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Abstract 

The expression of storm events in the geological record is poorly understood; therefore, stratigraphic 

investigations of known events are needed. The 1953 North Sea storm surge was the largest natural 

disaster for countries bordering the southern North Sea during the twentieth century. We characterize 

the spatial distribution of a sand deposit from the 1953 storm surge in a salt marsh at Holkham, 

Norfolk (UK). Radionuclide measurements, core scanning x-ray fluorescence (Itrax), and particle 

size analyses, were used to date and characterise the deposit. The deposit occurs at the onset of 

detectable 137Cs - coeval with the first testing of nuclear weapons in the early 1950s. The sand layer 

is derived from material eroded from beach and dunes on the seaward side of the salt marsh. After 

the depositional event, accumulation of finer-grained silt and clay materials resumed. This work has 

important implications for understanding the responses of salt marshes to powerful storms and 

provides a near-modern analogue of storm surge events for calibration of extreme wave events in the 

geological record.   

 

1. Introduction 

Sea-level rise will be a significant future environmental hazard, with the Intergovernmental Panel on 

Climate Change projecting that global mean sea level will rise 0.26-0.98 m above present by 2100 

(Church et al., 2013).  However, the greatest social and economic impacts are when moderate and 

extreme storms result in coastal flooding, which will increase in frequency with higher sea-levels 

(Nicholls et al., 2007; Church et al., 2013; Haigh et al., 2016).  With the potential for the frequency 

of storm events to also increase (Seneviratne et al., 2012; Goodwin et al., 2017), it is important to 

understand how such events may affect emergency response, adaptation and infrastructure planning.  

There have been recent efforts to increase our understanding of the spatial and temporal clustering of 

extreme sea-level events, which has implications for the management and repair of flood-defence 

systems (Haigh et al., 2016).  This endeavour requires a comprehensive dataset of extreme events in 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

3 

 

which to investigate spatial and temporal trends and provide information on coastal resilience and 

geomorphic response.  In the United Kingdom, Haigh et al. (2015, 2017) have developed a database 

of 329 coastal flood events from 1915 to 2016 (SurgeWatch) based upon a variety of sources.  Of 

these, eight events are ranked as severe and one as disastrous, the latter being the storm surge of 1953. 

To be able to better understand these high-impact low-probability events, it is important to 

have a much larger dataset (greater than the current nine documented events), from which to construct 

detailed analysis which requires turning to historical (e.g., RMS, 2007) and geological records of 

extreme sea levels and storm events.  Coastal geological archives have provided evidence of hurricane 

landfall (e.g., van de Plassche et al., 2006; Brandon et al., 2014), as well as European storm surges 

(e.g., Tsompanoglou et al., 2010; Bateman et al., 2018).  However, use of the geological archive in 

geohazard assessment requires understanding of how such events are preserved in coastal 

environments. Identification of sedimentary deposits associated with extreme wave events (e.g., 

tsunamis and storm surges) in the geological record is often difficult (Sedgwick and Davis, 2002; 

Kortekaas and Dawson, 2007).  Even within more recent times there are a paucity of studies and data 

(e.g., Dawson et al., 1995; Kortekaas and Dawson, 2007). Such geological evidence can aid in 

detecting past changes in storm surge activity, by extending reconstructions of storm surges from tide 

gauge records and of storm indices further back in time. 

In this paper, we conduct a geological investigation into the preservation of the well-

documented 1953 storm in a salt marsh environment, >60 years after the original event.  The 1953 

storm was the most severe rapid event to occur in the North Sea during the 20th Century. The event 

occurred when a storm surge from the North Sea swept across the northwest European shelf and 

flooded low-lying coastal areas of countries around the North Sea. The resulting disaster in terms of 

loss of life and damage to infrastructure was enormous. The Netherlands was worst affected with 

1836 people killed; in the UK and Belgium, death tolls were 307 and 22, respectively (Gerritsen, 

2005). The storm surge led to breaches of coastal flood defences and produced the highest still-water 

levels on record at several tide gauges on the UK east coast. Several features were observed in the 
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coastal zone at the time, including notches in soft rock cliffs, cliff retreat, and erosion of coastal dunes 

and reactivation of wash-over deposits (Spencer et al., 2015). However, the expression of the 1953 

storm surge in the stratigraphic record around the North Sea remains unclear.  Many previous studies 

of extreme wave events in the stratigraphic record have relied on detailed sedimentological 

descriptions and micropaleontology (e.g., Kortekaas and Dawson, 2007; Morton et al., 2007). Here 

we combine sedimentology with elemental geochemistry to identify a known event in a salt marsh. 

In addition, an understanding of the effects of past storm surges (e.g. the December 1981 event in the 

Severn Estuary; Croudace et al., 2012) is much needed in the UK as future such events may pose a 

significant threat to existing coastal industrial and urban infrastructure, and planned nuclear reactors 

on the coast (e.g., Hinkley, Somerset; Sizewell, Suffolk; and Bradwell, Essex). 

 

2. Study site 

Our study site is a small salt marsh at Holkham on the north-facing coastline in North Norfolk, UK 

(52.974532ºN, 0.759193ºE; Figure 1). The salt marsh is located east of the River Burn and behind an 

extensive coastal dune system. This coastline is low-lying and characterised by a moderate to low 

wave regime from the North Sea, westerly longshore drift and macro-meso tidal ranges (Andrews 

et al., 2000; Bateman et al., 2015). The coast at Holkham prograded during the Holocene and there is 

active accumulation of beach dunes at present (Andrews et al., 2000; Bateman et al., 2018). We 

targeted Holkham marsh to identify and describe the geological deposit resulting from the North Sea 

flood of 1953 because the event caused flooding with water reaching up to 6.31 m OD nearby at 

Wells-Next-The-Sea in Norfolk (Supplementary material 1), erosion of dunes, and deposition of 

shingle and sand on salt marshes at this location (Steers, 1953; Spencer et al., 2015). 

 

3. Materials and methods 
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Seventy-six cores were taken across Holkham marsh using gouge and dutch augers to determine the 

general stratigraphy of the site (Figures 1 and 2). A master core (where the thickest 1953 storm deposit 

was found) was then collected using a Russian corer following de Vleeschouwer et al. (2010) for 

further laboratory analyses. Cores were logged in the field following Tröels-Smith (1955) and a subset 

of cores were surveyed into a local benchmark. The age-depth relationship of the core is based on 

210Pb and 137Cs determinations using high-resolution Gamma spectrometry at the GAU-

Radioanalytical Unit (National Oceanography Centre in Southampton – NOCS). Samples were 

prepared and analysed following standard procedures to determine 210Pb content (e.g., through 

measurement of the granddaughter radionuclide 210Po) and 137Cs activity. Calculation of the sediment 

accretion rate (SAR) (cm yr-1) assumes that no radionuclide migration occurs within the sediment 

profile following deposition. However, the post-depositional mobility of the radionuclides and 

sedimentation phases should be considered during interpretation. The application of 210Pb and 137Cs 

dating in coarse-grained sediments could also be hindered by the lower sorption capacity of siliceous 

particles (Tsompanoglou et al., 2010). 

XRF geochemical scanning is a time and cost-efficient means to obtain high-resolution 

geochemical information and laser diffraction particle size analysis can provide detailed information 

on grain size populations in a sedimentary succession; hence, both methods were used. Itrax X-ray 

fluorescence core scanning was undertaken at NOCS, using Mo and Cr X-ray tubes. The peak area 

intervals are “nominally proportional to concentrations of major and minor elements within the 

sediment” (Croudace et al., 2006). Particle size analysis was carried out using a Coulter LS230 Laser 

Diffraction Particle Size Analyser following removal of organics using hot H2O2. End-member 

modelling analysis (EMMA) was performed on each grain-size dataset following Dietze et al. (2012). 

Bulk density and loss-on-ignition were undertaken using standard methods (Chambers et al., 2010). 

Magnetic susceptibility of the cores was determined using a Bartington loop sensor (MS2C) and MS2 

instrument.  
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4. Results and discussion 

The locations of the seventy-six cores in the Holkham marsh are shown in Figure 2. The stratigraphy 

of the Holkham salt marsh is characterised by clays and silts with organics and occasional sand which 

is typical of salt marsh environments (Figure 3). A sand horizon was present at ~40-60 cm below the 

surface in most cores, possibly representing an earlier event than the 1953 storm. At the landward 

(southern) side of the marsh the uppermost sediment is a peaty soil, reflecting development of high-

marsh. Dune sands, sometimes covered with peaty soils, are present in the northern portion of the salt 

marsh (Figure 3). 

In the south-east portion of the marsh (in 16 of the 76 cores) a thin sand layer of between 0.5 

and 3.0 cm thick (μ = 1.26 cm) was found between 23 and 28 cm (μ = 25.4 cm) in the cores (Figures 

2-4). The altitude of the base of the sand layer varies between 2.5 and 2.7 m above Ordnance Datum 

(UK) (μ = 2.6 m) (Figure 4).  The maximum thickness of the deposit is greatest in the southern 

landward edge of the marsh which is slightly higher in elevation (Figure 4). There is a significant 

correlation between elevation of the thin sand deposit where it is present and latitude (r=0.74; 

p<0.001) suggesting that the topography of the marsh was similar in the past to today (higher in the 

southern edge). There is no significant relationship between longitude and elevation of the thin sand 

unit. There is a significant relationship between thickness of the thin sand unit and elevation (r=0.55, 

p<0.05), illustrating that the thicker units are in the higher southern parts of the marsh. 

In the core analysed in detail, profiles of 137Cs and 210Pb show trends associated with changing 

radionuclide inputs and sediment composition (Figure 5) and produce consistent chronologies. 137Cs 

variations provide evidence for two main rates of sediment accumulation that are largely corroborated 

by the 210Pb record (determined by gamma spectrometry). Key markers in the 137Cs record were used 

to build the age model, including: (1) the first appearance of 137Cs, coincident with the onset of 

atmospheric nuclear weapons testing ~1954 (range = 1950-1955); (2) the 137Cs bomb peak (1963, 
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albeit rather subtle); and (3) changing inputs from marine discharges from the Sellafield reprocessing 

plant as revealed by distinct inflections (Gray et al., 1995; Tsompanoglou et al., 2010).  McCubbin et 

al. (2002) estimated solution transport of conservative radionuclides to be approximately two years 

between Sellafield and East Anglia. However, Shimmield (1997) and Lee and Cundy (2001) suggest 

5-8 years for particulate transport and based on this it was decided to apply a 7- year lag for Sellafield 

inputs to Norfolk salt marshes (Figure 5). This information when incorporated into an age-depth 

relationship for the Holkham salt marsh (Figure 5) shows good linearity which validates the proposed 

fit. The 137Cs record reveals two linear SARs (Figure 5). The SAR rate after the 1953 flood is 

approximately 0.48 cm yr-1 which later reduced to approximately 0.28 cm yr-1; and the two rates are 

seen in both the 210Pb and 137Cs data.  Any small signal from the 1986 Chernobyl accident in UK east 

coast salt marshes is obscured by the signal from the Sellafield discharges (Tsompanoglou et al., 2010). 

The thin sand unit was found at 23-26 cm in the analysis core and is composed primarily of 

medium sand, with D90 (the grain size at which 90% of the sample is finer) ranging from 365-500 

µm, which is too coarse for dune sand but typical of storm surge deposits (Boldt et al., 2010). The 

base of the sand unit is tightly constrained to 1950-1955 as it is concomitant with the first detectable 

137Cs in the profile, and thus the onset of nuclear weapons testing (Figure 5), signifying that it 

represents the storm deposit from the 1953 storm surge event. The sand unit is overlain by sediment 

comprised primarily of poorly-sorted medium silt. Bulk density increases and organic content 

decreases at 23-26 cm depth, reflecting input of coarse-grained material (> 63 µm) to the marsh and 

reduction in the accumulation of fine-grained (< 63 µm) material that typifies the rest of the record 

(Figure 6). The decrease in SAR over time suggests that the marsh is either reaching maturity, 

accommodation space is being infilled, or that the sedimentation rate has been adversely affected by 

the deposition of sand during the 1953 storm. 

The sand unit dated to the 1953 storm surge event shows a distinct elemental composition:   

Ca, Cl, K, Rb, Ti, Y decline compared with previous values and Si increases at 23-26 cm (Figures 7 

and 8). The study region is underlain by the Newhaven Chalk Formation with abundant clay minerals 
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and calcite cements of variable trace element composition and the Wells Marl that contains up to 10% 

bentonite.  Input of elements from this bedrock and derived surficial sediments are expected to include 

elements typical of clastic material of crustal origin (e.g, Al, Si, K, Ti, Fe, and Rb; Mügler et al., 

2010) in addition to other elements commonly associated with clay minerals (e.g., Ba, Ca, Mg, Mn, 

Na, V, and Zn) and calcite cements (e.g., Sr).  Zirconium and Si are also commonly associated with 

medium to coarse grain-sized clastic material (Koinig et al., 2003; Kylander et al., 2011; Haenssler 

et al., 2014). During the 1953 storm surge event, a decline in Fe, Cl, K, Rb, and Ti occurs in the 

chemostratigraphic record of Holkham Marsh, concurrent with an increase in Si that reflects the 

geologically instantaneous input of coarse-grained detrital material that diluted both organic matter 

deposition and the input of materials derived from catchment geology (Koinig et al., 2003; Kylander 

et al., 2011; Jeans et al., 2014) (Figures 7 and 8). While the majority of Si is likely derived from 

aluminosilicate minerals, this element can also represent a biogenic component (e.g., diatom 

frustules; Kylander et al., 2011). 

Changes are also reflected by variations in the Ca/K and Ca/Ti ratios driven by a decline in K 

and Ti relative to Ca in the 1953 sand horizon (Figures 7 and 8). Sedimentary Ca can be 

autochthonously derived through carbonate precipitation in saturated waters during summer months, 

but its decline during the 1953 storm surge event suggests the majority of Ca is derived from 

weathering in the catchment (Cohen, 2003; Haenssler et al., 2014).  

Increases in the concentration of Na, SO4
2-, Cl, Ca, and Mg have been previously documented 

in washover deposits attributed to tsunamis in New Zealand (Chague-Goff and Goff, 1999; Goff and 

Chague-Goff, 1999; Chague-Goff et al., 2000; Goff et al., 2001). Storm surge deposits, in contrast, 

transport sediment inland from nearshore and beach environments. Differences in sediment source of 

storm surge deposits vs. tsunami explain the Si-dominated signature observed in the 1953 storm surge 

deposit at Holkham. End-Member Mixing Analysis (EMMA) identified two robust end members 

within the whole-core particle size data (For full method see Supplementary material 2). The first end 

member has a mode of 14.96 mm (poorly-sorted medium silt) and the second end member (EM02: 
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the storm deposit) has a mode of 324.7 mm (well-sorted medium sand). EM02 is first observed in the 

25-26 cm interval and is composed of both end-members in equal proportions. The 24-25 cm interval 

is composed solely of EM02 (324.7 µm) and is the last interval to host EM02. The 24 to 25 cm interval 

is composed solely of EM02 (324.7 µm) and is the last interval to host EM02. The EMMA analysis 

provides a means to differentiate storm surge from tsunami deposits; storm deposits have unimodal 

large particle size distribution indicating unidirectional sediment transport. In contrast, backwash 

associated with tsunami results in a second, coarser, sediment population (Goff et al., 2001, 2004). 

Tsunami deposits are also usually characterised by several discrete wave events, with several fining-

up sequences in stratigraphic records (Smith, 2005).  

The position of the preserved storm deposits indicates that the dunes may have been breached 

by the storm surge at the point where the causeway and path cross through the low point in the dunes 

to the north-east of the marsh (Figure 2), where a potential small washover fan is observed 

encroaching onto the marsh. The storm surge would have entrained both dune and beach sand as it 

overtopped the dunes at the low point. As the surge then diffracted into the marsh behind, it deposited 

fine dune and medium beach sand over the eastern side of the marsh. The initial north-east to south-

west surge wave may have deposited sand across the entire eastern side of the marsh, but its 

preservation is greatest on the north-eastern margins of tidal creek channels. After initial diffraction, 

the storm surge may have reflected off the causeway embankment at the landward side of the marsh, 

creating localised backwash. This lower-energy backwash would have travelled generally north-east, 

potentially remobilising some of the sand on the southern margins of the channels and removing it 

from the marsh through the tidal creek network. This would account for the observed patchy 

preservation of the sand. However, whether there was a single, large surge wave or repeated waves 

overtopping the barrier is unknown, as repeated waves would also have the potential to cause 

remobilisation. Preservation of sediments associated with extreme events may also be focused in 

surface depressions, having been removed from topographic highs (Engel and Brückner, 2011). 
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Our findings differ from those obtained by Tsompanoglou et al. (2010) from a salt marsh on 

the northern shore of The Wash embayment, to the north of our study site. In that study the 1953 

storm surge event is manifested as a thin silty sand layer as the salt marsh was partly eroded and 

heavy-mineral-enriched grains settled on the erosion salt marsh platform, creating a distinctive 

horizon. During the 1953 storm a 2-m high surge (excluding waves) was recorded in The Wash and 

off the North Norfolk coast (Robinson, 1953; Environment Agency, 2015). At Holkham, sand was 

rapidly eroded from beach and/or dune sands during the 1953 storm and deposited across the marsh 

surface (Figure 1). This occurred in sufficient water depth/energy for sand particles to be transported 

and deposited. There is documentary evidence of flooding of reclaimed marshes, breaches of flood 

defences, erosion of dunes, and most importantly in this case the washing of shingle and sand onto 

marshes at Holkham (Steers, 1953). Following the deposition of sand, salt marsh accumulation 

continued with typical finer-grained material, indicating a return to regular salt marsh sedimentation. 

At Holkham, the depositional setting was not permanently affected and following the storm event 

‘typical’ sedimentation resumed albeit at a slower rate. 

In the geological record, storm surge deposits may be differentiated from other extreme wave 

events (e.g., tsunamis) by several sedimentological features associated with differences in 

hydrodynamics and sediment-sorting processes (Kortekaas, 2002). Storm surges have lower shear 

stress than tsunamis, resulting in less or no erosion inland, are manifested at the shore by repeated 

inundation by short-wavelength, short-period storm waves that erode the shoreface and transport 

those sediments inland, and have many small, short-period waves of uni-directional inundation 

(Switzer and Jones, 2008). As a result, storm surge deposits can be distinguished from tsunami 

deposits by the absence of mud intraclasts, unidirectional imbrication if present, and unimodal coarse 

grain size signatures (Kortekaas, 2002; Engel and Bruckner, 2011). Sediment transport associated 

with storm surges is mainly by traction with minimal suspension (Morton et al., 2007) and the 

resulting deposits are composed of sub-horizontal planar laminae that are often graded and derived 

from the proximal nearshore and beach face (Kortekaas, 2002; Switzer and Jones, 2008). While 
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tsunami deposits tend to be < 25 cm, sandy storm deposits are larger, generally >30 cm (e.g., Switzer 

and Jones, 2008).  The sand deposit preserved in Holkham is, in contrast, only ~3 cm thick, and has 

no visual sedimentary features. This difference in thickness may be due to i) the 1953 storm surge 

being small than the events identified in the geological record; ii) erosion of the original deposit at 

Holkham; iii) a relatively small volume of sediment was delivered to the marsh in 1953; iv) 

differences in accommodation space; and v) a bias of only recording thicker storm surge deposits in 

the geological record.  

Our results provide an example of identification of a relatively small storm surge deposit using 

rapid cost-efficient techniques that may be applied to the geological record. The 1953 storm event is 

not unique in the history of Norfolk with other storms recorded after (e.g., 1978 and 2013) and before 

(e.g., 1903 and 1853). There is the possibility that the less extreme 1978 storm is also preserved in 

our core as an increase in bulk density and decrease in organic matter, although there is no visually 

identifiable sand layer (Figure 6). The lower sand unit at Holkham (~40-60cm depth) may represent 

an earlier storm event.  

Applying the above methodologies to this salt marsh record demonstrates the potential to 

provide detail on the magnitude and extent of the impacts of the past storms and also to extend the 

record to events prior to the documentary period. Such information could make an important 

contribution to debates concerning the changing frequency of storms within the North Sea (e.g., 

Dangendorf et al., 2014) and also the magnitude and return intervals of storm surges for coastal zone 

risk management. The patchy preservation of the 1953 storm sand also highlights the uncertainty in 

preservation and correlation of high-energy event deposits over a longer-term geological record, and 

that even well-constrained events may be highly localised in their geological expression. We show 

that the 1953 storm event is preserved in a small landward pocket of a Norfolk salt marsh, which 

could easily have been missed during coring investigations elsewhere on this marsh. This study 

demonstrates that it is important to consider the path of the event waves which transport material onto 

a marsh.  Future studies of palaeo storm surge deposits should target locations where an abundant 
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supply of nearby mobile sediment could easily have accumulated and not be eroded by subsequent 

backwash through the local tidal creek network. Finding such environments may not be possible in 

some locations, so it is also important to consider the lack of preservation of sediments associated 

with extreme coastal events when using such data for geohazard assessment.    

 

5. Conclusions 

We identify a fine to coarse-grained sand deposit in a salt marsh at Holkham, Norfolk, UK and use 

137Cs dating to constrain it to the early 1950s. We contend that the deposit was derived from an 

extreme wave event associated with the 1953 North Sea storm surge – the most severe rapid event to 

occur in the North Sea during the 20th century. The sand unit is derived from material eroded from 

beach and dune sands on the seaward side of the salt marsh and is geochemically distinct by an 

increase in Si. The rapid deposition of the sands diluted the background detrital input of 

aluminosilicates derived from bedrock and derived surficial materials. After the deposition event, 

accumulation of finer-grained silt and clay material resumed. The sedimentary record of the 1953 

event is relatively patchy in this location.  It is important to consider the potential surge pathway, the 

availability of local mobile sediment and the nature of the local depositional environment when 

considering where might best preserve records of multiple historic storm surges.  Our results i) have 

important implications for how geological archives of coastal geohazards may be interpreted where 

there is an absence of historical archives; ii) improve the understanding of the response of low-lying 

coastal marshes to storm surges; and iii) clarify how storm surge deposits can be identified in the 

stratigraphic record using this near-modern analogue. 
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Figure captions 

Figure 1. (a) Map of study site including location of the analysis core. (b) Photograph of the analysis 

core (showing the 3-cm thick sand unit) from the 1953 storm. 

Figure 2. Maps showing the spatial distribution of the 1953 storm deposit at Holkham. Aerial 

photograph of the salt marsh showing the distribution of the 1953 storm sand layers within the 

acquired cores (top). The core transect in Figure 3 is shown (black line – cores 1-13). Image copyright 

Getmapping Plc. 25cm elevation-coloured and hillshaded Digital Terrain Model of Holkham Marsh 

(bottom). The thickness of the 1953 storm sand deposit encountered within each core is shown. The 

suggested pathway of the 1953 storm wave is illustrated as a dashed arrow. Contains public sector 

information (25cm LiDAR, copyright Environment Agency) licensed under the UK Open 

Government Licence v 3.0.  

Figure 3. Lithostratigraphic transect of Holkham salt marsh (core 1-13 locations are shown in Figure 

2). The height of the marsh surface, based on a Digital Terrain Model (Figure 2) is also illustrated (m 

above Ordnance Datum). 

Figure 4. (a) Histogram showing the variation in thickness of the 1953 storm layer (a kernel density 

function is shown). (b) Graph showing thickness of the 1953 storm against elevation of the bottom of 

the layer. A linear least-squares regression line and 95% confidence limits are shown. (c) Spatial 

interpolation plot of 1953 layer thickness. A thin-plate spline was used as the interpolation algorithm.  

The 1953 layer was not found outside of the region shown. 

Figure 5. Chronological information for the Holkham core: (a) 210Pb data with logarithmic trend lines 

(orange = faster post-surge SAR and blue = slower, more recent SAR;); (b) 137Cs profile annotated 
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with key chronological markers taken from the Sellafield temporal discharge profile with a lag of 7-

years added to the features; (c) age-model based on linear regression suggesting a change in sediment 

accumulation rate; and (d) Sellafield 137Cs temporal discharge profile around Irish Sea (Gray et al., 

1995).   

Figure 6. Physical and sedimentological properties of the Holkham marsh core. The 1953 storm 

deposit horizon is illustrated. The potential horizon of the 1978 storm is also shown. 

Figure 7. Summary XRF analysis (lithophile elements). The 1953 storm horizon is illustrated.  

Figure 8. Elemental profiles from Itrax analysis. The 1953 storm horizon is illustrated. 
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Highlights 

 The expression of storm events in the geological record is poorly understood 

 The 1953 North Sea storm surge caused a major natural disaster in the twentieth century 

 We describe a sand deposit from the 1953 storm surge in a UK salt marsh 

 Our work has implications for understanding salt marsh response to storm events 

 We provide a near-modern analogue for extreme wave events in the geological record 
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