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HIGHLIGHTS  5 

 6 

 A spatially explicit modelling framework is presented to estimate risks of metal to 7 

birds.  8 

 The model has been applied to soil metal contamination and thirty songbird species.  9 

 Our spatial model showed interspecies variation in metal toxicity risks to UK 10 

songbirds 11 

 Pb and Zn exposure posed high toxicity risks to adults and nestlings via diet as 12 

indicated by the model 13 

 Despite the model limitations, this study can be a useful for Environmental Risk 14 

Assessment  15 

 16 
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 ABSTRACT 21 

Many wild animals can be adversely affected by trace metals around point sources but little 22 

is known about the risks to birds across their ranges. Trace metals in the soil are 23 

ubiquitously, if heterogeneously distributed, across the world due to natural and 24 

anthropogenic sources. Here, we built, parameterized and applied a spatially explicit 25 

modelling framework to determine the risks of soil-associated metals to 30 invertebrate-26 

consuming passerine species across their spatial distribution in England and Wales. Our 27 

model highlights significant differences in toxicity risks from Cd, Cu, Pb and Zn across the UK 28 

distributions of different species; Pb and Zn posed risks to all species across most of species’ 29 

distributions, with more localised risks to some species of conservation concern from Cd and 30 

Cu. No single taxa of invertebrate prey drove avian exposure to metal toxicity. Adults were 31 

found to be at higher risk from Pb and Zn toxicity across their distributions than nestlings. 32 

This risk was partially driven by diet, with age differences in diets identified. Our spatially 33 

explicit model allowed us to identify areas of each species’ national distribution in which the 34 

population was at risk. Overall, we determined that for all species studied an average of 35 

32.7 ±0.2 %, 8.0 ±0.1%, 86.1 ±0.1% and 93.2 ±0.1% of the songbird spatial distributions in 36 

the UK were characterized at risk of Cd, Cu, Pb and Zn, respectively. Despite some 37 

limitations, our spatially explicit model helps in understanding the risks of metals to wildlife 38 

and provides an efficient method of prioritising areas, contaminants and species for 39 

Environmental Risk Assessments. The model could be further evaluated using a targeted 40 

monitoring dataset of metal concentration in bird tissues. Our model can assess and 41 

communicate to stakeholders the potential risks of environmental contaminants to wildlife 42 

species at a national and potentially international scale.  43 



 

1. INTRODUCTION 44 

Wildlife species, such as birds, are considered to be good indicators of ecosystem health 45 

because they live in a wide range of habitats and generally occupy a high trophic level 46 

(DEFRA, 2010). Direct monitoring of local bird populations around point sources of metal 47 

pollution can be successful in identifying the adverse effects of metal exposure (Eeva et al., 48 

2009a; Llacuna et al., 1995; Swaileh and Sansur, 2006). For example, several studies have 49 

demonstrated adverse effects of trace metal contamination on breeding success of 50 

passerine birds in the vicinity of metal smelting sites (Belskii et al., 1995; Belskii et al., 2005; 51 

Eeva and Lehikoinen, 1996; Janssens et al., 2003a). Such localised studies, however, yield no 52 

indication of the potential risks to birds of differing concentrations of trace metals found 53 

across species’ ranges. Notably, most studies lack a spatial dimension and thus variations of 54 

exposure risks over an entire range remain poorly understood (but see Hernout et al., 2015; 55 

Hernout et al., 2013; Hunsaker et al., 1990). Moreover, monitoring studies are time and cost 56 

consuming and only provide an assessment of a limited number of species and regions. In 57 

contrast, modelling exercises can utilise existing monitoring data, and can relatively quickly 58 

and cheaply provide predictions about risk (Hernout et al., 2011; Hernout et al., 2013; 59 

Schmolke et al., 2010; Smart et al., 2006). Indeed, they are strongly encouraged in 60 

environmental risk assessment (ERA) (Schmolke et al., 2010; Smart et al., 2006; Suter, 2006). 61 

Spatially explicit models can also extend the predictive scope and the geographic scale of 62 

experiment investigations, as well as integrate relevant ecological parameters of food chain 63 

models in ERA. 64 

Trace metals are present naturally in the environment and their concentrations in 65 

soils vary spatially according to local geology (Fairbrother et al., 2007). In addition, human 66 
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activity can increase the deposition rate of trace metals to the soil. The main anthropogenic 67 

sources of trace metals in the environment are point sources, such as mines, chemical 68 

factories, smelters and landfill sites (EA, 2009). Trace metal contamination in soil can last 69 

long after emissions from initial point sources cease, and therefore, they remain 70 

bioavailable to living organisms and can accumulate through the food chain (EA, 2009).  The 71 

main exposure route of trace metal elements in higher trophic level organisms, including 72 

birds, is ingestion (Dauwe et al., 2005).  73 

Birds have high energetic requirements (Klasing, 2000), so they need to consume 74 

large quantities of food compared to their body mass. Insectivorous birds are thought to 75 

have more exposure to metals than granivorous birds due to their higher trophic levels and 76 

the potential accumulation in invertebrate species (Dauwe et al., 2004; Fritsch et al., 2012; 77 

Swaileh and Sansur, 2006; Zhuang et al., 2009), especially invertebrates known as ‘hyper-78 

accumulators’, such as Lumbricidae (Qiu et al., 2014). Although several monitoring studies 79 

have presented actual metal residues for a few terrestrial songbird species (Cooper et al., 80 

2017), the exposure to and risks posed by metals to a wide range of species are still poorly 81 

understood (Godwin et al., 2016).  82 

For passerine birds, data on the effects of metals are limited when compared with 83 

small mammals. Non-essential metals’ effects on birds include and are not-limited to: for 84 

Cd, anaemia, intestinal damage, impaired digestion, kidney damage, changes to bone 85 

mineralization, diseases and oxidative and histopathological damage, reduced reproductive 86 

success and endocrine disruption (Wayland and Scheuhammer, 2011); for Pb, anaemia, 87 

renal and haematological toxicity, possible brain damage, weight loss, immunosuppression, 88 

lesions of tissues, lethargy, ataxia, neurological effects, reduced reproductive success, and 89 

possibly death (Franson and Pain, 2011).  Thus, multiple fitness-related traits can be 90 
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affected by Pb and Cd, but not all studies report such effects in birds living in contaminated 91 

areas (Eeva et al., 2014; Rainio et al., 2015; Ruuskanen et al., 2015). In addition, since 92 

oxidative stress can affect the fitness of bird population (growth, survival, and 93 

reproduction), metal-related oxidative stress could affect populations of free-living birds 94 

(Koivula and Eeva, 2010). Cu and Zn, in contrast, are essential elements to all vertebrates, 95 

and are under homeostatic control. At normal physiological concentrations, Cu binds to the 96 

blood protein ceruloplasmin but excess Cu is carried ‘free’ in the blood and causes oxidative 97 

stress and intracellular oxidative damage by increasing ROS formation (Brewer, 2010); 98 

(Berglund et al., 2007). Chronic Zn toxicity is not well studied in wild or captive birds (Beyer, 99 

2006), with just a few studies on waterfowl (Taggart et al., 2006), which can be exposed 100 

from acid mine drainage (Gasaway and Buss, 1972). Zn toxic effects can decrease the 101 

pancreas and the body mass (Koivula and Eeva, 2010). As flying vertebrates that require 102 

high levels of motor-control and muscular activity, the physiological effects of exposure to 103 

metals may be critical to birds. Indeed, flight performance is known to be a sensitive 104 

indicator of environmental perturbations, such as a poor quality diet (Larcombe et al., 105 

2008).  106 

Sex and age can alter both the exposure to and consequences of metal residues. In 107 

wild and captive birds, females have been shown to be more sensitive (Eeva et al., 2009b) 108 

and/or simply accumulate metals at varying rates in different organs than males (Taggart et 109 

al., 2006) but see (Cooper et al., 2017). Juveniles are known to be more sensitive to damage 110 

due to Pb and other pollutants than adults, for example due to their immature digestion, 111 

and especially underdeveloped blood–brain barrier (Scheuhammer, 1987). Pb poisoning 112 

effects, including chick deformities and reductions in fertility, are well documented in 113 

waterfowl as they are often exposed to lead shots (Fisher et al., 2006). Nestlings also seem 114 
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to be more exposed to Pb than adult birds through the diet and because they are unable to 115 

escape polluted sites (e.g. (Grue and Franson, 1986). 116 

To investigate the potential risks of soil-associated metals to a large range of 117 

songbird species at a national scale, we applied a previously developed modelling 118 

framework to 30 insectivorous songbird species (strictly speaking passerines that include 119 

invertebrates in their diet but we use ‘insectivorous’ for brevity) breeding in England and 120 

Wales. This modelling framework was initially developed to assess the risks of metal to bats 121 

and uses a risk characterization approach (Hernout et al., 2013). The model has been 122 

evaluated for insectivorous bats against monitoring data which showed that the model 123 

provides satisfactory predictions (Hernout et al., 2015; Hernout et al., 2013). Of our focal 124 

species, several are on the British Trust for Ornithology’s (BTO) red or amber lists of high 125 

conservation concern in the UK (Eaton et al., 2009). To improve our knowledge on the 126 

potential risks of metal exposure to insectivorous passerine birds, our aims were to 127 

parameterize and apply a modelling framework to insectivorous passerine birds in order to: 128 

1) identify which species are the most exposed to metals and  which diet items and metals 129 

drive exposure risk; (2) investigate age-related effects on exposure risks and 3) Map spatial 130 

variation in toxicity risk from individual metals at a national level to identify areas for further 131 

investigation.   132 

 133 

  134 
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2. MATERIAL AND METHODS 135 

 136 

To investigate the risks from soil-associated metals to passerine birds breeding in the UK, we 137 

applied our modelling framework (Fig. 1) to four metals (Cd, Cu, Pb and Zn) and 30 passerine 138 

species (listed in Table A1 Appendix). Our model is based on a basic risk characterization 139 

ratio (RCR) approach in which the ratio is composed of a daily oral dose of a compound 140 

ingested and a “safe” dose (as described in (Hernout et al., 2013)). The qualitative 141 

information about the risk (acceptable or not) is given when the derived ratio is compared 142 

to a trigger value (of 1)(Hernout et al., 2013).  143 

The model (Fig. 1) integrates information on concentrations of metals in soils, 144 

bioaccumulation from soil into invertebrates, bird diet, spatial range of each species and 145 

toxicity data on each metal (see Appendix for full details of parameters and outputs). Data  146 

for both adult and nestling diet was available for 26 of the 30 species (except for Corvus 147 

monedula, Delichon urbica, Passer domesticus and Turdus merula for which only the data on 148 

the diet of nestlings were accessible) (Table A2 Appendix). The final output was a risk 149 

characterization ratio (RCR) for each 10 × 10 km cell defined by the ratio between the daily 150 

dose of metal that a bird receives (µg/g body weight/d) and predicted safe daily dose for the 151 

metal (µg/g body weight/d), within the spatial distribution of the bird (Hernout et al. 2013). 152 

The final risk maps were used to calculate the percentage of each species’ range at risk from 153 

trace metal toxicity, the species most at risk from metal toxicity and also to identify areas of 154 

the England and Wales which pose the highest risks to invertebrate-consuming birds. 155 



 

 156 

Figure 1: A flow chart showing the major stages, inputs and outputs of our model used to determine risk to an avian species to metals from soils via 157 

diet items. Oval-edged blue boxes represent parameters from the literature entered into the model. Green boxes with right angles represent the 158 

model steps. White, square- edged, boxes contain outputs from the models used in statistical analyses. See methods for further details.159 



 

2.1 Model parameterisation  160 

The modelling framework (Fig. 1) was parameterised to thirty species breeding in the UK 161 

(see Sections 2.1.1-5 and Appendix).  162 

 2.1.1 Maps of soil metal concentrations: The monitoring data on concentrations of 163 

metals (Cd, Cu, Pb and Zn) in soils (µg/g dw) across England and Wales, measured after acid 164 

extraction, were provided by the National Soil Resources Institute (NSRI). The data were 165 

collected between 1979 and 2003 at a resolution of 5×5 km2. Data from the more recent 166 

dataset (1994 and 2003) were used in preference to data from the older dataset (1979 and 167 

1987) so the older data were only used to fill gaps in the more recent dataset. We used 168 

approximately 70% of the data from the first dataset in the model. (see Hernout et al., 2013 169 

for details).  Inorganic metal concentration in soils persists for a long time after their 170 

introduction (since most metals do not undergo microbial or chemical degradation).  171 

2.1.2 Metal concentrations in diet items: Biota accumulation factors (BAFs) for 172 

uptake of Cd, Cu, Pb and Zn from soils or sediments were collected for each diet item (i.e. 173 

Araneida, Coleoptera, Collembola, Dermaptera, Diptera, Ephemeroptera, Gastropoda, 174 

Hemiptera, Hymenoptera, Isopoda, Lepidoptera, Lumbricidae, Myriapoda, Odonata, 175 

Opiliones, Orthoptera, Plecoptera, Trichoptera, carrion; and vegetation (plant material, 176 

cereal grains, seeds and fruits)) from several field and experimental studies (See Appendix  177 

Table A3 for BAF values for each diet item and Table A4 for search terms). The BAFs 178 

represented the uptake of metal contained in the soil into the given prey or food items and 179 

were expressed as the ratio between the soil metal concentrations and the metal 180 

concentration in prey or food items. Studies reporting total metal concentrations in both 181 

soil or sediments and prey or food items were selected (reference list given in Appendix).  182 
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Median BAFs were used for the model as there were several significant outliers in the 183 

collected dataset. A mean value of all invertebrate BAFs was used to calculate the uptake 184 

for each metal for any unspecified part of the diet (Table A3).  185 

 2.1.3 Diet of bird species: Data for adult birds were mostly collected from studies 186 

that had used stomach contents to determine diet proportions, and mostly collected from 187 

studies using a collar sampling method for nestlings (Table A2 for diet data and Table A4 for 188 

search terms used to find diet data). The diet data were expressed in percentage number 189 

for most species. Using these methods, it was possible to characterize 100% of the diet in 190 

most cases. Prey items were generally reported to the taxonomical order level.   191 

 2.1.3 Daily intake of food: Experimental data were lacking on the feeding rates of 192 

the different passerine species investigated in this study. Therefore, we used an 193 

allometric equation to derive the daily amount of food eaten per day (g dry weight/g 194 

body weight/d) given the body weight of the passerine species (Nagy, 1987; Snow and 195 

Perrins, 1998) (Table A1). Built from empirical field metabolic rates, allometric 196 

equations are of great use for biologists to predict the energetic and food requirements 197 

(further details about the allometric equation, see Nagy, 1987).  Since the model used 198 

the same daily amount of food ingested per day for nestling and adult, our risks 199 

predicted for nestlings were conservative because ingestion rates of nestlings reported 200 

from field studies were higher than those of adults (Cramp, 1994a). 201 

 2.1.4 Daily dose of metals: The amount of metal that a bird uptakes per day was 202 

calculated from the concentration of metal in each diet item, the proportion of each diet 203 

item in the diet and their daily consumed amount of food per day. The calculation predicted 204 

the daily dose of metal that a bird receives in µg/g body weight/d (Appendix). The daily dose 205 

of metals was calculated for each species and each life stage (nestling or adult).  206 
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 2.1.5 Predicted safe daily dose: The predicted safe daily was estimated by using No 207 

Observable Adverse Effect Level (NOAEL) values, defined as the highest dose ingested where 208 

adverse effects are not observed during the experimental toxicological study. Since few data 209 

are available on wild bird species, we used NOAELS data from test species measured 210 

experimentally (Table A5, (Sample et al., 1998). The toxicological endpoints involved in the 211 

test species experiments were reproduction (for Cd, Pb and Zn), and growth and mortality 212 

(for Cu) (Table A5). These endpoints are crucially important in the risk assessment of 213 

chemicals to wildlife populations. For avian species, the derivation of NOAELs data from test 214 

species and simply applying this to other target species based on the body weight of the 215 

organism, as is done for small mammals, is not relevant (Sample et al., 1998).  Therefore, we 216 

used the same predicted safe daily dose for each bird species for a given metal. As described 217 

in Hernout et al. 2013, the predicted safe daily dose was calculated by dividing the NOAEL 218 

value by an uncertainty factor of five to account for possible uncertainty in the toxicological 219 

data (e.g. inter-laboratory difference, inter and intra species differences, differences in 220 

sensitivity of different life stages). The value of five is commonly used in the regulatory 221 

assessment of the long-term risks of pesticides to birds and mammals species (EFSA, 2009).  222 

 223 

2.2 Application of spatially explicit model  224 

The GIS spatial analysis were done using ArcGIS (ArcGIS 9, ArcMap Version 9.3.1) to assess 225 

the variation of the risks of soil-associated metals to birds via the diet, in their respective 226 

ranges, across England and Wales. Based on the data of metal concentrations in the soil, 227 

uptake of metals into diet items and the ingestion of different prey types by adults and 228 

nestling of different species, we calculated an RCR value for each grid cell (resolution of 10 X 229 
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10 km2) (See Appendix and Hernout et al., 2013).  Finally, the breeding distribution of the 230 

bird species were provided by British Trust for Ornithology (BTO) 1991 atlas data (Gibbons 231 

et al., 1993). These were overlaid on the RCRs maps to obtain risks predictions within the 232 

range of each species. This resulted in two quantitative outputs that were analysed 233 

statistically: 1); mean RCRs per species across their distribution which provide further 234 

information about the risk amplitude for each species and are useful to compute further 235 

quantitative analyses; and 2) percentage of a species’ distribution at risk of metal toxicity 236 

(number of grid cells with a RCR >1 divided by the total number of grid cells for the species’ 237 

distribution) which provides general information about how the risk extends on the spatial 238 

range for a particular species. These two outputs data were obtained for each metal (Cd, Cu, 239 

Pb and Zn), for each species and for each life stage (adult-nestling).  240 

 241 

2.3 Data analysis  242 

Statistical outputs were created using SPSS Ver 24 and software R version 3.2.5 (R 243 

Development Core team, 2016). The model output data did not conform to the assumptions 244 

of parametric tests so non-parametric tests were used to analyse the data. Kruskal-Wallis 245 

test was used to compare the differences in RCRs values across species for the same metal. 246 

To investigate the influence of the diet in driving the risk, Kendall’s Tau was used to analyse 247 

the correlations between RCRs and the percentage of a given diet item. Wilcoxon signed 248 

rank tests were used to compare the differences in risk between adults and nestlings. Mann-249 

Whitney U-tests identified differences in the percentage of invertebrates in the diets of 250 

adults and nestlings. Where we applied multiple tests to the same data, we adjusted the p-251 

value using a Holm-Bonferroni adjustment. 252 
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3. RESULTS AND DISCUSSION 253 

 254 

3.1 Interspecific variation in the risk from metal toxicity 255 

Among adults, species varied significantly in their median RCRs calculated across species’ 256 

distributions for Cd, Cu, Pb and Zn (Kruskal-Wallis test P < 0.0001 in all cases) (See Table 1 257 

for full outputs). Starting with adults: For Cd (Fig 2a) and Cu (Fig 2b) only the outliers, i.e. 258 

from locations with extremely high values of metal concentration and/or species consuming 259 

large amount of prey types with high BAFs, appear to go above the risk line (red line). For Pb 260 

(Fig 2c) and Zn (Fig 2d) exposure, all species have a median RCR above 1 indicating that a 261 

high percentage of that species’ distribution was assessed as being at risk of toxic effects. 262 

This included species of conservation concern in the UK because of large population 263 

declines, including the Starling Sturnus vulgaris, Song thrush Turdus philomelos and Reed 264 

bunting Emberiza schoeniclus.  265 

For nestlings, there were significant differences among species for all metals 266 

(Kruskal-Wallis test P < 0.0001 in all cases) (See Table 1A6 for full outputs). In terms of Cd 267 

(Fig 3a) the median RCRs for most species were below the red line with only some outliers 268 

at risk of toxicity. Only four extremely widely distributed species had a significant 269 

percentage of their population at risk of Cd toxicity (Rooks Corvus frugilegus, Jackdaws 270 

Corvus monedula, Blackbird Turdus merula and Mistle Thrush Turdus viscivorus) (Table 1). 271 

Cu toxicity did not pose a risk to nestlings across the vast majority of species’ distributions 272 

(Fig 3b). Nestlings of all species analysed were found to be at risk from Zn and Pb toxicity 273 

(Fig 3c and 3d). This is concerning for two reasons; At least in other vertebrates, juveniles 274 

are more sensitive to trace metal toxicity than adults, resulting in permanent changes to 275 
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brain function and limb development (Sfakianakis et al., 2015). Second, our analyses suggest 276 

that nestlings are more exposed to trace metals than adults (see also bats (Korstian et al., 277 

2018). Thus, we suggest that while a lot of research effort is currently focused on the effects 278 

of so called ‘emerging contaminants’ (Arnold et al., 2014), trace metals are also likely to be 279 

causing a range of lethal and sublethal effects on individuals with the potential for 280 

population level changes in some heavily contaminated, industrial or post-industrial areas. 281 

The proliferation of the outliers (Fig 2a, 2b, 3a and 3b) is due to the distribution of the soil 282 

concentrations data, which is our initially input value in the model. The soil concentration 283 

data are ranging from <0.05 to 40.60 µg/g and <0.04 to 1507.70 µg/g for Cd and Cu, 284 

respectively (median 0.50 and 17.30 µg/g, respectively).  285 

  286 



 

 287 

 288 
 289 
Figure 2: Adult RCRs. Differences in the median RCRs for the adults of passerine species across their distributions in England and Wales for a) Cd; b) Cu; c) 290 

Pb and d) Zn. Above the red line the risk from the metal is unacceptable; below it the risk is acceptable. Y axis is a log10 scale due to the skew of the values 291 

and the number of outliers. Note the different scales on the y-axes. Medians, quartiles, outliers and extreme values are displayed. 292 



 

    293 

    294 

Figure 3: Nestling RCRs. Differences in the median RCRs for the nestlings of passerine species across their distributions in England and Wales for a) Cd; b) 295 

Cu; c) Pb and d) Zn. Above the red line the risk from the metal is unacceptable; below it the risk is acceptable. Y axis is a log10 scale due to the skew of the 296 

values and the number of outliers. Medians, quartiles, outliers and extreme values are displayed. 297 

 298 



 

 

18 

Table 1. Descriptive statistics (median and range) of RCRs data and percentage of the bird range (in italics) predicted at risk for each metal and bird species 299 
(adults and nestlings). 300 

   

 301 
Bird species Cd Cu Pb Zn 

Adults Nestlings Adults Nestlings Adults Nestlings Adults Nestlings 

Aegithalos caudatus 0.5 (0.0 – 13.7) 

24% 

0.4 (0.0 – 10.9) 

12% 

0.4 (0.0 – 33.3) 

6% 

0.3 (0.0 – 28.4) 

4% 

2.8 (0.0 – 32.3) 

77% 

2.3 (0.0 – 26.0) 

72% 

8.0 (0.1 – 75.0) 

95% 

4.8 (0.0 – 45.1) 

92% 

Certhia familiaris 0.7 (0.0 – 19.3) 

42% 

0.4 (0.0 – 11.2) 

14% 

0.4 (0.0 – 38.0) 

8% 

0.4 (0.0 – 35.9) 

7% 

6.7 (0.1 – 77.2) 

91% 

9.2 (0.1 – 106.4) 

93% 

9.5 (0.1 – 88.6) 

97% 

8.5 (0.1 – 78.9) 

95% 

Corvus corone 0.7 (0.0 – 18.8) 

35% 

0.9 (0.0 – 23.3) 

50% 

0.3 (0.0 – 21.9) 

2% 

0.3 (0.0 – 26.1) 

4% 

4.5 (0.1 – 51.9) 

89% 

6.3 (0.1 – 72.3) 

90% 

3.7 (0.0 – 34.4) 

88% 

3.8 (0.0 – 35.4) 

88% 

Corvus frugilegus 0.4 (0.0 – 9.9) 

9% 

1.4 (0.0 – 37.8) 

62% 

0.2 (0.0 – 17.7) 

1% 

0.3 (0.0 – 28.8) 

4% 

3.7 (0.0 – 43.6) 

84% 

7.6 (0.1 – 88.4) 

92% 

3.5 (0.0 – 32.4) 

87% 

4.0 (0.0 – 37.2) 

89% 

Corvus monedula NA 2.4 (0.0 – 64.3) 

72% 

NA 0.5 (0.1 – 41.7) 

9% 

NA 9.0 (0.1 – 104.4) 

93% 

NA 5.6 (0.0 – 52.5) 

94% 

Delichon urbica NA 0.3 (0.0 – 7.7) 

4% 

NA 0.5 (0.1 – 39.8) 

9% 

NA 5.0 (0.1 – 57.3) 

89% 

NA 11.3 (0.1 – 105.0) 

97% 

Emberiza citrinella 0.5 (0.0 – 13.7) 

24% 

0.5 (0.0 – 13.6) 

24% 

0.4 (0.0 – 30.6) 

5% 

0.3 (0.0 – 27.0) 

4% 

4.7 (0.1 – 54.4) 

89% 

4.0 (0.0 – 47.2) 

85% 

7.6 (0.1 – 72.5) 

95% 

4.4 (0.0 – 41.4) 

91% 

Emberiza shoeniclus 0.8 (0.0 – 22.5) 

50% 

0.6 (0.0 – 15.7) 

28% 

0.5 (0.0 – 39.6) 

9% 

0.4 (0.0 – 32.1) 

6% 

9.8 (0.1 – 114.4) 

92% 

4.0 (0.0 – 46.2) 

85% 

5.9 (0.1 – 55.9) 

95% 

8.9 (0.1 – 83.9) 

97% 

Erithacus rubecula 0.7 (0.0 – 19.2) 

41% 

0.8 (0.0 – 22.6) 

50% 

0.6 (0.1 – 49.2) 

15% 

0.5 (0.1 – 42.6) 

10% 

6.2 (0.1 – 71.8) 

90% 

5.2 (0.1 – 60.0) 

89% 

7.7 (0.1 – 72.6) 

96% 

7.6 (0.1 – 71.4) 

96% 

Ficedula hypoleuca 0.9 (0.0 – 20.3) 

42% 

0.8 (0.0 – 18.2) 

35% 

0.3 (0.0 – 27.2) 

4% 

0.5 (0.1 – 43.0) 

10% 

7.0 (0.1 – 52.3) 

90% 

7.8 (0.1 – 57.6) 

91% 

8.2 (0.1 – 66.0) 

95% 

7.7 (0.1 – 62.1) 

95% 

Fringilla coelebs 0.7 (0.0 – 20.0) 

42% 

0.5 (0.0 – 14.0) 

24% 

0.4 (0.0 – 32.3) 

6% 

0.4 (0.0 – 30.6) 

5% 

6.6 (0.1 – 76.3) 

91% 

5.9 (0.1 – 67.5) 

89% 

7.4 (0.1 – 69.2) 

96% 

8.7 (0.1 – 81.2) 

97% 

Garrulus glandarius 0.1 (0.0 – 2.4) 

0% 

0.5 (0.0 – 11.4) 

15% 

0.1 (0.0 – 6.2) 

0% 

0.2 (0.0 – 19.1) 

2% 

10.0 (0.1 – 115.9) 

93% 

2.1 (0.0 – 23.8) 

68% 

5.0 (0.0 – 46.3) 

91% 

2.1 (0.0 – 19.9) 

74% 

Motacilla alba 0.4 (0.0 – 11.4)  0.3 (0.0 – 8.3) 0.2 (0.0 – 21.6) 0.4 (0.0 – 31.9) 5.6 (0.1 – 64.9) 6.7 (0.1 – 77.7) 4.6 (0.0 – 43.1) 7.1 (0.1 – 66.9) 
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14% 5% 2% 6% 89% 91% 92% 95% 

Motacilla cinerea 0.7 (0.0 – 17.6) 

35% 

0.4 (0.0 – 9.9) 

9% 

0.8 (0.1 – 73.9) 

38% 

0.3 (0.0 – 23.6) 

3% 

8.5 (0.1 – 98.2) 

93% 

5.7 (0.1 – 63.2) 

90% 

10.6 (0.1 – 99.4) 

97% 

8.6 (0.1 – 77.4) 

95% 

Parus ater 0.4 (0.0 – 9.9) 

9% 

0.8 (0.0 – 20.5) 

42% 

0.5 (0.1 – 45.4) 

12% 

0.4 (0.0 – 33.0) 

5% 

6.6 (0.1 – 72.1) 

91% 

4.9 (0.1 – 56.9) 

90% 

10.6 (0.1 – 94.8) 

97% 

6.6 (0.1 – 59.5) 

94% 

Cyanistes caeruleus 0.4 (0.0 – 10.7) 

12% 

0.6 (0.0 – 16.7) 

35% 

0.4 (0.0 – 37.0) 

7% 

0.3 (0.0 – 25.3) 

3% 

2.3 (0.0 – 26.9) 

75% 

2.5 (0.0 – 28.5) 

75% 

9.4 (0.1 – 84.3) 

97% 

3.2 (0.0 – 30.2) 

85% 

Parus major 0.5 (0.0 – 12.6) 

18% 

0.6 (0.0 – 14.8) 

29% 

0.3 (0.0 – 28.6) 

4% 

0.3 (0.0 – 24.8) 

3% 

7.6 (0.1 – 87.3) 

92% 

2.9 (0.0 – 33.3) 

79% 

6.7 (0.1 – 62.3) 

95% 

3.2 (0.0 – 30.2) 

85% 

Parus palustris 0.6 (0.0 – 16.8) 

35% 

0.7 (0.0 – 18.9) 

36% 

0.4 (0.0 – 36.5) 

7% 

0.3 (0.0 – 25.1) 

3% 

4.8 (0.1 – 55.4) 

89% 

1.6 (0.0 – 21.3) 

64% 

7.2 (0.1 – 67.5) 

96% 

2.8 (0.0 – 26.2) 

81% 

Passer domesticus NA 0.3 (0.0 – 9.1) 

6% 

NA 0.4 (0.0 – 31.6) 

5% 

NA 2.6 (0.0 – 29.9) 

76% 

NA 6.9 (0.1 – 65.2) 

95% 

Phylloscopus collybita 0.6 (0.0 -17.1) 

36% 

0.6 (0.0 – 16.3) 

29% 

0.4 (0.0 – 34.4) 

6% 

0.6 (0.1 – 51.9) 

17% 

7.0 (0.1 – 91.8) 

93% 

3.4 (0.0 – 40.0) 

82% 

6.0 (0.1 – 55.8) 

95% 

11.8 (0.1 – 107.4) 

97% 

Phylloscopus trochilus 0.6 (0.0 – 16.9)  

35% 

0.5 (0.0 – 14.1) 

24% 

0.5 (0.1 – 45.5) 

13% 

0.5 (0.1 – 39.8) 

8% 

6.0 (0.1 – 69.5) 

89% 

6.2 (0.1 – 71.9) 

90% 

10.7 (0.1 – 97.8) 

97% 

9.5 (0.1 – 88.9) 

97% 

Pica pica 0.7 (0.0 -18.6) 

35% 

0.9 (0.0 – 24.9) 

50% 

0.5 (0.1 – 41.8) 

9% 

0.3 (0.0 – 29.4) 

5% 

6.6 (0.1 – 76.3) 

91% 

6.1 (0.1 -70.0) 

90% 

9.1 (0.1 – 85.4) 

97% 

3.9 (0.0 – 37.1) 

89% 

Prunella modularis 0.1 (0.0 – 4.5) 

1% 

0.6 (0.0 – 14.9) 

29% 

0.2 (0.0 – 14.7) 

1% 

0.4 (0.0 – 38.6) 

8% 

1.6 (0.0 – 18.7) 

62% 

3.8 (0.0 – 44.4) 

84% 

13.6 (0.1 – 127.3) 

98% 

8.7 (0.1 – 81.3) 

97% 

Regulus regulus 0.7 (0.0 – 19.5) 

42% 

0.7 (0.0 – 17.5) 

35% 

0.5 (0.1 – 47.6) 

13% 

0.5 (0.1 – 45.6) 

12% 

3.6 (0.0 – 41.9) 

83% 

1.4 (0.0 – 16.1) 

57% 

11.0 (0.1 – 104.2) 

97% 

10.5 (0.1 – 99.5) 

97% 

Sitta europaea 0.6 (0.0 – 12.3) 

19% 

0.6 (0.0 – 12.8) 

19% 

0.3 (0.0 – 25.5) 

3% 

0.3 (0.0 – 29.8) 

5% 

5.2 (0.1 – 60.2) 

90% 

3.1 (0.0 – 35.4) 

80% 

9.1 (0.1 – 85.7) 

96% 

2.9 (0.0 – 27.0) 

82% 

Sturnus vulgaris 0.2 (0.0 – 9.9) 

9% 

1.0 (0.0 – 26.6) 

50% 

0.2 (0.0 – 14.7) 

1% 

0.3 (0.0 – 28.2) 

4% 

7.7 (0.1 – 88.5) 

92% 

7.2 (0.1 – 82.8) 

91% 

4.6 (0.0 – 43.2) 

92% 

4.5 (0.0 – 42.1) 

91% 

Troglodytes troglodytes 1.0 (0.0 – 25.6) 

50% 

1.0 (0.0 – 26.2) 

50% 

0.6 (0.1 – 52.2) 

17% 

0.5 (0.1 – 44.2) 

11% 

7.0 (0.1 – 81.1) 

91% 

3.8 (0.0 – 43.5) 

83% 

9.1 (0.1 – 85.0) 

97% 

8.1 (0.1 – 75.5) 

96% 

Turdus merula NA 1.8 (0.0 – 47.2) 

71% 

NA 0.6 (0.1 – 48.6) 

14% 

NA 7.4 (0.1 – 85.4) 

91% 

NA 5.6 (0.0 – 52.0) 

94% 
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Turdus philomelos 2.2 (0.0 – 59.7) 

72% 

0.6 (0.0 – 16.9) 

35% 

0.9 (0.1 – 82.0) 

46% 

0.3 (0.0 – 22.4) 

2% 

12.2 (0.1 – 140.6) 

94% 

3.5 (0.0 – 40.2) 

83% 

8.2 (0.1 – 76.7) 

96% 

2.7 (0.0 – 25.5) 

81% 

Turdus viscivorous 2.2 (0.0 – 58.1)  

72% 

3.3 (0.0 – 88.1) 

83% 

0.3 (0.0 – 32.1) 

6% 

0.6 (0.1 – 55.7) 

21% 

14.7 (0.2 – 169.6) 

95% 

13.0 (0.2 – 149.7) 

94% 

4.8 (0.0 – 45.1) 

92% 

6.5 (0.1 – 61.9) 

95% 

302 



 

  303 

3.2  Influence of Diet on Exposure to Toxicity Risk 304 

Next, we investigated the influence of diet on determining the risk to species. Table 2 shows 305 

the correlations between the incidence of different prey types in the diet and the mean risk 306 

of toxicity (RCRs) to the four different metals for species. The most obvious point is that no 307 

single diet item drives exposure to metal toxicity (see also Table A7); Consumption of 308 

Araneidae was significantly correlated with toxicity risk to Cd for adult songbirds only. 309 

Coleoptera intake was significantly linked with risk of Cd toxicity to adults and Pb toxicity 310 

risk for nestlings. Diptera consumption posed more of a risk than other prey being 311 

significantly linked with Pb and Zn risks to nestlings. Lumbricidae in the nestling diet 312 

exposed them to Cd and Pb toxicity. There was a significant negative relationship between 313 

consumption of Lepidopterans by nestling and relative risk of toxicity to both Pb and Zn. 314 

This suggests that moths and butterflies do not bioaccumulate high levels of trace metals 315 

and that their inclusion in the diet perhaps reduces the consumption of more high risk 316 

invertebrates by specific bird species.  317 

 Our modeling exercise compiles several factors in determinining the risks, with a 318 

variety of risk scenario depending on the species, the diet, spatial range, ect. Therefore, our 319 

results were not simply driven by the frequency of a prey type in the diet or by high BAF 320 

values for a prey item. Diptera for example, contribute a large proportion to the diet of birds 321 

overall but has a relatively low BAF value for Pb and a much higher one for Zn. Despite this 322 

difference in BAF value between Pb and Zn, these two elements are are strongly linked with 323 

toxicity risk of birds from Diptera at the national distribution level, which could suggest high 324 

exposure of Pb due to the high Pb concentrations in the soil and a higher toxicity of Pb 325 

compare to Zn. Thus, the distribution of both the songbird species and the metals in the 326 
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soils clearly impact upon toxicity risk. These two factors are important in predicting the 327 

exposure of metals to wildlife species. In a field study of small mammals, for example, Cd 328 

exposure was related to diet inthe woodmouse (Apodemus sylvaticus) , whereas local soil Cd 329 

concentrations or soil properties were more important to determine Cd accumulation for 330 

the common vole (Microtus arvalis), (van den Brink et al., 2011). We have shown that there 331 

are high toxicity risks posed by Pb to avian distributions in both adults (Fig 2) and nestlings 332 

(Fig. 3). Pb does not accumulate in prey at higher rates than other metals. Rather it seems 333 

that the ubiquity and relatively high concentrations of Pb in the soils, as well as its low 334 

NOAEL, result in it posing a risk to a high percentage of the distributions of passerines. Given 335 

these relationships indicating that the RCRs across species’ breeding distribution in the UK 336 

at risk from metal toxicity can be linked to intake of specific invertebrates, the next step is to 337 

investigate the differences in metal concentrations in different invertebrate taxa from high 338 

and low toxicity risk areas of the country (such as in (Davison et al., 1999) and see list of 339 

references in Appendix used to determine BAF values). 340 

 341 

 342 

  343 



 

Table 2: Correlations between the percentage of specific commonly consumed prey items in a species’ diet for adults and nestlings and the mean risk (RCR) 344 

from metal toxicity. Kendall’s tau (tau), sample size (N) and p-value are presented. A Holm-Bonferroni correction was applied as four tests per prey type per 345 

avian life stage were applied. Bold indicates that the relationship was significant according to the corrected p-values. 346 

Prey Bird age Cd   Cu   Pb   Zn   

  tau N p tau N p tau N p tau N p 

Araneidae Adult 0.442 20 0.006 0.263 20 0.105 -0.053 20 0.746 0.368 20 0.023 

 Nestling 0.167 25 0.243 0.153 25 0.283 -0.313 25 0.028 0.173 25 0.225 

Coleoptera Adult 0.422 26 0.003 0.255 26 0.067 0.305 26 0.029 -0.114 26 0.415 

 Nestling 0.331 30 0.011 -0.155 30 0.231 0.382 30 0.003 -0.280 30 0.031 

Diptera Adult 0.109 26 0.439 0.291 26 0.040 0.128 26 0.364 0.259 26 0.066 

 Nestling -0.118 30 0.363 0.200 30 0.121 0.463 30 0.0001 0.380 30 0.003 

Hymenoptera Adult -0.009 26 0.947 -0.034 26 0.808 -0.122 26 0.388 -0.022 26 0.877 

 Nestling 0.144 30 0.277 0.163 30 0.218 0.106 30 0.426 0.173 30 0.192 

Lepidoptera Adult -0.101 26 0.478 0 26 1.00 -0.353 26 0.013 -0.025 26 0.859 

 Nestling -0.055 30 0.668 -0.226 30 0.080 -0.442 30 0.001 -0.460 30 0.0001 

Lumbricidae Adult 0.400 5 0.327 0.200 5 0.624 0.600 5 0.142 0.200 5 0.624 

 Nestling 0.833 9 0.002 0.500 9 0.061 0.722 9 0.007 0.389 9 0.144 

347 



 

3.3 Life-stage related variation in the toxicity risks of metals to birds  348 

Few studies have compared specific risk from metals across different species and life stages, 349 

so we were interested to see how diet and breeding range would combine to affect risk. For 350 

the 26 species for which we had both adult and nestling diet data, we ran paired tests on 351 

the mean RCR per age class per species: There were no age specific differences in the RCR 352 

values for Cd (Wilcoxon signed-rank test Z = 0.724, N = 26, p = 0.47; Fig. 4a) or Cu (Wilcoxon 353 

signed-rank test Z = -0.241, N = 26, p = 0.81; Fig. 4b). Moreover, the median RCR values 354 

were below the toxicity cut-off of 1. Adults were found to have a significantly higher risk 355 

from Pb (Wilcoxon signed ranks test Z = -2.15, N = 26, p = 0.032; Fig. 4c) and Zn (Wilcoxon 356 

signed ranks test Z = -2.83, N = 26, p = 0.005; Fig. 4d) than nestlings of the same species.  357 

 The age specific differences in spatial risk must have been partially driven by 358 

differences in diet between adults and nestlings, because other factors, such as age specific 359 

sensitivity to contaminants or rates of excretion, were not taken into account within our 360 

model. Moreover, due to data limitation in the literature, the daily amount of food ingested 361 

and the NOAELs were similar for the adults and nestlings of the same species. Thus next, we 362 

directly compared the diets of nestlings and adults. For the species that we studied, the 363 

adult diets contained a higher percentage of Coleoptera (Mann-Whitney U-test z = -3.63, 364 

Adult N = 26, nestling N = 30,  p < 0.0001) and Hymenoptera (Mann-Whitney U-test z = -365 

2.06, Adult N = 26, nestling N = 30, p = 0.039)  than the diets of nestlings. In contrast, adult 366 

diets consisted of a lower percentage of Araneidae (Mann-Whitney U-test z = 3.08, adult N = 367 

20, nestling N = 25, p = 0.002), Diptera (Mann-Whitney U-test z = 3.21, Adult N = 26, nestling 368 

N = 30, p = 0.001), and Lepidoptera (Mann-Whitney U-test z = 3.60, Adult N = 26, nestling N 369 

= 30 adults, p < 0.0001) compared with the nestling diets. Moreover, we can see from Table  370 
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 371 

  372 
 373 

 374 
 375 

 376 

Figure 4: Difference between nestlings and adults in mean RCRs across species’ distributions from a) 377 

Cd (N.S.); b) Cu (N.S.); c) Pb (p = 0.032)  and d) Zn (p = 0.005). See text for more information. NB the 378 

very different scales on the y-axes. The red line indicates RCR = 1 above which there is a toxicity risk. 379 

Medians, quartiles, outliers (black dots) and extreme values (stars) are displayed. 380 

  381 
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2 that there are some differences between adults and chicks in the diet items driving mean RCRs across 

species. A larger dataset on feeding requirement, metabolic rate, sublethal effects of metal toxicity, 

toxictokinetics and exogenous metal bioaccumulation and detoxification in adult versus nestlings for 

wildlife species could help to refine the model and better understand the differences in metal toxicity 

across life-stage.  

3.4 Percentage of bird distribution predicted at risk 

Our spatially explicit model allowed us to identify areas of each species’ distribution at a national level in 

which the population is at risk from metal toxicity (Table 1). Overall, based on this modelling exercise we 

were able to determine that an average of 32.7 ± 0.2 %, 8.0 ± 0.1%, 86.1 ± 0.1%, and 93.2 ± 0.1% of the 

bird spatial distribution (for all the species studied) were characterized at risk of Cd, Cu, Pb and Zn, 

respectively. For adults, the highest average percentage of area at risk was for Zn (with 94.3 ± 0.0%), 

followed by Pb (87.5 ± 0.1%), Cd (31.4 ± 0.2%) and Cu (9.1 ± 0.1%). For nestlings we obtained: Zn (91.0 ± 

0.1%), Pb (83.5 ± 0.1% ), Cd (34.3 ± 0.2%) and Cu (7.1 ± 0.0%) (Table 1). These results were consistent with 

our previous analysis (section 3.1). We believe that the percentage of area characterized at risk and the 

maps are model outputs of great use for risk communication to the public (including outreach activities) 

and environmental risk assessment’s stakeholders (e.g. policy makers)(Lahr and Kooistra, 2010)  

Figure 5 provides three examples of risk maps for Cd; Figure 5a shows the spatial variation in the 

risk of Cd toxicity to Pied Flycatcher Ficedula hypoleuca nestlings - a summer migrant, which has the 

smallest breeding range of all the bird species studied and consumes mainly aerial and arboreal 

invertebrates. In comparison, Figure 5b shows the wide distribution of the Blackbird Turdus merula which 

is resident in the UK, has the largest range of the species studied (with Fringilla coelebs and Cyanistes 

caerulus) and is common in urban areas. Thus, Blackbirds due to their wide distribution and diet of ground-

dwelling invertebrates are at relatively high risk of Cd toxicity over a large part of their range, not just from 

heavily polluted areas. Finally, Fig. 5c shows the risk map for Blue Tits Cyanistes caeruleus which are also 
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widespread but forage more on arboreal than soil dwelling invertebrates, so has a lower percentage of its 

UK distribution at Cd toxicity risk than that of Blackbirds.  

 Next we investigated the relationships between metal exposure from the different metals studied  

by assessing the strength of the associations of the percentage of area at risk between metals for each life-

stage. For nestlings, the percentage of avian distributions at risk from Cd was not correlated with risk from 

any other metal. There were significant positive relationships between the percentages of the songbird 

distributions at risk from Cu and Zn (Kendall’s tau = 0.628, N = 22, P = 0.0001). For adult passerine species 

in our dataset, the percentage of species’ distribution at risk from Cd was positively correlated with risk 

from Cu (Kendall’s tau = 0.473, N = 16, P = 0.015), as was Cu and Zn (Kendall’s tau = 0.679, N = 16, P = 

0.001). So, although for most of their distributions, songbirds were not exposed to toxic levels of Cd or Cu 

(RCR < 1), in some areas affected by heavy industry, bird populations could be at risk from exposure to 

several trace metals simultaneously. Where different metals affect the same organ or body system, they 

might have an additive effect (EPA, 2010; EPA, 2004). For example, both Cd and Pb cause pathology of the 

kidneys so simultaneous exposure to both metals is likely to cause increased kidney damage. However, 

some metals have antagonistic effects such as that displayed by Cu and Zn (Oestreicher and Cousins, 1985). 

Zin can even cause toxicity through inducing deficiencies in other essential metals, particularly Cu (Beyer, 

2006). The combined effects of several trace metals has been related to reduced survival in wild passerine 

populations (Belskii et al., 1995; Belskii et al., 2005; Eeva and Lehikoinen, 1996; Janssens et al., 2003b). The 

sublethal effects of different mixture of trace metals, as well as other pollutants associated with industrial 

activities, on birds at different life history stages remains a key knowledge gap (Heys et al., 2016; 

Cedergreen, 2014). 

The risk areas identified by our maps reflect the trace metal concentrations in the soils and all four 

metals varied in concentration considerably throughout England and Wales (Fig. 5 and Fig A1 in Appendix). 

The main areas of significantly elevated metal concentrations are former mining areas or heavily 

industrialised conurbations such as the south Peak District and North Pennines. The peatland in these 
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areas is known to accumulate trace metals via atmospheric deposition (Rothwell et al., 2007). The 

industrialised coast of the Severn Estuary shows high concentrations of Cd and Zn, as do the south Wales 

valleys around the coal belt. There are also several areas where high concentrations of a single metal are 

not co-localised with other metals; e.g. Dorset and Hampshire have an elevated concentration of Cd only. 

In contrast, Pb appears to pose the spatially broadest risk of the four metals (Fisher et al., 2006).  
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3.5 Uses and limitations of our model 

c) Blue Tit  

a) Pied Flycatcher      b) Blackbird 

Figure 5: Cd toxicity risk maps for: a) Pied 

Flycatcher nestlings Ficedula hypoleuca; 

b) Blackbird nestlings Turdus merula; c) 

Blue Tit Cyanistes caeruleus nestlings in 

England and Wales. Red grid cells indicate 

that the population present in those cells 

are at risk from Cd toxicity, green 

indicates no risk in that area and white 

indicates that the species is not present in 

that area (or in a limited number of cells 

that there are no metal data). 



 

 

30 

Our model has identified species at potential risk of metal toxicity in different areas of England and Wales. 

This approach is useful in utilising existing data to make predictions concerning spatial variation in 

exposure to environmental contaminants. More specifically, we were able to refine the estimations of the 

amount of metal ingested per bird species and per life-stage, and per spatial areas. This refinement is often 

overlooked in environmental risk assessment. However, some limitations need to be borne in mind when 

interpreting the outputs. These include the assumptions used in deriving the diet of bird species which can 

vary within and between species depending on life history stage, but also vary within spatial locations and 

seasons, for example (Arnold et al., 2010; Nagy, 1987). In addition, bird energetic requirements and 

therefore the daily amount of food consumed can also vary within more refined parameters: such as the 

temperature, season etc. Further studies could therefore refine the metabolic rate requirement across 

species and across life-stage. Moreover, the model does not take into account the influences of soil 

parameters on uptake into food items, the spatial obtainability of prey items and the bioavailability of 

metals from food items into the birds (Fritsch et al., 2012; Hernout et al., 2011; Hernout et al., 2013; 

Schipper et al., 2012). Exposure to metals will of course differ between resident species and those 

migratory species, such as Pied flycatchers that overwinter in regions that have not been modelled here. 

Here, we considered only exposure via prey but Pb exposure via ingestion of spent Pb from ammunition, 

presumably as grit or as particles in vertebrate prey is not considered in the model. So, risk for Pb could be 

underestimated perhaps more so for predatory and scavenging, than insectivorous species (Pain et al., 

2007). Finally, we have not taken soil or prey Ca availability into account and Ca affects the absorption of 

other metals (Eeva and Lehikoinen, 2004; Scheuhammer, 1991).  

 The tolerance of the species to each metal (i.e. ratio NOAEL by uncertainty factor) were obtained 

from studies on model species which have different life histories and energetic requirements to passerines 

(Table A5). Surrogate species are often used to derive toxicological data for wildlife species from the same 

taxa. Further work is required to assess species-level effects and life-stage related effects of trace metals 

for almost all bird species (Korsman et al., 2016). Nestling may also have a different tolerance to metal 
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than adults, and different excretion rates of metal (excretion through growing feathers) (Dauwe et al., 

2000). Moreover, there is increasing discussion in the literature of the limitations of simplified 

ecotoxicological descriptors, such as NOAEL, which do not describe the exposure-response curve 

fundamental in ecotoxicology (Landis and Chapman, 2011; but see (Green et al., 2013)).  

 Our model provides an indication of risk across different areas of a species’ range but this requires 

ground-truthing via field sampling (Hernout et al., 2015). We have previously shown, for example, that 

insectivorous bats found in areas predicted to be the most “at risk”,  by a similar spatially explicit model, 

contained higher metal concentrations in their tissues than those found in areas projected to be “not at 

risk” by the model (Hernout et al., 2015). Although some monitoring studies presenting body burdens of 

metals in bird tissues are available (e.g.(Berglund and Nyholm, 2011; Berglund et al., 2015; Fritsch et al., 

2012), these data are not directly comparable with our model predictions, since they refer to different 

study areas (Sweden, Finland and France, respectively). Further monitoring studies could investigate body 

burdens of metals in songbirds in the UK and compare these concentrations across a gradient of soil 

concentrations. However, unlike other monitoring studies, we have investigated risk and proposed a 

refined assessment of the amount of metal ingested for thirty species of bird across their breeding 

distribution in England and Wales, not just focussed on point sources of contamination.  

 Despite the limitations described above, the model framework shown in this paper provides a 

starting point for conservation and environmental risk assessment efforts and to orientate further 

research. In the context of moving forward spatially explicit and ecologically relevant risk assessment of 

chemicals for wildlife species, we believe that the model presented in this study is valuable. In addition, 

this paper shows that with adequate data, spatial models can be used to highlight regional and global areas 

and species of concern which can then be targeted for more in depth study and management.  

 

4. Conclusions 
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Our study has mapped interspecies variation in risk of metal exposure to insectivorous passerines at a 

national scale. In particular, our model estimates that Pb contamination of soils poses the highest risk 

to insectivorous passerines in England and Wales given its ubiquity in soil, low NOAEL values and 

despite its relatively low BAF for most invertebrate prey. This risk was independent of age specific 

differences in sensitivity to environmental contaminants. There were no common dietary features 

that exposed multiple bird species to all metals across their ranges. The heterogeneity in soil 

concentrations of metals, diet of different passerine species and bioaccumulation of metals in 

different invertebrate prey meant that spatial variation in risk of toxicity varied widely across bird 

species. The next step is to validate this model through a targeted field sampling of metal 

concentrations in the tissues of different bird species collected across their ranges (Hernout et al., 

2015). As funding for conservation management becomes ever more elusive, efficient targeting of 

efforts will become crucial.  Specifically, this model highlights areas where birds are likely to be at 

risk, which species are in need of attention and thus, where mitigation and conservation efforts might 

be focussed at a national and potentially international scale.  
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APPENDIX 

Interspecific variation in the spatially-explicit risks of trace metals to songbirds 

Béatrice V. Hernout, Louise J. Gibson, Adam J. Walmsley and Kathryn E. Arnold 

Methods 

Bird Distribution Data 

Gibbons Atlas 10-km records.  Data from the Gibbons Atlas -- fieldwork 1988-1991.   Information on how the data 

collection was carried out can be found on https://www.bto.org/volunteer-surveys/complete-survey-details. Briefly, 

Records for 10-km squares were collated over the breeding seasons of 1988-1991 inclusive. The timed visits for any 

one tetrad (a 2km square within the 10-km square) were carried out between 1 April and 31 July (with a stated 

preference for one visit of one hour in April-May and one in June-July although in the more remote areas this was 

not always possible), and for any one tetrad such visits were only done in one of these years. Tetrads were eligible 

for coverage if their centre was on land. Coverage of a minimum of eight such tetrads in each 10-km square was 

requested although the choice of which ones was left to the observer(s) with the proviso that they should aim to 

represent the major habitats within the 10-km square. All species heard and seen were recorded. 

 

  

https://www.bto.org/volunteer-surveys/complete-survey-details
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Table A1: List of the avian species studied and their body weight (Snow and Perrins, 1998) used to derive the amount 

of food eaten per day based on an allometric equation (Nagy, 1987).  

 

Body weight (g) (adult) Daily amount of food eaten (g dw/ g body weight/ d)  

Aegithalos caudatus 9 0.286 

Certhia familiaris 10 0.282 

Corvus corone 510 0.156 

Corvus frugilegus 310 0.168 

Corvus monedula 220 0.177 

Parus caeruleus 11 0.278 

Delichon urbica 19 0.256 

Emberiza citrinella 31 0.238 

Emberiza shoeniclus 21 0.252 

Erithacus rubecula 18 0.258 

Fringilla coelebs 24 0.247 

Ficedula hypoleuca 13 0.271 

Garrulus glandarius 170 0.184 

Motacilla alba 21 0.252 

Motacilla cinerea 18 0.258 

Passer domesticus 34 0.235 

Parus ater 9 0.286 

Parus major 18 0.258 

Parus palustris 12 0.274 

Phylloscopus collybita 9 0.286 

Phylloscopus trochilus 10 0.282 

Pica pica 220 0.177 

Prunella modularis 21 0.252 

Regulus regulus 6 0.304 

Sitta europaea 24 0.247 

Sturnus vulgaris 78 0.207 

Troglodytes troglodytes 10 0.282 

Turdus merula 100 0.199 

Turdus philomelos 83 0.205 

Turdus viscivorus 130 0.192 
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Table A2: Table summarizing the diet of bird expressed in percentage number in percentage number (%) from several literature data. (see reference list below). 

(Abbreviations of food items: Araneida (Ar), Coleoptera (Coleo), Collembola (Col), Dermaptera (Der), Diptera (Dip), Ephemeroptera (Eph), Gastropoda (Gas), Hemiptera 

(Hem), Hymenoptera (Hym), Isopoda (Iso), Lepidoptera (Lep), Lumbricidae (Lum), Myriapoda (Myr), Odonata (Od), Opiliones (Op), Orthoptera (Orth), Plecoptera (Ple), 

Trichoptera (Tri), Unspecified (Uns), Carrion (Car), Plant material  (P.m), Cereal grains (C. g), Seeds (See), Fruits (Fru).  
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Ar Coleo Col Der Dip Eph Gas Hem Hym Iso Lep Lum Myr Od Op Orth Ple Tri Uns Car P. m. C. g. See Fru

Aegithalos caudatus Adults 2.7 13.1 0.6 27.2 17.6 35.8 1.6 1.4

Nestlings 5.0 1.9 5.7 0.5 3.1 16.2 0.0 37.8 29.8

Certhia familiaris Adults 4.1 44.4 8.1 13.4 2.6 1.6 7.0 18.9

Nestlings 4.9 2.2 89.8 0.0 0.0 3.1

Corvus corone Adults 0.1 27.5 0.0 5.1 1.3 0.0 3.1 0.1 1.5 3.8 11.2 6.8 39.5

Nestlings 4.4 65.8 16.9 1.1 1.1 3.1 3.1 4.4

Corvus frugilegus Adults 0.0 27.0 1.3 1.9 0.2 0.5 5.7 0.5 0.0 0.6 8.0 16.1 38.4

Nestlings 0.1 72.6 2.2 0.2 0.9 0.0 1.3 8.1 0.1 0.1 0.3 2.1 12.1

Corvus monedula Adults 0.0 0.0 0.0 0.0

Nestlings 9.7 22.3 13.1 2.4 2.5 3.3 1.8 7.8 14.3 22.8

Parus caeruleus Adults 1.0 18.5 11.7 12.6 11.7 23.3 4.9 1.9 4.4 10.2

Nestlings 14.9 5.6 1.3 1.9 3.7 71.0 1.7

Delichon urbica Adults 0.0 0.0 0.0 0.0

Nestlings 1.8 47.8 0.9 43.9 1.9 0.0 0.9 0.9 1.9

Emberiza citrinella Adults 44.7 0.3 0.8 4.3 3.2 18.3 8.6 19.9

Nestlings 5.3 22.2 6.1 10.9 1.0 5.3 2.0 29.6 3.6 14.0

Emberiza shoeniclus Adults 73.0 27.0 0.0 0.0

Nestlings 26.2 5.0 20.0 13.4 5.0 11.0 9.5 3.2 4.3 2.6

Erithacus rubecula Adults 0.8 36.5 1.9 2.2 0.3 4.8 31.2 3.5 0.2 5.7 4.2 0.3 6.1 2.4

Nestlings 8.8 14.0 16.6 0.4 12.5 8.8 6.6 16.6 0.4 8.8 0.2 6.3 0.2

Fringilla coelebs Adults 8.4 49.4 2.6 3.9 15.7 13.4 6.7

Nestlings 7.1 21.1 14.3 6.4 1.4 7.4 9.3 11.9 4.1 7.4 9.7

Ficedula hypoleuca Adults 16.0 25.0 6.0 45.0 5.0 3.0

Nestlings 14.3 13.8 17.0 0.9 4.8 9.1 1.7 30.8 1.5 0.7 5.4

Garrulus glandarius Adults 0.4 4.6 0.0 2.7 0.6 0.2 0.1 2.3 44.5 44.5

Nestlings 13.7 8.2 0.0 1.7 1.0 0.2 0.5 71.5 1.4 0.4 1.6

Motacilla alba Adults 45.0 0.0 0.0 0.0 30.0 20.0 5.0

Nestlings 0.0 71.3 0.0 16.6 7.6 4.4

Motacilla cinerea Adults 1.8 10.9 50.9 18.2 0.0 0.0 5.5 12.7

Nestlings 1.0 21.9 21.7 23.8 0.2 3.6 0.3 0.9 0.1 22.6 3.2 0.9

Passer domesticus Adults 0.0 0.0 0.0 0.0

Nestlings 7.7 9.7 36.4 0.0 39.9 0.5 4.0 2.0

Parus ater Adults 0.3 6.2 5.4 40.6 7.2 39.0 1.3

Nestlings 28.7 6.3 27.2 1.0 1.4 32.0 1.4 2.1

Parus major Adults 7.1 27.6 3.7 0.0 22.1 6.4 20.4 5.6 7.0

Nestlings 12.0 4.1 9.4 0.8 0.4 3.4 68.8 1.1

Plant materialInvertebrates and animal material
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Ar Coleo Col Der Dip Eph Gas Hem Hym Iso Lep Lum Myr Od Op Orth Ple Tri Uns Car P. m. C. g. See Fru

Parus palustris Adults 0.3 39.4 2.8 3.1 3.7 14.7 36.0

Nestlings 27.2 0.0 0.0 0.0 72.8

Phylloscopus collybita Adults 1.5 33.9 15.3 36.6 7.6 2.4 2.7

Nestlings 13.7 0.3 13.9 0.5 5.3 44.9 3.2 15.4 0.4 1.1 0.7 0.6

Phylloscopus trochilus Adults 4.3 35.1 16.6 1.3 0.1 21.2 8.3 6.7 0.0 0.2 6.2

Nestlings 10.1 0.0 49.7 0.5 2.0 14.2 7.8 9.6 0.4 0.6 5.1

Pica pica Adults 3.5 39.6 1.1 0.3 3.8 3.6 1.8 2.7 3.5 4.7 4.3 10.1 11.8 9.5

Nestlings 1.6 41.5 13.1 0.6 1.2 1.7 1.1 22.4 4.1 1.2 1.6 1.4 1.3 7.4

Prunella modularis Adults 1.2 0.0 3.1 0.5 0.5 94.8

Nestlings 21.2 0.5 30.3 1.0 30.3 1.0 12.6 3.0

Regulus regulus Adults 19.9 8.5 0.1 6.2 0.9 38.4 3.9 12.7 0.4 1.1 0.7 7.1 0.2

Nestlings 22.0 0.0 0.0 46.0 0.0 24.0 8.0

Sitta europaea Adults 3.7 25.0 24.4 3.7 5.5 1.8 1.2 34.8

Nestlings 1.5 8.9 5.7 1.2 1.1 0.5 76.8 1.4 2.9

Sturnus vulgaris Adults 1.1 21.5 5.3 46.8 1.1 2.7 0.6 21.0

Nestlings 38.4 24.0 5.7 21.8 2.4 6.7 1.2

Troglodytes troglodytes Adults 11.7 42.5 4.7 6.0 20.7 11.5 2.9

Nestlings 41.2 2.0 9.4 1.3 13.1 2.0 12.4 17.6 1.0

Turdus merula Adults 0.0 0.0 0.0 0.0

Nestlings 2.5 12.4 8.8 9.4 1.2 4.4 10.7 34.4 9.4 2.5 1.3 3.1

Turdus philomelos Adults 32.4 7.3 39.3 0.0 0.0 8.2 1.6 11.3

Nestlings 6.5 8.1 14.5 1.6 0.0 67.7 1.6

Turdus viscivorus Adults 36.0 0.0 3.5 0.0 0.0 14.0 1.5 4.5 12.0 28.5

Nestlings 23.6 27.2 15.0 0.0 12.0 22.2

Invertebrates and animal material Plant material
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References used for diet data calculations (Table A2). References cited by Cramp, 1988 (Vol 5); 

Cramp 1992 (Vol 6); Cramp and Perrins, 1993 (Vol 7); Cramp and Perrins, 1994 (Vol 8); Cramp and 

Perrins, 1994 (Vol 9), Handbook of the birds of Europe, the Middle East and North Africa.  

 
Averin, Y.V and Ganya, I.M (1970) Ptitsy Moldavii 1. Kishinev.  

Balanca, G (1984b) Gibier Faune sauvage 3, 37-61.  

Barba, E and Gil-Delgado, J.A (1990) Ornis scand. 21, 296-298.  

Bardin, A.V (1977) Trudy Samarkand. gos. Univ. NS 324, 90-101. 

Berndt, R and Rapsch, I (1958) Anz. Schadlingskde. 31, 24-27.  

Bigot, L (1966) Terre Vie 113, 295-315.  

Bosenberg, K (1958) Falke 5, 58-61.  

Bosenberg, K (1964). Beitr. Vogelkde. 9, 249-262. 

Bozhko, S.I (1958) Vestnik Leningr. Gos. Univ 15 (Biol. 3), 81-92.  

Bozhko, S.I and Andreevskaya, V.S (1960) Ornitologiya 3, 430-433. 
Bures, S and Kral, M, 1987. Diet analysis and trophic ecology of the grey wagtail (Motacilla cinerea 
tunst.) in Nizky Jesenik. Folia zoologica, 36(3): 257-264.  

Ceballos, P (1972) Mem. R. Acad. Cienc. Madr. 25, 1-61.  

Collinge, W.E (1924-1927) The food of some British wild birds. York.  
Cramp S, 1988. Handbook of the birds of Europe, the Middle East and North Africa, Vol V. The birds of 
the Western Paleartic. Oxford: Oxford University Press. 1063 p. 
Cramp S, 1992. Handbook of the birds of Europe, the Middle East and North Africa, Vol VI. The birds of 
the Western Paleartic. Oxford: Oxford University Press. 728 p. 
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VII. The birds of the Western Paleartic. Oxford: Oxford University Press. 577 p. 
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The birds of the Western Paleartic. Oxford: Oxford University Press. 488 p. 
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Dornbusch, M (1981) Beitr. Vogelkde. 27, 73-99.  

Dubinin, N.P (1953) Trudy Inst. Lesa Akad. Nauk SSSr 18.  
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Table A3: BAF values used in the model. Values represent the values of BAF values from soil into various invertebrates and vegetation food items for birds. The values were 

gathered from the literature (reference listed below) and the median value was used in our model. 

 

 Invertebrates and carrion 

 Araneida 
Coleopte

ra 

Collembo

la 

Dermapte

ra 
Diptera 

Ephemeropt

era 

Gastropo

da 
Hemiptera 

Hymenop

tera 
Isopoda 

Lepidopte

ra 
Lumbricidae 

Cd 3.125 2.387 0.197 0.134 0.735 0.245 5.525 0.507 0.882 1.489 0.890 37.407 
Cu 0.894 1.041 0.663 0.003 0.810 0.273 4.478 1.222 0.291 3.656 0.449 2.778 
Pb 0.047 0.245 0.475 0.039 0.210 0.066 0.379 0.012 0.030 0.180 0.038 1.034 
Zn 0.553 0.508 0.468 0.055 0.772 1.378 1.446 1.400 0.783 1.048 0.136 1.261 

             
 
             

            Missing 

order/ 

unspecified 

Vegetation 

 

Myriapod

a 
Odonata Opiliones 

Orthopter

a 

Plecopter

a 
Trichoptera Carrion 

Plant 

material 

Cereal 

grains 
Seeds Fruits 

Cd 0.956 0.432 3.591 0.238 0.001 0.318 0.327 4.460 0.582 0.404 0.193 0.080 

Cu 8.611 3.057 0.557 1.303 0.001 0.783 0.644 1.380 0.642 0.189 0.222 0.090 

Pb 0.137 0.147 0.083 0.005 0.000 0.295 0.267 0.230 0.179 0.002 0.025 0.681 

Zn 1.500 1.800 0.780 1.166 0.001 3.286 0.326 0.817 0.598 0.465 1.333 0.001 
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Table A4: Search terms used in the literature review for diet, bioaccumulation and toxicity data. 

Terms with an asterisk (*) denote wildcard searches. The search operator ‘OR’ is denoted in capitals. 
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Table A5: NOAELs in mg kgbw
-1 d-1 data used in the model (Sample et al. 1996). The NOAELs are 1 

considered chronic, and the metals were orally administrated in the diet. 2 

 Metal NOAEL Test Species Endpoint Study duration Reference 

Cd 1.45 Mallard duck Reproduction 90 days 
White and 

Finley, 1978 
      

Cu 46.97 Young Chicks Growth/mortality 10 weeks 
Mehring et 

al. 1960 
      

Pb 3.85 American kestrel Reproduction 7 months Pattee 1984 

 
1.13 Japanese Quail Reproduction 12 weeks 

Edens et al. 
1976 

Mean 2.49     

      

Zn 14.5 White Leghorn Hens Reproduction 44 weeks 
Stahl et al. 

1990 
References used for the NOAELs data:  3 

Sample, B.E., Opresko, D.M., Suter, G.W., 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. 4 
Oak ridge National Laboratories: Health Sciences Research Division, 217 pp. 5 
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Mehring, A.  L.  Jr., J.  H.  Brumbaugh, A.  J.  Sutherland, and H.  W.  Titus.  1960.  The tolerance of 9 
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Edens, F., W. E. Benton, S.  J. Bursian, and G. W. Morgan. 1976. Effect of Dietary Lead on Reproductive 13 
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(a) 

(c) (d) 

Fig. S1. The relative concentration of four heavy metals in the soil. Higher 

concentrations are seen as darker shading. The metals shown in each distribution map

are a) Cd; b) Cu; c) Pb and d) Zn.  
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