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COMPACTNESS OF THE SPACE OF MINIMAL HYPERSURFACES

WITH BOUNDED VOLUME AND p−TH JACOBI EIGENVALUE

LUCAS AMBROZIO, ALESSANDRO CARLOTTO AND BEN SHARP

Abstract. Given a closed Riemannian manifold of dimension less than eight, we prove a

compactness result for the space of closed, embedded minimal hypersurfaces satisfying a

volume bound and a uniform lower bound of the first eigenvalue of the stability operator.

When the latter assumption is replaced by a uniform lower bound on the p−th Jacobi

eigenvalue for p ≥ 2 one gains strong convergence to a smooth limit submanifold away

from at most p− 1 points.

1. Introduction

Let (Nn+1, g) be a closed Riemannian manifold and let us denote by M
n(N) the class

of closed, smooth and embedded minimal hypersurfaces1 M ⇢ N . By the seminal work of

Almgren-Pitts [7] (and Schoen-Simon [8]) we know that such a set M
n(N) is not empty

whenever 2  n  6, the higher-dimensional counterpart of their method being obstructed

by the occurrence of singularities of mass-minimizing currents. Over the last three decades,

several existence results have been proven by means of equivariant constructions, desingular-

ization, gluing and more recently, high-dimensional min-max techniques that ensure that in

many cases of natural geometric interest the set M
n(N) contains plenty of elements. Most

remarkably, it was proven by Marques and Neves in [6] that when 2  n  6 and the Ricci

curvature of g is positive, then N contains at least countably many closed, embedded mini-

mal hypersurfaces. Thus, one is led to investigate the global structure of the class M
n(N)

and the most basic question in this sense is perhaps that of finding geometrically natural

and meaningful conditions that ensure the compactness of subsets of this space. In the

three-dimensional scenario, namely for n = 2, and under an assumption on the positivity of

the ambient Ricci curvature a prototypical statement was obtained, in 1985, by Choi and

Schoen:

Theorem 1.1. [3] Let N be a compact 3-dimensional manifold with positive Ricci curva-

ture. Then the space of compact embedded minimal surfaces of fixed topological type in N

is compact in the Ck topology for any k ≥ 2. Furthermore, if N is real analytic, then this

space is a compact finite-dimensional real analytic variety.

Roughly speaking, the idea behind this result is that a uniform bound on the genus

suffices for controlling both the area (as had already been observed in [4]) and the second

fundamental form of the minimal surfaces in question, in a uniform fashion.

When n ≥ 3 new phenomena appear and a statement of this type cannot possibly be

expected. Indeed, it was shown by Hsiang [5] that in Sn+1, n = 3, 4, 5 there exists a se-

quence of embedded minimal hyperspheres Mn that have uniformly bounded volume and

converge, in the sense of varifolds, to a singular minimal subvariety with two conical singu-

larities located at antipodal points of the ambient manifold. Based on the seminal works of

1Throughout this paper, we shall always tacitly assume all hypersurfaces to be connected.
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Schoen-Simon-Yau [9] and Schoen-Simon [8] concerning stable minimal hypersurfaces, one is

naturally led to conjecture that some sort of control on the spectrum of the Jacobi operator

(together with a volume bound) should indeed suffice to obtain compactness.

A first result of this flavour, that holds true up to (and including) ambient dimension

seven, was recently proven by the third-named author.

Theorem 1.2. [11] Let Nn+1 be a smooth, closed Riemannian manifold with RicN > 0 and

2  n  6. Then given any 0 < Λ < 1 and I 2 N the class

I(Λ, I) := {M 2 M
n(N) : Hn(M)  Λ, index(M)  I}

is compact in the Ck topology for all k ≥ 2.

Here and above the word compactness is understood as single-sheeted graphical conver-

gence to some limit M 2 I(Λ, I). As the reader can see, in analogy with Theorem 1.1 here

one does also need to assume positivity of the ambient Ricci curvature to derive a compact-

ness theorem, for otherwise smooth, graphical convergence can only be ensured away from

at most I points (cmp. Theorem 2.3 in [11]).

In this article, we derive the rather surprising conclusion that no assumption on the

ambient manifold is needed in proving a strong convergence theorem provided an upper

bound on the Morse index is replaced by a lower bound on the first eigenvalue of the Jacobi

operator. To state our result, we need to recall a definition: in the setting described above,

we will say that Mk ! M in the sense of smooth graphs at p 2 M if there exists ⇢ > 0, ⌘ > 0

such that in normal coordinates centered at p the intersection of Mk with Bn
ρ (0) ⇥ B1

η(0)

consists, for k large enough, of the collection of the graphs of smooth defining functions

u1
k, . . . , u

l
k with u

j
k ! 0 in Cm for all m ≥ 2 and 1  j  l. We remark that if Mk ! M in

the sense of smooth graphs away from a finite set Y and M is connected (and embedded)

then the number of leaves of the convergence is constant.

Theorem 1.3. Let 2  n  6 and Nn+1 a smooth, closed Riemannian manifold. Denote by

M
n(N) the class of closed, smooth and embedded minimal hypersurfaces M ⇢ N . Let λp(M)

denote the p-th eigenvalue of the Jacobi operator for M 2 M
n(N). Given any 0 < Λ < 1

and 0  µ < 1, define the class

Mp(Λ, µ) := {M 2 M
n(N) : Hn(M)  Λ, λp(M) ≥ −µ}.

Given a sequence {Mk} ⇢ Mp(Λ, µ) there exists M 2 Mp(Λ, µ) such that Mk ! M in the

varifold sense and furthermore:

(1) if p = 1 then Mk ! M locally in the sense of smooth graphs;

(2) if p ≥ 2 then there exists a finite set Y = {yi}
P
i=1 with P  p − 1 such that the

convergence Mk ! M is smooth and graphical for all x 2 M \ Y; if the number of

leaves of the convergence is one then Y = ;.

From such general assertion we can derive a strong compactness result under a purely

topological assumption on the ambient manifold N .

Corollary 1.4. Let 2  n  6 and Nn+1 a smooth, closed Riemannian manifold not

containing any one-sided minimal hypersurface (which holds true, for instance, if N is simply

connected). Then given any 0 < Λ < 1 and 0  µ < 1 the class M1(Λ, µ) is compact in

the Ck topology for all k ≥ 2.
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Indeed, in such scenario it is of course the case that the limit hypersurface M (whose

existence is ensured by Theorem 1.3) is itself two-sided and thus for k large enough Mk is a

finite covering thereof, hence the conclusion comes via an elementary topological argument

due to the connectedness assumption on Mk.

In particular, we deduce from this statement that (in presence of a volume bound) the

Morse index of an element in M1(Λ, µ) is uniformly bounded from above, which seems a

rather unexpected conclusion from a purely analytic viewpoint, as we are considering an

infinite family of elliptic operators parametrized by minimal hypersurfaces in M1(Λ, µ). On

the other hand, we know that a bound on index does not give a bound on λ1 (since even with

bounded index we could have non-smooth convergence: to see this one only needs to consider

a sequence of catenoids Mk = 1
kM in R

n, all centred at the origin, and blowing down to a

double plane. One gets that eventually the catenoid has index one in the unit ball (when it is

scaled down sufficiently far, and only considering compactly supported variations), moreover

that λ1(Mk \ B1(0)) ! −1.) In particular, given a sequence with only volume and index

bounds, we must have that λ1 ! −1 in general - moreover the gaps between the eigenvalues

must also diverge (since the index is bounded).

Combining Theorem 1.3 with Remark 3.2 we deduce the following:

Corollary 1.5. Let Nn+1 be a smooth, closed Riemannian manifold with RicN > 0 and

2  n  6. Then given any 0 < Λ < 1 and 0  µ < 1 and p ≥ 1 the class Mp(Λ, µ) is

compact in the Ck topology for all k ≥ 2.

From a different perspective, Theorem 1.3 gives us an interesting description of what

goes wrong when absence of a smooth limit occurs for a family {Mk} satisfying a uniform

volume bound: necessarily, every eigenvalue of the Jacobi operator has to diverge to −1,

which somehow captures the well-known picture of Mk exhibiting some neck-pinching around

finitely many points.

Corollary 1.6. Let {Mk} ⇢ M
n(N) be a sequence satisfying a uniform volume bound, so

that possibly by extracting a subsequence we know [10] that Mk ! M for some stationary,

integral varifold M in N .

(1) If M is not smooth, then λp(Mk) ! −1 as k ! 1 for every p ≥ 1.

(2) If M has multiplicity greater than one, then λp(Mk) ! −1 as k ! 1 for every

p ≥ 1 provided RicN > 0.

(3) If we denote by Y the set of points of M where the convergence Mk ! M is not

smooth and graphical, then λp(Mk) ! −1 for all 1  p  |Y|. In particular, if

|Y| = 1 then λp(Mk) ! −1 for all p ≥ 1.

For instance: this applies to the aforementioned Hsiang minimal hyperspheres [5] (since

they have a non-smooth limit) or more generally to the hyperspheres produced in [2]. We

further remark that the positivity assumption on the Ricci curvature of N in item (2) above

is essential because of the example described in Remark 3.3.

When n = 2, the scenario we obtain by combining Theorem 1.1 with Theorem 1.2 and

Theorem 1.3 is rather enlightening.

Corollary 1.7. Let C
n ⇢ M

n be a subclass of closed minimal hypersurfaces inside some

smooth closed Riemannian manifold Nn+1 of dimension 2  n  6 satisfying RicN > 0.

Then a uniform bound on any one of the following quantities for every M 2 C
n leads to a

bound on the rest of them for every M 2 C
n:
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• the genus of M (when n = 2)

• index(M) +Hn(M)

• λp(M) +Hn(M)

• supM |A|+Hn(M)

•
R

M
|A|n +Hn(M).

Lastly, our main theorem extends (with minor variations in the proof) to the case when

N is a complete (not necessarily compact) Riemannian manifold, provided one replaces, in

the statement, the set Mp(Λ, µ) by the set

MΩ
p (Λ, µ) := {M 2 M

n(N) : M ⇢ Ω, Hn(M)  Λ, λp(M) ≥ −µ}

for some open, bounded domain Ω. In various situations of great geometric interest one can

in fact drop the requirement that the minimal hypersurfaces in questions are contained in a

given, bounded domain.

Remark 1.8. The conclusions of 1.3 also hold true when

(1) (Nn+1, g) is a compact Riemannian manifold with mean-convex boundary;

(2) (Nn+1, g) is a complete Riemannian manifold such that for some compact set K

each component of M \ K is foliated by closed, mean-convex leaves (in particu-

lar: asymptotically flat, asymptotically cylindrical and asymptotically hyperbolic

manifolds).

The proof follows along the same lines of Theorem 1.3, modulo exploiting a geometric

maximum principle (see, for instance, [13]) in order to reduce our compactness analysis to

a bounded domain of the manifold N .

2. Preliminaries

We shall recall here the definition of the Morse index and the Jacobi eigenvalues λp for

general smooth minimal hypersurfaces M ,! N . First of all, if M is orientable then the

second variation of the area functional can be written down purely in terms of section of the

normal bundle v 2 Γ(NM) by

Q(v, v) :=

Z

M

|r⊥v|2 − |A|2|v|2 −RicN (v, v).

Standard results on the spectra of compact self-adjoint operators on separable Hilbert spaces

tell us that there is an orthonormal basis {vi}
∞
i=1 of L2(Γ(TN)) consisting of eigenfunctions

for the operator

L⊥v := ∆⊥v + |A|2v +Ric⊥N (v)

with associated eigenvalues {λi}
∞
i=1 of Q. Moreover, we have the following Rayleigh charac-

terization of the eigenvalues due to R. Courant:

λk := inf
dim(V )=k

max
v∈V

Q(v, v)
R

|v|2

where of course V is a linear subspace of Γ(NM).

Now, if M is non-orientable then we simply lift the problem to its orientable double cover

M̃ via ⇡ : M̃ ! M . Consider the linear subspace of smooth sections v 2 Γ(⇡∗NM) such

that v ◦ ⌧ = v where ⌧ : M̃ ! M̃ is the unique deck transformation of ⇡ which reverses

orientation. Denote this subspace by Γ̃(⇡∗NM). We can also pull back the quantities
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|A(x)|2 := |A(⇡(x))|2 and RicN (a, b) := RicN (⇡∗a, ⇡∗b). Thus consider the quadratic form

Q̃(v, v) :=

Z

M̃

|r⊥v|2 − |A|2|v|2 −RicN (v, v)

over Γ̃(⇡∗NM). As before we can define the spectrum, and therefore index of M to be that

of M̃ with respect to Q̃ and Γ̃(⇡∗NM).

If the ambient manifold N is orientable, a closed hypersurface is orientable if and only if

it is two-sided, namely if there exists a global section ⌫ = ⌫M of its normal bundle inside

TN . If this is the case (namely if M ,! N is minimal and two-sided) the spectrum defined

above patently coincides with the spectrum of the scalar Jacobi or stability operator of M ,

namely

Lu := ∆Mu+ (RicN (⌫, ⌫) + |A|2)u

when we regard L : W 1,2(M) ! W−1,2(M).

Furthermore, we shall introduce the following notation: given a minimal hypersurface M

in the Riemannian manifold (N, g) and a bounded open domain Ω ⇢ M we shall set

λM
1 (Ω) = inf

⇢

−

Z

M

vL⊥v |v 2 C∞
0 (Ω;NM) and

Z

M

|v|2 = 1

}

where C∞
0 (Ω;NM) denotes the (smooth) sections of the normal bundle whose support,

projected on the base M is relatively compact in Ω.

3. Proofs

For the sake of conceptual clarity, we will separate the proof of Theorem 1.3 in the case

p = 1 and p ≥ 2, the former being a building block for the latter.

Proof of Theorem 1.3, case p = 1. Let {Mk} ⇢ M1(Λ, µ) be a sequence of closed, embedded

minimal hypersurfaces satisfying our bounds on the volume and first Jacobi eigenvalue: we

claim the existence of a constant C = C(N,Λ, µ) > 0 such that

sup
k≥1

sup
z∈Mk

|Ak(z)|  C

where Ak denotes the second fundamental form of Mk in (N, g). For the sake of a contra-

diction, let us assume instead that such a uniform curvature bound does not hold. Then,

we could find (for every k ≥ 1) a sequence of points {zk} ⇢ N such that Ak attains its

maximum value at zk 2 Mk and, furthermore, limk→∞ |Ak(zk)| = +1. Thanks to the

compactness of the ambient manifold N , possibly by extracting a subsequence (which we

shall not rename) we can assume that zk ! y for some point y 2 N . Let us pick, once

and for all, a small radius r0 > 0 (less than the injectivity radius of (N, g) at y) and let

us denote by {x} a system of geodesic normal coordinates centered at y and by gij(x) the

corresponding components of the Riemannian metric g. For k large enough we know that

Mk \ Br0/2(zk) ⇢ Br0(y) and we can assume, without loss of generality, that Mk \ Br0(y)

is two-sided. We can then consider the blown-up hypersurfaces defined by

M̂k := |Ak(zk)|(Mk − zk)

and the appropriately rescaled Riemannian metrics on B̂k := Br0|Ak(zk)|/2(0) ⇢ R
n+1

ĝk(x) := g

✓

zk +
x

|Ak(zk)|

◆

.
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(For the sake of clarity we have identified, in the equation above, the hypersurface Mk with

its portion in Br0/2(zk)). Now, the hypersurface M̂k is minimal in metric ĝk and patently

satisfies volume and curvature bounds, for Mk 2 M1(Λ, µ) implies

Hn(M̂k \Br(0))

rn
 Λ, for any r <

r0|Ak(zk)|

2

and by scaling

sup
x∈B̂k

|Âk(x)|  1, Âk(0) = 1

where Âk denotes the second fundamental form of M̂k in metric ĝk. It follows that the

sequence
n

M̂k

o

converges (for any m in Cm
loc, in the sense of smooth graphs) to a complete,

embedded minimal hypersurface M̂∞ ⇢ R
n+1 (in flat Euclidean metric). We further claim

that M̂∞ has to be stable. If not, we could find a smooth, compactly supported vector field

u such that the second variation


d2

dt2

]

t=0

Hn
⇣

('t)#M̂∞

⌘

< 0

where {'t} is the flow of diffeomorphisms generated by u (which coincides with the identity

outside of a compact set). As a result, thanks to the locally strong convergence M̂k ! M̂∞

we would have


d2

dt2

]

t=0

Hn
⇣

('t)#M̂k

⌘

< 0

for all indices k that are large enough and, more specifically, for a fixed open, bounded set

Ω ⇢ R
n+1 we would have λM̂k

1 (Ω)  −" for some " > 0. Therefore, scaling back and keeping

in mind the Rayleigh characterization of the eigenvalues of an elliptic operator we must

conclude that

−µ  λMk

1 (Ω)  −"|Ak(zk)|,

which is impossible when k attains sufficiently large values. It follows that M̂∞ is a stable

minimal hypersurface in R
n+1 (with polynomial volume growth), hence an affine hyperplane

by the work of Schoen-Simon [8] and thus on the one hand Â∞ vanishes identically, while

on the other Â∞(0) = 1 and this contradiction completes the proof of our initial claim.

Once those uniform curvature estimates are gained, the strong convergence of Mk ! M

follows from a geometric counterpart of the Arzelá-Ascoli compactness theorem, and the

fact that in this case the volume and first Jacobi eigenvalue of M are also controlled, namely

M 2 M1(Λ, µ) is also clear. ⇤

Proof of Theorem 1.3, case p ≥ 2. We shall start by stating the following important:

Lemma 3.1. Let Ω1,Ω2, . . . ,Ωp ⇢ N be p pairwise disjoint, bounded open sets. If we

assume M 2 Mp(Λ, µ) and M \ Ωi 6= ; for i = 1, . . . , p then there exists an index i0 such

that λM
1 (Ωi0) ≥ −µ.

Indeed, suppose that were not the case: then we could find, for each index i = 1, . . . , p

a section φi 2 C∞
0 (Ωi;NM) that ensures λM

1 (Ωi) < −µ (that is to say
R

M
|φi|

2 = 1 and

Q(φi, φi) < −µ) and thus

Q(φ, φ) < −µ for all φ 2 W = hφ1, . . . , φpiR such that

Z

M

|φ|2 = 1

which contradicts the assumption that λp(M) ≥ −µ due to the well-known min-max char-

acterization of the eigenvalues of an elliptic operator. (In case M is not orientable, one
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needs to consider the space W̃ =
D

φ̃1, . . . , φ̃p

E

R

where each φ̃i is the lift of φi to M̃ and the

quadratic form Q is evaluated on M̃ as explained in Section 2).

Now, let a sequence {Mk} ⇢ Mp(Λ, µ) be given: thanks to the volume bound, we know

that possibly by taking a subsequence (which we shall not rename) Mk ! V in the sense of

varifolds, for some integral varifold V. Furthermore, given " > 0 the Lemma 3.1 we have just

stated and a standard covering argument ensure that there exists a set Y = {yi}
P
i=1 ⇢ spt(V)

consisting of at most p − 1 points and a subsequence
{

Ml(k)

 

such that in M \ Y the

hypersurfaces Ml(k) locally converge to V strongly in the sense of smooth graphs. This

descends from the fact that for any z 2 M \ Y and " > 0 the sequence Ml(k) satisfies a

uniform bound on the first Jacobi eigenvalue, which in turn implies

sup
k≥1

sup
x∈Bε(z)

|Al(k)(x)|  C = C(N,Λ, µ)

by following the argument that has been used to prove Theorem 1.3 in the case p = 1. Here

Al(k) stands for the second fundamental form of Ml(k) in the ambient manifold (N, g). In

particular, this implies that the varifold V is supported on a smooth submanifold M away

from finitely many points, namely those points belonging to the set Y.

We further claim that for any y 2 Y there exists "0 > 0 such that

λM
1 (Bε0(y) \ {y}) ≥ −µ (⇤)

If this claim were false, then we could find a smooth, normal vector field u0, compactly

supported in Bε0(y)\{y} and hence (say) supported in Bε0(y)\Bε1(y) for some 0 < "1 < "0

such that
Q(u0, u0)
R

M
|u0|2

< −µ.

At that stage, we shall observe that it cannot be λM
1 (Bε1(y)\{y}) ≥ −µ either (for otherwise

we would have gained property (⇤) with "1 in lieu of "0) and hence, again, there is a smooth

vector field u1 that is compactly supported in Bε1(y) \ {y} and hence (say) supported in

Bε1(y) \Bε2(y) for some 0 < "2 < "1 such that

Q(u1, u1)
R

M
|u1|2

< −µ

with the same notation as above. Of course, we can repeat this argument p times, hereby

getting sections u0, . . . , up−1 supported on smaller and smaller annuli, specifically uj shall be

supported on Bεj (y)\Bεj+1
(y) for 0 < "p < . . . < "0. But we already know that Ml(k) ! M

on (the closure of) Bεj (y) \ Bεj+1
(y) for each j  p − 1 and thus we derive (for k large

enough) the conclusion

λ
Ml(k)

1 (Bεj (y) \Bεj+1(y)) < −µ, for j = 0, 1, . . . , p− 1

which contradicts our preliminary Lemma 3.1. This ensures the validity of (⇤) for some

suitable choice of "0 > 0. At that stage, let V(i) for each fixed yi 2 Y be a tangent cone

to the varifold V at yi: necessarily V(i) has to be stable, for otherwise we could scale

back and argue as in the proof of Theorem 1.3 to show that the bound (⇤) cannot possibly

hold. As a result, V(i) is a stable minimal hypercone in R
n+1 and hence an hyperplane

for 2  n  6 due to the classic work of J. Simons [12]. Therefore V is regular (in fact,

smooth) in a neighborhood of each point yi thanks to Allard’s regularity theorem [1], and
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we can conclude that its support M is a smooth, minimal hypersurface in (N, g), as we had

to prove.

Varifold convergence directly implies that Hn(M)  Λ, while the fact that λp(M) ≥ −µ

is more delicate as the set Y may not be empty. To that aim, we argue as follows. For

small r > 0 let ⌘
(j)
r be a smooth non-negative function on M that vanishes on the geodesic

ball of radius r centered at yj and equals one outside of the ball of radius 2r. For the sake

of contradiction, suppose there exists p linearly independent (and orthonormal) sections in

W 1,2(M ;NM) (in fact W̃ 1,2(M̃ ;⇡∗NM) when M is not orientable), say φ1, . . . , φp such

that
Q(φ, φ)
R

M
|φ|2

< −µ on V = hφ1, . . . , φpiR

and set φr
i = φi

QP
j=1 ⌘

(j)
r . The fact that points have zero capacity in R

n for any n ≥ 2

implies that on the subspace Vr =
⌦

φr
1, . . . , φ

r
p

↵

R
the inequality above must also hold for

r small enough, and hence (replacing each φi by φr
i and then applying the Gram-Schmidt

process to the latter family, without further renaming) we can assume that the sections in

question vanish on small geodesic neighborhoods of the points in the set Y. Now, such vector

fields can be extended to a tubular neighborhood of M ,! N (without renaming) and since

each Mk has to be contained in that neighborhood for k large enough we can define sections

φ
r,k
i 2 Γ(Mk;NMk) by projecting those extended vector fields onto the normal bundle of

Mk ,! N . The strong convergence of Mk to M away from the points in Y together with the

assumption Mk 2 Mp(Λ, µ) implies that we can find real coefficients ↵k
1 , . . . , ↵

k
p such that

p
X

i=1

↵k
i φ

r,k
i = 0.

Possibly by dividing the coefficients by maxi |↵
k
i | and renaming we can assume that |↵k

i |  1

for each index i and |↵k
i0
| = 1 for some index i0. Hence, squaring the previous equation and

integrating over Mk we get

0 =

Z

Mk

∣

∣

∣

∣

∣

p
X

i=1

↵k
i φ

r,k
i

∣

∣

∣

∣

∣

2

=
X

i,j

↵k
i ↵

k
j

Z

Mk

g
⇣

φ
r,k
i , φ

r,k
j

⌘

and by letting k ! 1 the orhogonality of the family
{

φr
1, . . . , φ

r
p

 

implies that

p
X

i=1

(↵i)
2 = 0

where (possibly by extracting a subsequence, which we shall not rename) ↵k
i ! ↵i as

k ! 1 for each i = 1, . . . , p. Thus ↵i = 0 for each i but on the other hand (by construc-

tion)
Pp

i=1(↵i)
2 ≥ 1, a contradiction. This proves that M 2 Mp(Λ, µ). Lastly, the fact

that single-sheeted convergence implies Y = ; is a direct consequence of Allard’s interior

regularity theorem, [1]. Thereby, the proof is complete. ⇤

Remark 3.2. When the number of leaves in the convergence of Mk to M is known, then one

can deduce further information about the limit hypersurface M . Specifically:

• if the number of sheets in the convergence is one

– if M is two-sided and Mk \M = ; eventually then M is stable

– if M is two-sided and Mk \M 6= ; eventually then index(M) ≥ 1

• if the number of sheets in the convergence is at least two

– if N has RicN > 0 then M cannot be one-sided
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– if M is two-sided then M is stable.

All of these statements follow from variations on the same argument, which consists of

conctructing a global section in the kernel of the Jacobi operator L of M (or a suitable

lift, in the case of the third assertion) by appropriately renormalizing the distance function

between M and Mk (first and second assertion) and two adjacent leaves of Mk (third and

fourth assertion). The reader can consult pages 10-13 of [11] for detailed arguments.

Remark 3.3. The assertion given in part (1) of Theorem 1.3 is sharp at that level of generality

in the sense that one can provide explicit examples of Riemannian manifolds (N, g) and

sequences {Mk} ⇢ M1(Λ, µ) such that Mk ! M in the sense of smooth graphs, but with

multiple leaves. For instance: let (N3, g) be gotten by taking the quotient of the product

manifold (S2 ⇥ R, ground ⇥ dt2) modulo the equivalence relation (x, t) ⇠ (−x,−t). If we

consider ⇡ the associated Riemannian projection, then ⇡(S2 ⇥ {t}) is a totally geodesic,

stable minimal sphere for any t 6= 0 while ⇡(S2 ⇥ {0}) is a stable minimal RP2 and for any

sequence tk # 0 we have that ⇡(S2 ⇥{tk}) ! ⇡(S2 ⇥{0}) strongly in the sense of graphical,

two-sheeted convergence.
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