100% Vefiye to the smooth change of wind generation in a large region.

quickly. The large empirical uncertainty f@Pis caused by the
significant predicted variancat each point as shown in Fig.9
The black dashed line represents the ideal coverage probabilitﬁr 09
for ‘perfect’ probabilistic forecasting. It shows in the Interval I,
interval forecasting with TLGP shows much better reliability £ ,, |
than withGP or any other reference models. While the refenceg
models usually show bigger coverage rate than the nominalg
TLGP is displaying a smaller one indicating a slow uncertaintys 3|
accumulation over the iterative multi-steBy calculating the
overall mean absolute bias and mean empirical probability,%
Table V shows that the reliability of TLGP outperforms that of &
GP and other models greatly in Interval | and performs aboutg
the same in Interval Il & Ill. This indicates that the estimated @ 01|

0.55 2.5

T
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Sharpness of GP
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uncertainty of the probabilistic forecasting for TLGP fits the (.05 : ; : . - —o

data better. This is another advantage of TLGP. It is worth
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nOFiCihg that the three.benChmark models have_ qui.te .Similkf’d'. 13 The sharpness diagram with respect to the ftiagehorizons for
reliability although their sharpness as shown in Rifj.iS wind generation of Ireland

apparerly different. This is probably due to two reasons
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results were evaluated after TLGP and GP were applied to
R ziz short-term wind power forecasting in a wind farm in Ireland and
2r 8th step | | for the whole Ireland. Three main conclusiaa be drawn
—— f2th step from this work. First, TLGP shows more accurate and more
confident interval forecast for smoother and more steadily

| changing wind generation with an exception for ramp events
W forecasting. Uncertainties show up mainly and accumulate
L 1 significantly at the ramping points, and they shift forwarthas

forecasting horizon expands iteratively. Secondly, for one-step
forecasting, TLGP shows higher prediction uncertainty because
0571 1 a limited number of data are used, but the uncertainties
accumulate much more slowly for iterative multi-step
———————————————————— forecasting. It generates higher reliability over the named three
0 50 100 150 200 intervals and better sharpness on the shape of distribution,
Samples (15 minutes) which makes the probabilistic forecasting with TLGP more
Fig. 14. The standa_rd deviation distribution of &asting at varied steps with trustworthy. More importantly, the reliability of proposed
GP for wind generation of Ireland . o .
method approaches that of standard Gaussian distribution
(a) 1st step uncertainty which proves the assumption that TLGP is more Gaussian-like.
WW Such analytical method of analyzing the uncertainty
; 1 propagation for the iterative multi-step wind power forecasting
‘ L L L L has not been proposed before. Hopefully, it will stimulate
20 40 60 B0 100 120 140 160 180 200 research for other methods under investigation.

(b) 2nd step uncertainty
015 1 VIIl. APPENDIX
' m ftﬁwdml :C m‘ :: x‘jmm‘“ ] A The mean value estimation under a random input

°© 20 4 60 80 100 120 140 160 180 200 With the law of iterated expectations, the new mean output
(c) 12th step uncertainty

N
[9)]
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£1s WMWWW is the expectation of the old mean function.
i - m(x") = Ep[u(x")] (24)
gOS[ A A wol The first order Taylor expansion can be written as follows,
5 % 20 a0 0 s 100 120 140 160 180 200 * )|

p(x®) = ppye) +

) =)+ 0l )
=iy
Fig. 15. The standard deviation comparison of TLGP and GRrd steps (25)
for wind generation of Ireland If its first order differentiation is finite around, thus we have
TABLE VI THE RELIABILITY BIAS AT THREE INTERVALS WITH DIFFERENT m(x*) = u(u,) in (10) which means the new mean stays the

o tr?"EdTHODS FOR WIND GENERATION OFRELAND same with the forecasting result under deterministic input.
ethods Interval | Intervalll Intervallll

Samples (15 minutes)

B. The variance estimation under a random input

TLGP 6% 0.06% 0.01% With the law of conditional variance, the new variance of
Reliabilit cP ~26.7% “45% 0.3% output will follow
S Persistence  -29% 5% -0.3% . s .
ARMA -28.8% 5% 0.3% v(x") = B (0®(x) + Vare (u(x?) (26)
RBE -28.5% 5% -0.3% Expanding the first term with Taylor Series in second order
gives
VIl. CONCLUSIONS . 902" .
_ _ _ P =)+ | (e +
Both TLGP and GP are convenient for interval forecasting N * Ty
i i ile 1, « 8%0%(x") ., *
by natl_Jre with no need to calcqlate e.ach. of the glngle quan.t|le E(x — )T - c*fa iT (" — )| +o(llx — e I®)
numerically. For the non-Gaussian noise in the wind generation xox X =py
which is generated by the non-linear transformation between (27)

wind speed and wind power, TLGP was proposed to Thus we have the following expectation

approximate Gaussian-like behavior in each short time window. ) s

In this work, the uncertainty propagation of the iterativeE,(c?(x")) ~ 6%(uy) + Eyr <§ (x" — ux*)T%(x* -
multistep forecasting was analyzed for the first time and the

ana!ytmal interval fprgcasts were given for gach step. Wh|le th!(;x*)) = 62(up) + 1 Tr { aZGZ(x;)
traditional probabilistic approach relies mainly on statistically 2 ox*ox*
analyzing the forecasting error, this method provide one way of
looking at the uncertainty variation at different time instants for
different forecasting horizons. The probabilistic forecasting

. Zx*} (28)
X =

Substitute 25) in the second term o26) , it follows
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