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 
Abstract—Probabilistic wind power forecasting has become an 

important tool for optimal economic dispatch and unit 
commitment of modern power systems with significant renewable 
energy penetrations. Ensemble forecasting based on Monte Carlo 
simulation has been widely adopted by grid operators, but other 
probabilistic approaches, such as multi-step iterative wind power 
forecasting have not yet been fully explored. The associated 
uncertainty analysis is an important yet challenging issue in this 
area. This paper proposes to use an analytic interval forecasting 
framework to estimate the forecasting uncertainty and its 
propagation with multi-steps for two wind farms based on the 
Temporally Local Gaussian Process (TLGP) model. The key 
findings confirm that TLGP forecasting not only has better 
accuracy but is also more reliable and sharp than other 
benchmark models. This work provides an innovative analytical 
framework for iterative multi-step interval forecasts.  

Index Terms—probabilistic forecasting, Gaussian process,  
uncertainty propogation, wind energy 

 

I.  NOMENCLATURE 

The key symbols used in the paper are defined below for 
quick reference while others are defined after their first 
appearance as required.  ࢞    A deterministic input (state vector) 

(X, ܻ ሻ  The available training dataset כߠ   The optimal hyperparameters ܤǡ ௒ǡܥ ௧  The cross-covariance vectorܤ  כ࢞ ሻ  The new mean output under random inputכ࢞ሺ݉ כ࢞ The covariance matrix of   כ࢞ȭ כ࢞  The expectation of   כ࢞ߤ A column vector of random input    כ࢞ Ȱ    The covariance function  ࢞ ሻ  The variance function of prediction under࢞ଶሺߪ ࢞ ሻ  The mean function of prediction under࢞ሺߤ ௧  The covariance matrixܥ
v (כ࢞)  The new variance of output under random כ࢞ܧ כ࢞[f]  The expectation of ݂ under כ࢞ 
Var (·)  The analytical definition of variance 
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II.  INTRODUCTION 

ccurate wind power forecasting plays a key role in modern 
power systems to mitigate the impacts of the stochastic 

and variable nature of wind energy [1][2]. Probabilistic 
forecasting has been widely used in the research of energy 
storage [3], reserve quantification [4], unit commitment and 
market trading [5]. In [6], probabilistic forecasting was used to 
estimate dynamic operation reserve requirements based on the 
uncertainty information in each forecasting interval. It was 
found that probabilistic wind power forecasting, together with 
a proper demand dispatch plan, can contribute significantly to 
the efficient and economic operation of electricity markets and 
improve unit commitment. In [7], optimal bidding strategies 
were developed based on the probabilistic forecasting and 
sensitivity modelling, which increase revenues for stakeholders 
and maximize the benefits of wind power generation. In [8] it 
was shown that the uncertainty assessment of wind power 
prediction using local quantile regression benefits the grid 
operations when incorporated in real-time energy management 
systems.  

Machine learning methods have been used in probabilistic 
wind power forecasting including the parametric methods such 
as extreme learning machine (ELM) [9], sparse vector 
autoregressive (sVAR) [10], fuzzy neural networks [11] and the 
nonparametric method such as the adaptive resampling [12]. 
The evaluation metrics of probabilistic forecasting have been 
defined including reliability, sharpness and the unique skill 
score [13]. There are several typical forms of probabilistic 
forecasting: 1) probability distribution function (p.d.f) and 
cumulative distribution function (c.d.f.); 2) quantiles and 
intervals; 3) discrete probabilities; 4) moments of probability 
distribution [14]. Among them, interval forecasts give a range 
of intervals within which the observed variable is expected to 
fall in with the pre-defined probabilities. The current interval 
forecasts techniques include empirical error based methods, 
such as the parametric method [15] which assumes the shape of 
error distribution and the nonparametric method [12] which 
does not. Both kinds of empirical approaches assume that future 
uncertainty can be expressed from the recently witnessed 
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behavior of the point prediction method and the error of point 
forecasting are employed for further analysis. However, the 
resulted confidence intervals do not necessarily cover the 
measurements, which is not in favor of the above assumption. 
The other type of interval forecast is the direct interval forecast 
[16-17]. The intervals are given without the prior knowledge of 
forecasting errors. In [16], the prediction intervals and the 
corresponding confidence levels are predicted by directly 
optimizing the reliability and sharpness with Extreme Learning 
Machine based methods. Only time series wind generation data 
is employed for 90%, 95% and 99% interval forecasts to ensure 
computational efficiency for hourly ahead forecasting. In [17], 
the direct interval forecast is developed based on neural 
networks for 4 fixed very short-term horizons with a confidence 
probability of 90%. However, these methods train the model 
separately for multi-horizon point forecasting and bring in 
additional complex computation in the multi-horizon interval 
forecasts. Therefore, an iterative way of implementing the 
probabilistic interval forecasts becomes necessary in terms of 
efficiency. This paper proposes an iterative interval forecast 
method based on a variant of Gaussian Process. It analyses how 
the uncertainty propagates and accumulates with iterative 
multi-step forecasting for the first time and the analytical 
expression of the uncertainty for each prediction horizon is 
derived. The results are evaluated and compared with other 
benchmark models. Considering the computing-efficiency of 
the iterative forecasting, this TLGP based interval forecast will 
benefit the real-time power system operation and management 
due to its high accuracy, reliability and efficiency.   

TLGP is a non-parametric method proposed to adapt to the 
time-varying characteristic of the wind power forecasting, to 
enhance the local forecasting accuracy of the Gaussian Process 
(GP) and to reduce the computational demand [18]. Moreover, 
TLGP like GP generates not only the mean value of the 
prediction for a certain horizon but also the variance 
representing the uncertainty of the new prediction. In other 
words, it provides the prediction intervals with the lower and 
upper bound and the predefined probability of falling in the 
interval. TLGP is naturally tuned for interval forecasts.  

For multistep forecasting, the iterative method estimates the 
next wind output and employs that estimate for the further 
forecasting step. It eliminates intensive re-computation, 
reducing the computational time and thus increasing the 
efficiency [19]. The relevance of uncertainty propagation in 
interval forecasting using iterative multi-step forecasting for 
more accurate wind power forecasting is studied with a case 
study of a wind farm in Ireland. The results are then evaluated 
using two metrics, namely reliability and sharpness, for 
probabilistic predictions in wind power forecasting [13]. 

The remainder of the paper is organized into six sections. 
Section III introduces the framework of analytical interval 
forecasting using the TLGP. Section IV develops the 
uncertainty propagation for iterative multi-step TLGP under 
random inputs. Section V presents the results and analysis of a 
case study. Section VI discusses the probabilistic evaluations 
considering the case study and Section VII concludes the paper. 
The Appendix in Section VIII provides the Taylor expansion 

used to estimate the mean value and the variance under a 
random input. 

III.  A NALYTICAL INTERVAL FORECASTS WITH TLGP  

There has been a lot of debates over the shape of the 
predictive error distribution and the correct assumptions to 
make for the wind power forecasting. In [20], Numerical 
Weather Prediction (NWP) method was used to predict wind 
speed first, and the wind power was obtained through the wind 
turbine power curve. It was widely recognized that the 
conditional distribution of wind power forecasting errors based 
on weather condition and wind speed follows strongly a non-
Gaussian distribution due to the transformation of the wind 
speed to wind power, though in [21], Gaussian distribution was 
used to represent the wind power forecasting error for systems 
with significantly installed wind capacity, and a new approach 
was proposed to quantify the demand. In [22] the authors 
employed a persistence model for wind power forecasting and 
found that the predictive error was too fat-tailed to be Gaussian, 
and Beta distribution was used to fit the probability distribution. 
An energy storage system was designed to reduce the 
uncertainty. In [23], a generalization of the logit-Normal 
distribution was introduced in auto regression (AR) based 
models to describe the double-bounded nature of wind power. 
However, it should be noted that two variables are discussed 
above, namely the predictive error and the wind generation 
output. Generally speaking, the global distribution of the wind 
power generation is too skewed to be Gaussian empirically, and 
the global forecasting error based on the wind turbine working 
curve would not be Gaussian either.  

The Gaussian Process assumes Gaussian noise in the 
observations [24], the non-linear relationship between the wind 
speed and the resultant wind power implies that this assumption 
may no longer be valid. However, the wind turbine working 
curve can be approximated by a series of piecewise linear 
segments and for each linear segment of the working curve, a 
Gaussian Process can be assumed. Thus, the wind power 
dynamics can be modelled by multiple local Gaussian 
Processes. The original local Gaussian Process was proposed in 
[25] where the local data within the Euclidean space are 
employed for local regression. For time series wind power 
forecasting where the system exhibits strong time-varying 
features and most recent measurements are mostly correlated to 
the following short-term generations, the TLGP proposed in 
[18] where the temporally local data within a moving window 
are utilized for short-term wind power forecasting, has shown 
to have a superior performance in comparison with existing 
approaches. Within the short moving window, the wind turbine 
working curve will exhibit linear property rather than a 
nonlinear one, thus the temporally local Gaussian Process is 
well applicable for such situations. For the scenarios where the 
wind power generation changes dramatically and a ramping 
event occurs, then a hybrid method combining the most recent 
measurements and the similar historical data has been proposed 
[26]. The statistical analysis of the forecasting errors in the form 
of kurtosis and skewness of the distributions showed that TLGP 
generates the most Gaussian-like uncertainties in comparison 
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with other benchmark models [18]. It is worth noting that the 
Gaussian assumption in time series forecasting has been widely 
used in the literature. In [9][27], it has been demonstrated that 
even if the actual error distribution is non-Gaussian, the time 
series models based on Gaussian distribution assumption can 
still be applied with satisfactory performance. Further, the work 
of [21] uses Gaussian distribution of forecasting error for 
demand quantify and produces satisfactory performance. This 
paper mainly focuses on the uncertainty propagation of the 
TLGP for multi-step iterative forecasting, aiming to provide 
another innovative way for reliable interval forecasts of wind 
power generation.  

For a wind power system, denote ݕ௞ȁ௞ୀଵே   as the kth 
measurement of the available generation output sequence, and ࢞௞ as the corresponding state vector for the time series model 
which is made up of the previous wind power generation data, 
then 

௞ݕ  ൌ ݂ሺ࢞௞ሻ ൅  ௞ (1)ݒ

where ݒ௞ is a random noise with ݒ௞ ׽ ܰሺͲǡ  ଴ሻ. The objectiveݒ
of wind power forecasting is to predict the output ݕ௧ at time t 
based on available historic datasetsሺܺǡ ܻሻ . According to 
Rasmussen [24], Gaussian Process could be derived for a 
system with the Gaussian noise in (1) based on the Bayesian 
inference. For the TLGP used in this work, it breaks the overall 
forecasting range into temporal regions and adapts to the time-
varying characteristic of the wind power generations. The 
proposed TLGP proposed dynamically uses a set of local 
Gaussian Process models to approximate the process with 
nonlinear noise. Locally the process is modelled as a Gaussian 
process, though the global function can be far from Gaussian. 
The amplitude and the distribution analysis of forecasting errors 
in [18] has verified the effectiveness of this model. 

Gaussian Process makes new probabilistic prediction in (2) 
where A, B and ܥ௒ are covariance between variables. It gives 
the mean value of the new prediction as well as the uncertainty 
associated in terms of variance. One of the most popular 
covariance functions is shown in (3) where ݒଵǡ ଴ǡ  and ߱ௗݒ  represent each element of the hyper-parameter vector ߠ, and ߜ௜௝ is the Kronecker delta function. ܲሺݕ௧ȁܻǡ ܺǡ ǡכߠ ௧ሻ࢞ ൌ ܰሺܥܤ௒ି ଵܻǡ ܣ െ ௒ିܥܤ ଵ்ܤሻ             (2) cov൫ݕ௜ ǡ ௝൯ݕ ൌ Ȱ൫࢞௜ ǡ ௝൯ ൌ࢞ ଵݒ exp ൬െ ଵଶ σ ߱ௗ ቀ࢞௜ሺ݀ሻ െ ௝ሺ݀ሻቁଶ஽ௗୀଵ࢞ ൰ ൅ݒ଴ ή  ௜௝(3)ߜ

The ‘moving window’ forecasting technique as shown in (4) 
- (9) was employed in TLGP, where t represents the time 
instants of prediction. Similar to GP, TLGP not only generates 
the mean value of prediction in (4), but also provides the 
variance/uncertainty of the prediction for one-step ahead 
forecasting in (5).  

ො௧ݕ ൌ ௧ሻ࢞ሺߤ ൌ ௧ିܥ௧ܤ ଵ ௧ܻ ൌ ௧ିܥ௧ܤ ଵ ൮  ௧ିெ൲         (4)ݕڭ௧ିଶݕ௧ିଵݕ

௧ሻ࢞ଶሺߪ ൌ ௧ܣ െ ௧ିܥ௧ܤ ଵܤ௧் ௧ܤ (5)                        ൌ ሺȰሺ࢞௧ ǡ ௧ିଵሻǡ࢞ Ȱሺ࢞௧ ǡ ௧ିଶሻǡ࢞ ǥ ǡ Ȱሺ࢞௧ ǡ  ௧ିெሻሻ    (6)࢞

௧ܥ ൌ ൥ Ȱሺ࢞௧ିଵǡ ௧ିଵሻǡ࢞ ǥ ǡ Ȱሺ࢞௧ିଵǡ ௧ିெǡ࢞Ȱሺ  ڭ              ڰ              ڭ ௧ିெሻ࢞ ௧ିଵሻǡ࢞ ǥ ǡ Ȱሺ࢞௧ିெ ǡ ௧ܣ ௧ିெሻ൩        (7)࢞ ൌ Ȱሺ࢞௧ ǡ ௧ି௜࢞ ௧ሻ                                (8)࢞ ൌ ሺݕ௧ି௜ିଵǡ ௧ି௜ିଶǡݕ ǥ  ௧ି௜ି௅ሻ୘           (9)ݕ
Usually, non-parametric methods avoid assuming the type of 

new probabilistic distribution, however, this GP based 
algorithm makes use of the noisy time series generation and 
assumes the joint distribution between them. The new 
prediction is noisy-correlated to the previous measurement. 
Therefore, it becomes natural and possible for the new 
prediction to automatically follow Gaussian distribution. Under 
such circumstances, the three prediction intervals become 
apparent: Interval I  ሺߤ െ ǡߪ ߤ ൅ Interval II ,(ߪ  ሺߤ െ ǡߪʹ ߤ ൅  (ߪʹ
and Interval III ሺߤ െ ǡߪ͵ ߤ ൅  with the nominal probability ,(ߪ͵
of 68%, 95% and 99.7%, respectively. Therefore, three nominal 
proportions are naturally given without quantile definition. As 
in (5), the uncertainty can be analytically expressed, leading to 
a framework of analytical interval forecasting. It should be 
noted that here every new prediction has its individual 
uncertainty/variance, which is different from the statistical 
analysis over all the forecasting error. 

The assumption of Gaussian distribution for TLGP has been 
validated in TLGP [18]. The principles and properties for 
probabilistic iterative multi-step forecasting are further derived, 
evaluated and compared with standard Gaussian distribution in 
this work. 

IV.  MULTISTEP PROBABILISTIC ITERATION UNDER A RANDOM 

INPUT 

A.  Probabilistic estimation for random inputs 

Technically speaking, the model input כ࢞  (state vector) of 
wind power prediction at time t, which is often made of 
previous measurements or previous predictions is assumed to 
be a random variable following a Gaussian distribution ̱ܰכ࢞ሺכ࢞ߤ ǡ ȭכ࢞ሻ  and white noise ݒ଴  is presented in the 
measurements. The uncertainty associated with the randomness 
is propogated in the new wind power prediction. In particular, 
in iterative multi-step prediction, the new estimation will be 
utilized for the next step prediction. Thus such uncertainty is 
accumulated in each step and can not be ignored.   

Inspired by the method used in [28], the new variance and 
mean under a random input could be obtained by Talor 
expansion which is derived in the Appendix and shown as 
follows:   ݉ሺכ࢞ሻ ൌ ሻכ࢞ሺݒ ሻ                                 (10)כ࢞ߤሺߤ ൌ ɐଶሺכ࢞ߤሻ ൅ Tr ቊȭכ࢞ ቆଵଶ  డమ஢మሺכ࢞ሻడכ࢞డሺכ࢞ሻࢀ ቚכ࢞ୀఓכ࢞ ൅

డఓכ࢞డכ࢞ ቚכ࢞ୀఓכ࢞୘ డఓכ࢞డכ࢞ ቚכ࢞ୀఓכ࢞ቇቋ        (11) 

where ݉ ሺכ࢞ሻ is the new mean output under random input כ࢞, 
and is calculated by the mean ߤ() defined in (4) and ݒሺכ࢞ሻ is the 
new variance of output under random input כ࢞, which includes 
a new term in comparison with (5). The calculation of (11) 
depends on the derivitives of the expected mean and variance 
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prediction for TLGP, as shown in (12) and (13). Such 
uncertainty propagation rules under a random input apply the 
same to GP. 

 
כௗ߲࢞כ࢞ߤ߲ ൌ כௗ࢞ሻ߲כ࢞ሺܤ߲  ௒೟ିଵܥ ௧ܻ (12) ߲ଶɐଶሺכ࢞ሻ߲࢞ௗכ כ௘߲࢞   ൌ െʹ כௗ࢞ሻ߲כ࢞ሺܤ߲ ௒೟ିଵܥ െכ௘࢞ሻ்߲כ࢞ሺܤ߲ ʹ ߲ଶܤሺכ࢞ሻ߲࢞ௗכ כ௘߲࢞ ሻ்כ࢞ሺܤ௒೟ିଵܥ  ൅ ߲ଶȰሺכ࢞ሻ߲࢞ௗכ כ௘߲࢞    (13) 

Here, the subscribtion ݀ǡ ݁ represent the ݀୲୦and ݁ ୲୦elements of 
the input vector. For the square exponential covariance function Ȱ in (3), the first order and second order partial derivatives of 
B can be written in the following form shown in (14) and (15). ߲ܤ௜ሺכ࢞ሻ߲࢞ௗכ ቤכ࢞ୀఓכ࢞ ൌ ߱ௗሺ࢞ௗ௜ െ כ೏࢞ߤ ሻܤ௜ሺכ࢞ߤሻ (14) 

 

߲ଶܤ௜ሺכ࢞ሻ߲࢞ௗכ כ௘߲࢞ ቤכ࢞ୀఓכ࢞ ൌ ߱ௗሾെߜௗ௘ ൅ ሺ࢞ௗ௜െ כ೏࢞ߤ ሻ߱௘ሺ࢞௘௜ െ כ೐࢞ߤ ሻሿܤ௜ሺכ࢞ߤሻ  (15)  

where ܤ௜ refers to the ݅୲୦ element in B, and 
డమ஍ሺכ࢞ሻడ࢞೏כ డ࢞೐כ   ൌ ͲǤ 

B.  Uncertainty propagation in iterative multi-step forecasting 

Multi-horizon forecasting can be effectively achieved by 
employing the multi-step iterative forecasting, where the new 
estimation ݕො௧  together with its variance ߪ௧ଶ  will be used to 
construct the new input ࢞௧ାଵ and further, to make the next step 
prediction ݕො௧ାଵǡ  until the desired steps are achieved. In this 
procedure, the uncertainty of the new estimation ݕො௧ା௝ will be 
passed to the next input ࢞௧ା௝ାଵ, and further introduce additional 
variance to the next estimation ݕො௧ା௝ାଵ, thus the uncertainty is 
propagated and continuously accumulated.  

At the 1st step, ࢞௧ ׽ ܰ൫࢞ߤ೟ ǡ ȭ࢞೟൯   
௧̱ܰ࢞  ൭൥ ௧ାଵି௅൩ݕڭ௧ݕ ǡ ൥Ͳ ڮ Ͳڭ ڰ Ͳڭ ڮ Ͳ൩൱ (16) 

Applying TLGP it follows that ݕො௧ ׽ ܰሺ݉ሺ࢞௧ሻǡ ௧ሻ࢞ሺݒ ൅  ,଴ሻݒ
where ݉ ሺ࢞௧ሻ  equals the mean prediction in (4) and ݒሺ࢞௧ሻ 
equals the variance in (5).  

At the 2nd stepǡ  the input ࢞௧ାଵ ׽ ܰ൫࢞ߤ೟శభ ǡ ȭ࢞೟శభ൯  with 
randomness is 

௧ାଵ̱ܰ࢞  ൭൥݉ሺ࢞௧ሻݕڭ௧ାଶି௅൩ ǡ ൥ݒሺ࢞௧ሻ ൅ ଴ݒ ڮ Ͳڭ ڰ Ͳڭ ڮ Ͳ൩൱ (17) 

It can be obtained that ݕො௧ାଵ ׽ ܰሺ݉ሺ࢞௧ାଵሻǡ ௧ାଵሻ࢞ሺݒ ൅  ,଴ሻݒ
where ݉ ሺ࢞௧ାଵሻ  still equals the mean in (4) considering the 
Taylor expansion [23]. However, the uncertainty ݒሺ࢞௧ାଵሻ  is 
made of the variance under the determistic input in (5) and an 
extra part is determined by the covariance matrix ȭ࢞೟శభ of input ࢞௧ାଵ as shown in the Appendix in Section VIII.  

At the k+1 step, ࢞௧ା௞ ׽ ܰ൫࢞ߤ೟శೖ ǡ ȭ࢞೟శೖ൯ in detail as follows 

ܰ ൭൥݉ሺ࢞௧ା௞ିଵሻ݉ڭሺ࢞௧ା௞ି௅ሻ൩ ǡ ൥ݒሺ࢞௧ା௞ିଵሻ ൅ ଴ݒ ڮ covଵ௅ڭ ڰ cov௅ଵڭ ڮ ௧ା௞ି௅ሻ࢞ሺݒ ൅  ଴൩൱ݒ

(18) 

where cov௜௝ is the cross-covariance 

 cov௜௝ ൌ covሺݕ௧ା௞ି௜ ǡ  ௧ା௞ି௝ሻ (19)ݕ

Therefore, it follows that ݕො௧ା௞ ׽ ܰሺ݉ሺ࢞௧ା௞ሻǡ ௧ା௞ሻ࢞ሺݒ ൅ݒ଴ሻ, similar to the distribution calculation of ݕො௧ାଵ.  
Therefore, it can be concluded that to get ݒ൫࢞௧ା୨൯ , ȭ࢞೟శೕ 

must be updated at every step. The covariance matrix of next 
step prediction ȭ࢞೟శೕశభ can be obtained based on ȭ࢞೟శೕ. First, by 

removing the last column and the last row of  ȭ࢞೟శೕ  , ȭ࢞೟శೕᇱ  

results. Second, the new cross-covariance terms that appear in 
the first column of ȭ௫೟శೕశభ  can be obtained by 

constricting cov൫ݕ௧ା௝ ǡ ܴ :௧ା௝൯ as (20)࢞ ൌ cov൫ݕ௧ା௝ ǡ ௧ା௝൯࢞ ൌ ௧ା௝࢞௧ା௝൯߲࢞൫ߤ߲ ቤ࢞೟శ೔సഋ࢞೟శೕ ȭ࢞೟శೕ (20) 

Thus, resulting in the variance matrix for ࢞௧ା௝ାଵ shown in 
(19), where ܴ Ԣ is obtained by removing the last element of R.  ȭ࢞೟శೕశభ ൌ ቈݒ൫࢞௧ା௝൯ ൅ ଴ݒ ܴᇱ୘ܴԢ ȭ࢞೟శೕᇱ ቉. (21) 

With the new variance ݒሺ࢞௧ା௞ሻ calculated, the new 
prediction will give the three interval forecasts directly based 
on the Gaussian distribution assumption. The uncertainty 
propagation for iterative multi-step forecasting can be outlined 
as follows:  

Step 1. For one-step ahead predictions, a zero matrix of 
covariance is initialized. The mean and variance of ݕො௧  are 
estimated by TLGP with deterministic inputs as in (4) and (5).  

Step 2. For the ݆୲୦ ሺ݇ ൐ ݆ ൐ Ͳሻ step ahead prediction, the 
previous output ݕො௧ା௝  is used to construct the new input vector ࢞௧ା௝ାଵ  and further predict the mean value of ݕො௧ା௝ାଵ  using 
TLGP as defined in (4).   

Step 3. Estimate ܴ with (20). Remove the last element of R 
and add up the variance ݒ൫࢞௧ା௝൯ ൅ ො௧ା௝ݕ  ଴ ofݒ  , leading to the 
construction of a new variance ȭ࢞೟శೕశభ  of ࢞௧ା௝ାଵas shown in 

(21).  
Step 4. Estimate the new variance ݒ௧௟൫࢞௧ା௝ାଵ൯ ൅ ଴ݒ of ݕො௧ା௝ାଵ  with (11) where ȭכ࢞ ൌ ȭ࢞೟శೕశభ . Thus, the mean and 

variance of ݕො௧ା௝ାଵ can be used for the next step prediction. 
Step 5. Decide whether the desired horizon has been 

reached. If not go to Step 2, otherwise terminate.  

V.  CASE STUDIES AND RESULT ANALYSIS 

A.  Wind farm ‘A’ in Ireland 

Power generation data from a wind farm in Donegal in North 
West Ireland is used to analyze the uncertainty propagation in 
wind power forecasting with TLGP. The influence of the North 
Atlantic sea wind and lake-hill breeze at this wind farm makes 
wind power generation more unpredictable and thus more 
convincing for any conclusion drawn from the study. The 
deterministic forecasting of this wind farm and the parameter 
optimization procedure has been addressed in [29]. Wind 
generation data of one year were collected up to June 2004, 
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averaged with a time resolution of 15 minutes, and then 
normalized by the full capacity to predict the output of the first 
3 days in July 2004 as in Fig.1. In [29], the data used was in 
unit of MWHr representing the overall wind energy output in a 
quarter of hour, thus the wind generation in [29] has similar 
shape with Fig. 1 of this paper, but shows a fixed ratio of 0.25. 
Based on the existing point forecasting results from [29], this 
work investigates the uncertainty propagation of iterative multi-
step forecasting and determines the interval forecasting results.  

1) Model training and mean value forecasting 
The squared exponential covariance function is still used in 

TLGP for wind power forecasting. The trial-and-error method 
is used to identify the optimal parameters (L, M) in TLGP. 
However, in this work further tests were carried under different 
(L, M) settings and the best results are given in Table I. The 
optimal model with the least multi-step errors is (8, 6) which 
also shows a satisfactory one-step ahead forecasting 
performance. Such findings agree with the experiment settings 
in [29]. The input vector is required to include measurements 
from 2 hours ahead to implement TLGP. 

In [23], the deterministic forecasting results of TLGP were 
plotted to compare the forecasting performance with other 
benchmark models. The forecasting metrics were evaluated 
with root mean square error (RMSE) and mean absolute error 
(MAE). Metric comparison has shown the effectiveness of 
TLGP for point forecasting. In order to better show the interval 
forecasting results, in this work the result of point forecasting is 
plotted again in Fig.1 as in [29]. Further analysis shows that the 
maximum normalized error could reach 0.33 while the average 
is 0.11. Table II shows that TLGP made over 6% and 12% 
improvement over the deterministic forecasting results of the 
GP and persistence model separately. The uncertainty involved 
in this mean value prediction will be discussed in the next 
section. The benchmark models such as persistence, ARMA [30] 
and neural network will be referenced based on which the 
empirical error will be investigated and interval forecasts will 
be implemented.  

2) Analytical interval forecasts with TLGP 
Fig. 2 shows the three predictive intervals for one-step ahead 

prediction. Region 1 represents prediction interval I with 
nominal confidence probability of 68%. Region 1 and 2 
together refer to prediction interval II  of 95% and Region 1, 2 
and 3 together represent prediction interval III  with nominal 
confidence probability of 99.7%, as illustrated in Section  III. 
In most cases, the real outputs represented by the dashed red 
line stay within Region I, which is the darkest region in the 
center. However, some predictions leave Region I and enter 
Region II  or even Region III . This gives an intuitive indication 
of the three prediction intervals with different coverage rate. 

TABLE I THE OPTIMAL MODEL PARAMETERS FOR TLGP IN WIND FARM `A' 
(L, M) (6, 8) (8, 4) (10, 15) (15, 15) 

One step MAE 0.0297 0.0295 0.0295 0. 0295 
One step RMSE 0.0369 0. 0367 0. 0367 0.0367 

(L, M) (6, 6) (8, 6) (10, 8) (15, 10) 
Multi-step MAE 0.0555 0. 0555 0.0562 0.0591 
Multi-step RMSE 0.0676 0.0674 0.0681 0.0713 

 
Fig. 1. One step ahead prediction with TLGP in wind farm ‘A’ [23] 

TABLE II  THE IMPROVEMENT OF TLGP OVER BENCHMARK MODELS IN WIND 

FARM ‘A’ 
Metrics 

Improvement 
max 

RMSE 
mean 

RMSE 
max 
MAE 

mean 
MAE 

Persistence 15.7% 12.8% 18.0% 12.9% 
GP 9.13% 6.2% 11.9% 8.72% 

 
Fig. 2. The one-step probabilistic forecasting results of ‘A’ by TLGP. The red 
dashed line represents the real measurements while the shaded area represents 
the predicted intervals with different confidence. 

 
Fig. 3. The uncertainty propagation of ‘A’ at the 1st sample and the 81st sample. 
The solid lines represent the bounds of confident regions, the dashed line 
without marker shows the multi-step prediction and the dashed line with marker 
shows the real measurement.  

3) Uncertainty propagation for multi-step forecasting 
Prediction uncertainty propagates and accumulates in 

iterative multi-step ahead prediction. The uncertainty, 
represented by std (standard deviation), increases in multi-step 
ahead predictions which is clearly shown in Fig. 3. While (a) 
and (b) show the ߤ േ ߪ  and ߤ േ ߪ͵  bounds of the 12 step 
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predictions based on the 1st time instants respectively, (c) and 
(d) show those of the 81st time instants. The bounds are enlarged 
as the number of steps increases. Besides, the ߤ േ  interval  ߪ͵
(Interval III)  in (b) and (d) cover broader area than (a) and (c) 
(Interval I). Further, as shown in (a), the 3rd real measurement 
leaves Interval I, but stays within the Interval III of (b), showing 
less reliability in the interval forecasting of this point. However, 
in (c) and (d) all the predictions stay within both bounds of 
Interval I and Interval III , showing the reliability of predictions 
at the 81st time instants. 

Fig. 4 shows the comparison of the multi-step prediction 
uncertainty at different time instants based on the derived 
uncertainty propagation rule presented earlier. The uncertainty 
distributions of the one-step ahead predictions are relatively 
stable and only exhibit small variations at different points. 
However, for multi-step ahead predictions (such as 12th steps 
ahead), the uncertainty begins to undulate severely and such 
uncertainties escalate with the number of prediction steps. This 
uncertainty information can be used to estimate other quantiles 
of new predictions and can help to develop better plans for 
economic dispatch and unit commitment of wind power. 

 
Fig. 4. The uncertainty of Interval I for the testing points at varied steps with 
TLGP of wind farm ‘A’ 

 
Fig. 5. Real measurement (top) and the corresponding one-step uncertainty of 
forecasting with TLGP (bottom) of wind farm ‘A’ 

4) Uncertainty analysis at different prediction points 
Fig. 5 shows the standard deviation and the real 

measurements for one-step ahead predictions. It shows that the 
uncertainty/std is less than 0.04, e.g. less than 4% of the power 
capacity. This is a very close fit with the real measurements. 
Every prediction point shows similar uncertainty. It can also be 
seen that with the changes between every two consecutive 
points, the uncertainty grows rapidly during ramping events. 

For example, the uncertainty increases dramatically at the 41th, 
the 111th and the 207th samples, due to the rapid increase in wind 
power generation just before these time instants. Further, other 
obvious large increases in uncertainty occur at the 77th, the 
178th, and the 248th points, which are caused by a sudden drop 
of wind power generation before those time instants. Less 
uncertainty is observed when the wind power generation is 
relatively stable.  

For twelve-step ahead predictions, the uncertainty is shown 
in Fig. 6. It shows a few significant peak values including some 
points developed from the one-step ahead uncertainty peak 
points in Fig. 5. For example, the 79th, the 207th and the 249th 
points in Fig. 6 are developed from the 77th, the 207th, and the 
248th points in Fig. 5. It is interesting that these uncertainty peak 
points are shifted as in the multi-step ahead predictions. Thus, 
it appears that uncertainties accumulate and shift forward along 
the iterative multi-step forecasting horizon. Some of the one-
step peak uncertainties are averaged out in the twelve-step 
ahead predictions, such as the 41th, 111th, and 178th points. On 
the other hand, at some points, the uncertainty accumulates very 
fast to generate some small peaks in the 12th step ahead 
predictions, such as the 145th point in Fig. 6. 
 

 
Fig. 6.  Real measurement (top) and the corresponding 12-step uncertainty of 
forecasting with TLGP (bottom) of wind farm ‘A’ 

B.  Overall generation of Ireland 

Regional wind power forecasting is important in terms of 
wind penetrating, energy scheduling and power grid stabilizing 
within large inter or intra areas. The accurate forecasting of 
regional wind power will benefit the cooperation between 
different regions for grid balancing, wind integration, security 
of energy supply. Time series forecasting show its unique 
advantage regarding the dispersed wind distribution across the 
region while NWP becomes out of effect for forecasting power 
as a whole. In [23], the authors looked at the accuracy of using 
TLGP for whole Ireland wind power forecasting. In this paper, 
the interval forecasts will be further developed with ሺܮǡ  ሻܯ
remaining the same as (10, 14) to minimize the average error of 
multi-step forecasting. 

The interval forecasting results for the wind power of Ireland 
are shown in Fig. 7. Similar to wind farm ‘A’, it has three 
probabilistic intervals corresponding to 3 different confidence 
levels, but show more confident (condense) interval estimation 
results.  
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Fig. 8 shows half of the width of interval I at different time 
instants and various prediction steps for Ireland. It shows that 
the peak values happen at about the same time instants for 
different time horizons and a small bump for one step 
forecasting may get accumulated and become a significant peak 
for multi-step forecasting. This is similar to the pattern interval 
forecast for wind farm ‘A’.  

 
Fig. 7. The three-step interval forecasting results of Ireland by TLGP. The 
marked read line represents the real measurements, and the other shaded area 
represents intervals with different confidence with the middle line representing 
the mean of probabilistic forecasting  

 
Fig. 8. The uncertainty of Interval I for the testing points at varied steps with 
TLGP for wind power of Ireland  

The uncertainty distribution over the investigated period for 
the whole Ireland wind power forecasting show similar trends 
with that of wind farm ‘A’, only with more confident and 
condense interval forecasts due to the smooth change of 
generation.  The interval forecast results in this section showed 
the capability of proposed network in approximating 
uncertainty propagation for iterative multi-step forecasting. In 
the following sections, the interval forecast results will be 
further analysed and compared with other benchmark models. 
If the conclusions stand for this small wind farm, then it will be 
also effective for the whole island.  

VI.  PROBABILISTIC EVALUATION AND DISCUSSIONS 

A.  Wind farm ‘A’ in Ireland 

1) Sharpness/uncertainty evaluation and comparison 
As one the of evaluation metrics of probabilistic forecasting, 

the sharpness refers to the mean size of the interval in interval 
forecasts [13]. The size of each interval in this work is 
proportional to the std with a coefficient c of 2, 4 and 6 
respectively in (22) where k refers to the prediction steps. As 
Interval II and III have a very high coverage rate of 95% and 
99.7%, which accounts for the extreme error and outliers in the 
prediction, we will take Interval I and compare the sharpness of 
different methods. The sharpness of the other two intervals will 
be proportional to that of Interval I. The sharpness comparison 
of Interval I with respect to the multi-steps is shown in Fig. 9.  ߜҧ௞ ൌ ଵே σ ௧ା௞ȁ௧ߪܿ  ே௧ୀଵ                            (22) 

    In [18], several benchmark forecasting models have been 
assessed, including the persistence model, ARMA and the 
neural network model. In [15], the authors provided a 
parametric framework of analyzing the empirical errors of these 
deterministic forecasting methods and employing the 
uncertainty of error for interval forecasts. The forecasting error 
of these benchmark models were analyzed and the parametric 
interval forecasts were implemented with the standard deviation 
representing the uncertainty. The probabilistic forecasting 
results of these benchmark models are compared with those of 
GP and TLGP. As the five models show significantly different 
prediction ranges, two y-axes are used. The right represents the 
performance of GP, and the left is for the other models as shown 
in Fig. 9. The sharpness of persistence model, ARMA and 
neural network models are far better than GP for the iterative 
multistep forecasting and even comparable to TLGP for the first 
step prediction. However, these models are inferior to TLGP for 
multi-step interval forecasts as the error accumulates. As these 
methods only generate overall empirical uncertainty estimation 
over the time space, no prediction interval can be estimated for 
each individual time instance.  

 
Fig. 9 The sharpness diagram with respect to the horizons for wind farm ‘A’ 

A better look at the interval forecast of GP and its 
comparison with TLGP is shown in Fig. 10 and Fig. 11 
respectively. The variance of noise ݒ଴ has a significant impact 
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on the uncertainty accumulation rate. In the uncertainty 
analysis, the optimized ݒ଴  in both TLGP and GP are 
approximately the same. The uncertainty propagates very fast 
in multi-step ahead predictions for GP. For the one-step 
predictions in Fig. 11 (a), TLGP shows higher prediction 
uncertainty than GP almost at every testing point. This is 
because TLGP employs less data in each moving window for 
prediction, thus produce results with less confidence. However, 
for multi-step ahead forecasting, TLGP starts to outperform GP 
with smaller uncertainty from the 2nd step as shown in (b). 
Furthermore, for the twelve-step ahead prediction, the 
advantages of TLGP become more obvious, for example the 
mean uncertainty of GP is approximately 7, while it is only 0.18 
for TLGP. This analysis confirms that uncertainty accumulates 
much more slowly for TLGP. 

 
Fig. 10. The standard deviation distribution of forecasting at varied steps with 
GP for wind farm ‘A’ 

 
Fig. 11. The standard deviation comparison of TLGP and GP at varied steps 
for wind farm ‘A’ 

2) The reliability evaluation and comparison 
Since the intervals have been defined in terms of the std of 

each prediction (for one-step or multi-step), the interval is 
varying at different time instants and horizons. The probability 
of the real wind power generation falling in each interval can 
be obtained. For a good prediction, the empirical (i.e. observed) 
probability and the defined coverage rate (i.e. nominal 
probability) should be as close as possible. This property is 
referred to as reliability. Moreover, bias or deviation, ܾ௞  has 
been defined as the difference between the nominal 
probabilities ߙ  and the empirical probabilities ߙ௞  as an 
evaluation metric for reliability [13]. 

ܾ௞ ൌ ߙ െ  ௞                                (23)ߙ

Empirical probabilities and estimated uncertainty (i.e. std) at 
each horizon for TLGP forecasting are shown in Table II I. For 
longer prediction horizons, the empirical probabilities tend to 
decrease slowly. This is because for TLGP, the uncertainty (std) 
does not accumulate as fast as prediction error as the mean 
value propagates. The average empirical probability over 
different forecasting steps ahead are 61.4%, 90.5%, and 99.5% 
in Interval I, II and III, respectively for TLGP. 

TABLE II I THE EMPIRICAL PROBABILITIES OF DIFFERENT INTERVALS AND THE 

AVERAGE OF PREDICTED STD OF TLGP  FOR WIND FARM ‘A’ 
Prediction 

steps 
1 2 3 4 5 6 

Averaged 
std 

0.1456    0.1498    0.1528    0.1562    0.1595    0.1633 

Interval I 68.8% 64.3% 64.6% 64.3% 64.3% 63.9% 
Interval II  95.4% 93.5% 93.5% 92.4% 91.3% 90.8% 
Interval III  100% 100% 99.6% 99.6% 100% 100% 
Prediction 

steps 
7 8 9 10 11 12 

Averaged 
std 

0.1673    0.1718 0.1765    0.1797 0.1833    0.1872 

Interval I 65.0% 60.5% 59.3% 55.9% 55.5% 50.9% 
Interval II  90.5% 89.7% 88.6% 87.1% 86.3% 85.9% 
Interval III  99.6% 99.6% 98.5% 98.9% 98.9% 98.9% 

TABLE IV  THE EMPIRICAL PROBABILITIES OF DIFFERENT INTERVALS AND THE 

AVERAGE OF PREDICTED STD OF GP FOR WIND FARM ‘A’ 
Prediction 

steps 
1 2 3 4 5 6 

Averaged 
std 

0.1295    0.1609 0.2293    0.3304     0.4750     0.6809 

Interval I 68.4% 71.8% 84.8% 94.42% 99.63% 100% 
Interval II  94.8% 95.2% 99.3% 100% 100% 100% 
Interval III  99.6% 100% 100% 100% 100% 100% 
Prediction 

steps 
7 8 9 10 11 12 

Averaged 
std 

0.9805    1.4172 2.0548    2.9713     4.3041     6.2327 

Interval I 100% 100% 100% 100% 100% 100% 
Interval II  100% 100% 100% 100% 100% 100% 
Interval III  100% 100% 100% 100% 100% 100% 

TABLE V THE MEAN EMPIRICAL PROBABILITY AND RELIABILITY BIAS AT 

THREE INTERVALS WITH DIFFERENT METHODS FOR WIND FARM ‘A’ 
Methods 

Interval I Interval II  Interval III  

Empirical 
probability 

TLGP 61.4% 90.5% 99.5% 
GP 93.2% 99.1% 99.97% 

Persistence 94.9% 100% 100% 
ARMA 94.6% 100% 100% 
RBF 94.6% 100% 100% 

Nominal 68% 95% 99.7% 

Reliability 
bias 

TLGP 6.6% 4.5% 0.2% 
GP 25.2% -4.1% -0.3% 

Persistence -26.9% -5% -0.3% 
ARMA -26.6% -5% -0.3% 
RBF -26.6% -5% -0.3% 

Empirical probabilities and estimated uncertainty (standard 
deviation) at each horizon for GP are shown in Table IV. 
Conversely, the probabilities in each region tend to increase as 
the forecasting horizon increases and stabilize finally at 100%. 
This is because for GP the uncertainty (i.e. std) accumulates 
very fast so although the forecasting error has enlarged, the 
probability of the wind power generation falling in the interval 
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is still increased. The average probabilities with respect to 
different step forecasting in every region are 93.2 %, 99.1% and 
99.97% in Interval I, II and III, respectively for GP. 

 
Fig. 12. The reliability comparison of TLGP with other benchmark models for 
wind farm ‘A’ 

The above observations are further illustrated in Fig. 12. The 
empirical probability results for TLGP tend to decrease with 
multi-steps, whereas for GP they tend to increase and for other 
benchmark models, they tend to stay the same. Furthermore, the 
uncertainty accumulation for all the benchmark models are very 
fast and the confidence probability approaches 100% very 
quickly. The large empirical uncertainty for GP is caused by the 
significant predicted variance at each point as shown in Fig.9. 
The black dashed line represents the ideal coverage probability 
for ‘perfect’ probabilistic forecasting. It shows in the Interval I, 
interval forecasting with TLGP shows much better reliability 
than with GP or any other reference models. While the refence 
models usually show bigger coverage rate than the nominal, 
TLGP is displaying a smaller one indicating a slow uncertainty 
accumulation over the iterative multi-steps. By calculating the 
overall mean absolute bias and mean empirical probability, 
Table V shows that the reliability of TLGP outperforms that of 
GP and other models greatly in Interval I and performs about 
the same in Interval II & III. This indicates that the estimated 
uncertainty of the probabilistic forecasting for TLGP fits the 
data better. This is another advantage of TLGP. It is worth 
noticing that the three benchmark models have quite similar 
reliability although their sharpness as shown in Fig. 11 is 
apparently different. This is probably due to two reasons. 

Firstly, as shown in Table V is the averaged reliability over 12 
forecasting horizons. It is apparent that the minor difference of 
their reliability trends, as reflected in the first figure of Fig. 12, 
is filtered out while averaging the reliability scores. Secondly, 
the distribution of the errors tends to be too long-tailed, so when 
the standard deviation is used to evaluate the mean reliability, 
the interval forecasting becomes over-confident with 100% 
reliability. This reveals the difficulty of parametric interval 
forecasts.   

B.  Overall generation of Ireland 

1) Sharpness/uncertainty evaluation and comparison 
To evaluate the sharpness of interval forecast for the overall 

wind generation of Ireland, the same method was implemented 
for Interval I and compared with the other benchmark models 
as in part A. GP again shows quick uncertainty accumulation 
but the trend slows down in comparison with that of wind farm 
‘A’. The sharpness of TLGP shows slowest accumulation with 
iterative multi-step forecasting and generates sharpest interval 
forecasts. Similar to part A, we will further illustrate the 
detailed interval forecasts at various time instants for multi-
horizons with GP and the comparison with that of TLGP in Fig. 
14 and Fig. 15. Although TLGP shows more uncertainty for one 
step forecasting due to the limited data used, but the uncertainty 
accumulates is the slowest among the five models used for 
iterative multi-step forecasting. The sharpness comparison 
show very similar results with that of wind farm ‘A’.  

2) The reliability evaluation and comparison 
The reliability of different interval forecast methods are 

evaluated and compared in this part. Similar to the results for 
wind farm ‘A’, the reliability of TLGP shows most Gaussian-
like behavior, which verifies the assumption of local Gaussian 
Processes in each time window. The reliability trend of 
different methods are shown in Fig. 16 and the reliability bias 
for three predicted intervals is listed in Table VI.  It is worth 
noting the interval forecasts with TLGP show better qualities, 
e. g. sharpness and reliability bias for the wind generation of 
whole Ireland in comparison with that of a small wind farm ‘A’ 
due to the smooth change of wind generation in a large region.  

 
Fig. 13 The sharpness diagram with respect to the forecasting horizons for 
wind generation of Ireland 



 10 

 
Fig. 14. The standard deviation distribution of forecasting at varied steps with 
GP for wind generation of Ireland 

 
Fig. 15. The standard deviation comparison of TLGP and GP at varied steps 
for wind generation of Ireland 

TABLE VI  THE RELIABILITY BIAS AT THREE INTERVALS WITH DIFFERENT 

METHODS FOR WIND GENERATION OF IRELAND 
Methods 

Interval I Interval II  Interval III  

Reliability 
bias 

TLGP -6% 0.06% 0.01% 
GP -26.7% -4.5% -0.3% 

Persistence -29% -5% -0.3% 
ARMA -28.8% -5% -0.3% 
RBF -28.5% -5% -0.3% 

VII.  CONCLUSIONS 

Both TLGP and GP are convenient for interval forecasting 
by nature with no need to calculate each of the single quantile 
numerically. For the non-Gaussian noise in the wind generation 
which is generated by the non-linear transformation between 
wind speed and wind power, TLGP was proposed to 
approximate Gaussian-like behavior in each short time window. 
In this work, the uncertainty propagation of the iterative 
multistep forecasting was analyzed for the first time and the 
analytical interval forecasts were given for each step. While the 
traditional probabilistic approach relies mainly on statistically 
analyzing the forecasting error, this method provide one way of 
looking at the uncertainty variation at different time instants for 
different forecasting horizons. The probabilistic forecasting 

results were evaluated after TLGP and GP were applied to 
short-term wind power forecasting in a wind farm in Ireland and 
for the whole Ireland. Three main conclusions can be drawn 
from this work. First, TLGP shows more accurate and more 
confident interval forecast for smoother and more steadily 
changing wind generation with an exception for ramp events 
forecasting. Uncertainties show up mainly and accumulate 
significantly at the ramping points, and they shift forward as the 
forecasting horizon expands iteratively. Secondly, for one-step 
forecasting, TLGP shows higher prediction uncertainty because 
a limited number of data are used, but the uncertainties 
accumulate much more slowly for iterative multi-step 
forecasting. It generates higher reliability over the named three 
intervals and better sharpness on the shape of distribution, 
which makes the probabilistic forecasting with TLGP more 
trustworthy. More importantly, the reliability of proposed 
method approaches that of standard Gaussian distribution 
which proves the assumption that TLGP is more Gaussian-like. 
Such analytical method of analyzing the uncertainty 
propagation for the iterative multi-step wind power forecasting 
has not been proposed before. Hopefully, it will stimulate 
research for other methods under investigation.  

VIII.  A PPENDIX 

A.  The mean value estimation under a random input 

With the law of iterated expectations, the new mean output 
is the expectation of the old mean function.  ݉ሺכ࢞ሻ ൌ  ሻሿ                               (24)כ࢞ሺߤሾכ࢞ܧ

The first order Taylor expansion can be written as follows, ߤሺכ࢞ሻ ൌ ሻכ࢞ߤሺߤ ൅ డఓሺכ࢞ሻడכ࢞ ቚכ࢞ୀఓכ࢞୘ ሺכ࢞ െ ሻכ࢞ߤ ൅ ܱሺԡכ࢞ െ    ԡଶሻכ࢞ߤ

(25) 
If its first order differentiation is finite around xכ, thus we have ݉ሺכ࢞ሻ ൌ  ሻ in (10) which means the new mean stays theכ࢞ߤሺߤ
same with the forecasting result under deterministic input. 

B.  The variance estimation under a random input 

With the law of conditional variance, the new variance of 
output will follow ݒሺכ࢞ሻ ൌ ሻ൯כ࢞൫ɐଶሺכ࢞ܧ ൅  ሻ൯            (26)כ࢞ሺߤ൫כ࢞ݎܸܽ

Expanding the first term with Taylor Series in second order 
gives  ɐଶሺכ࢞ሻ ൌ ሻכ࢞ߤଶሺߪ ൅  డ஢మሺכ࢞ሻడכ࢞ ቚכ࢞ୀఓכ࢞

୘ ሺכ࢞ െ ሻכ࢞ߤ ൅
ଵଶ ሺכ࢞ െ ሻ୘כ࢞ߤ డమ஢మሺכ࢞ሻడכ࢞డכ࢞౐ ሺכ࢞ െ כ࢞ୀఓכ࢞ሻቚכ࢞ߤ

୘ ൅ ܱሺԡכ࢞ െ     ԡଷሻכ࢞ߤ

(27) 
Thus we have the following expectation כ࢞ܧ൫ɐଶሺכ࢞ሻ൯ ൎ ɐଶሺכ࢞ߤሻ ൅ כ࢞ܧ ቆଵଶ ሺכ࢞ െ ሻ୘כ࢞ߤ డమ஢మሺכ࢞ሻడכ࢞డሺכ࢞ሻ܂ ሺכ࢞ െכ࢞ߤሻቇ ൌ    ɐଶሺכ࢞ߤሻ ൅ ଵଶ Tr ቊ డమ஢మሺכ࢞ሻడכ࢞డכ࢞౐ ቚכ࢞ୀఓכ࢞ ȭכ࢞ቋ                 (28) 

Substitute (25) in the second term of (26) , it follows  
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ሻ൯כ࢞ሺߤ൫כ࢞ݎܸܽ ൎ כ࢞ݎܸܽ ൭ߤሺכ࢞ߤሻ ൅ డఓሺכ࢞ሻడכ࢞ ቚכ࢞ୀఓכ࢞୘ ሺכ࢞ െ ሻ൱כ࢞ߤ ൌ   డఓכ࢞డכ࢞ ቚכ࢞ୀఓכ࢞୘ ȭכ࢞ డఓכ࢞డכ࢞ ቚכ࢞ୀఓכ࢞                         (29) 

Thus the new variance function in (26) is transformed into 
(11) which contains an additional term in comparison with the 
uncertainty result under a deterministic input in (5). 

 
Fig. 16. The reliability comparison of TLGP with other benchmark models for 
wind generation of Ireland at three predicted intervals 
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