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H I G H L I G H T S

• Today, energy analysis addresses topics all along the energy conversion chain.

• The field of energy analysis would benefit from a common analysis framework.

• In response, a physical supply-use table framework is presented.

• Real-world examples demonstrate the range of applicability of the framework.

• Benefits include data structure uniformity and methodological consistency.
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A B S T R A C T

In response to the oil crises of the 1970s, energy accounting experienced a revolution and became the much
broader field of energy analysis, in part by expanding along the energy conversion chain from primary and final
energy to useful energy and energy services, which satisfy human needs. After evolution and specialization, the
field of energy analysis today addresses topics along the entire energy conversion chain, including energy
conversion systems, energy resources, carbon emissions, and the role of energy services in promoting human
well-being and development. And the expanded field would benefit from a common analysis framework that
provides data structure uniformity and methodological consistency.

Building upon recent advances in related fields, we propose a physical supply-use table energy analysis
framework consisting of four matrices from which the input-output structure of an energy conversion chain can
be determined and the effects of changes in final demand can be estimated. Real-world examples demonstrate
the physical supply-use table framework via investigation of energy analysis questions for a United Kingdom
energy conversion chain.

The physical supply use table framework has two key methodological advances over the building blocks that
precede it, namely extending a common energy analysis framework through to energy services and application
of physical supply-use tables to both energy and exergy analysis. The methodological advances enable the fol-
lowing first-time contributions to the literature: (1) performing energy and exergy analyses on an energy con-
version chain using physical supply-use table matrices comprised of disaggregated products in physical units
when the last stage is any of final energy, useful energy, or energy services; (2) performing structural path
analysis on an energy conversion chain; and (3) developing and utilizing a matrix approach to inhomogeneous
units. The framework spans the entire energy conversion chain and is suitable for many sub-fields of energy
analysis, including net energy analysis, societal energy analysis, human needs and well-being, and structural
path analysis, all of which are explored in this paper.
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1. Introduction

1.1. A recent history of energy analysis: expansion through revolution and
evolution

The modern field of energy analysis is rooted in energy accounting,
which emerged in the 1950s from Leontief’s input-output (IO) methods
[1] and Barnett’s energy balance tables [2]. With studies of the
U.S. economy by Schurr and Netschert [3] and Morrison and Readling
[4], the field remained closely aligned to energy accounting methods
through the 1960s (see Berndt [5] for an overview of the early history
of energy analysis).

The 1970s oil crises caused a revolution in the field: its focus ex-
panded from merely accounting for production and sale of primary and
final energy carriers to many other aspects of energy in society and the
economy. Reistad [6, p. 429] said, “In this period of concern for our
energy resources and the environment, it is imperative to consider the
manner in which our energy resources are consumed.” The study of
technical energy efficiency became prominent, illustrated by a 1973
conference presentation by Hatsopoulos [7] and the 1975 American
Institute of Physics reports on second-law efficiency [8], automobiles
[9], and industrial processes [10]. At an economy-wide level, studies of
net energy [11], useful energy [6], and energy services [12] were
conducted. Furthermore, new studies of interactions between energy
and the economy appeared, covering topics such as the energy impact
of consumption decisions [13], the entropic nature of economic pro-
cesses [14], energy and “potential” GDP [15], and questioning the
value of the concept of energy intensity [16]. In 1978, Roberts [17, p.
200] noted that the term “energy analysis” was now preferred to “en-
ergy accounting,” the name change signifying that the revolution was
underway.

Following the 1970s, evolution and specialization led to the crea-
tion of several energy analysis sub-fields. Net energy analysis evolved
from the study of single fossil fuel sources (e.g., oil, coal, gas) [18] to
renewables [19,20] and to the consideration of economy-wide issues
such as the minimum energy return on (energy) invested (EROI) re-
quired for a functioning society [21], the implications of declining EROI
[22], energy expenditure and economic growth [23], and input-output
methods to determine national-level EROI [24]. World-wide issues also
received attention, including detailed studies of oil and gas production
[25], correlations between EROI and oil prices [26], and social im-
plications [27]. The empirical study of energy efficiency and rebound
[28] specialized into evaluation of direct [29], indirect [30], and sec-
toral and economy-wide rebound for energy in the UK [31] and for
energy intensity as opposed to energy efficiency [32]. A new sub-field,
societal exergy analysis, emerged. Building on the earlier work of Re-
istad [6], Wall [33], and Kümmel et al. [34], Ayres and co-authors
made significant advances on the role of physical resources flows in

endogenous growth models [35], the role of physical work in economic
growth [36], efficiencies of specific energy and economic sectors [37],
and the impact of natural resource consumption and technological
change on economic growth [38]. Recent work has standardized allo-
cation of final energy to useful exergy categories [39], improved esti-
mates of exergetic efficiencies [40], and explored theoretical efficiency
limits of end-use devices [41]. Another new sub-field (energy decom-
position analysis) expanded greatly largely due to the efforts of Ang
who developed log-mean divisia index (LMDI) methods [42], compared
them against other decomposition approaches [43], applied them to
monitoring energy intensity [44], and provided a practical guide for
implementation [45]. Further specialization of energy analysis occurred
as researchers considered the role of energy in economic growth in
terms of energy constraints [46], primary energy sources [47], em-
pirical evidence from many countries [48], and causality directions and
substitution possibilities via time-series analysis [49]. The benefits [50]
and limitations [51] of the metaphor “the economy is society’s meta-
bolism” were explored by several authors, and the magnitude of the
industrial energetic and material metabolism has been estimated for the
EU [52] and the world [53]. Others have explored the role that energy
plays in satisfying human needs [54] across various nations [55], have
studied how energy enables well-being [56], and have developed a
sufficiency framework for decoupling human well-being from energy
consumption [57]. Lastly, analysis of long-run energy transitions has
received much recent attention, with researchers studying countries
(the UK [58], the U.S. [59], and Sweden [60]), causes (energy cost
share [61] and policy [62]), and policy needs for a transition away from
oil [26] and toward a sustainable future [63].

1.2. The energy conversion chain (ECC)

A notable feature of this history is an expanding analysis boundary.
In the 1960s, energy accountants were focused on primary energy
sources and final energy carriers. Today, energy analysts also consider
the consumption of useful energy produced by consumer-owned de-
vices [39] to generate energy services [64,65] that satisfy human needs
and enable human well-being and development [57]. The expanded
boundary covers the entire energy conversion chain (ECC), a term (to our
knowledge) introduced by Crowe [66, p. 3] to describe energy con-
version processes in diesel generators and fuel cells. We find the phrase
to be apt for all types of energy analysis, so we define it more broadly to
be a set of energy carriers, energy transformation devices, and energy
services within spatial and temporal boundaries of interest. In this
paper, we focus on economy-spanning ECCs comprised of primary,
final, and useful energy carriers as well as the energy services they
enable.

Fig. 1 shows an example ECC with two pathways: Natural gas (NG)
to Residential end use and Crude to Transport end use. Activities in the

Fig. 1. Energy conversion chain (ECC) example. NG is Natural gas. LTH is Low-temperature heat. MD is Mechanical drive. Line colors indicate products and match
Figs. 3, 7, 11 and B.1.
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Residential and Transport final demand sectors, made possible by the
ECC, partially satisfy Human needs, some of which are shown. For
simplicity, Fig. 1 ignores interactions between the two pathways (e.g.,
electricity to operate an oil refinery), self-consumption (e.g., of elec-
tricity by power plants), and distribution (of electricity and fuels by the
grid and transport systems, respectively). Real-world examples in Sec-
tion 3 incorporate these complexities.

The expanding analysis boundary was accompanied by an increase
in the number of questions addressed by energy analysis. Note that
emissions concerns trace upstream to Primary energy at the far left of
Fig. 1, but satisfaction of human needs in the Residential and Transport
sectors is downstream at the far right. And there is a growing realiza-
tion that focusing on a single part of the ECC yields an incomplete
analysis. Mayumi and Giampietro [67, p. 65] say “[w]e should not
study in isolation either patterns of production or patterns of con-
sumption of energy carriers. Any metabolic system works by integrating
the two sides (production and consumption of energy carriers) in an
organic whole capable of expressing a desirable set of functions”.

Indeed, climate-altering emissions and the role of energy in human
development are just two aspects of contemporary energy analysis.
Four questions that represent important topics in energy analysis sub-
fields today are:

• Net energy analysis: What are the energy return ratios (ERRs) for
energy production devices?

• Societal energy analysis: Where are the key energy saving oppor-
tunities in an economy?

• Human needs and well-being: How much primary energy is required
to provide energy services?

• Structural path analysis: What are the key supply-chain paths
through the ECC for delivering energy services?

These questions span the entire ECC from primary energy to energy
services, they encompass issues relevant to many energy analysis sub-
fields, and they require significant empirical data and interdisciplinary
knowledge to address. We tackle these questions using a real-world ECC
in Section 3.

1.3. The benefits and building blocks of an energy analysis framework for
the ECC

In our opinion, efforts to address today’s energy analysis questions
would benefit from a data structure and associated analytical methods
—an energy analysis framework— that (a) spans the entire ECC and (b) is
suitable for many energy analysis sub-fields. Such a framework could
organize and streamline questions to be asked, data to be gathered,
analyses to be performed, and results to be reported.

We believe that an energy analysis framework with these benefits is
possible, taking a physical supply-use table (PSUT) approach. In fact,
several research communities have been developing techniques that
provide the building blocks for such a framework. We identify five
important developments below.

First, IO researchers have developed methods that employ supply-
use tables to overcome problems of co-production (one industry makes
more than one product) [68], to deal with wastes [69], to perform
decomposition analysis [70], to analyze environmental impacts
[71,72], and to combine decomposition and impact analysis [73]. Im-
portantly for this study, with supply-use tables a single energy con-
version device (e.g., an Oil refinery) can produce multiple outputs (e.g.,
Petrol and Diesel).

Second, Pauliuk and co-authors have developed SUT-based techni-
ques for accounting physical [74] resource flows [75,76], drawing on
waste accounting frameworks [77] that employed physical IO tables
[78]. These physical approaches have been employed to study wood
and paper flows [79], among other commodities. Others investigate
international flows of embodied energy using matrix-based [80] and

network [81] methods. These advances demonstrate that physical flows
(including, in our case, energy carriers and energy services) can be
accommodated in an SUT analysis framework.

Third, life-cycle analysis practitioners have overcome methodolo-
gical issues to demonstrate material balances [82] in physically-ex-
tended economic SUT frameworks [83]. This development gives con-
fidence that an energy analysis framework that obeys the first and
second laws of thermodynamics can be developed. Others have devel-
oped matrix-based methods for determining energy return ratios [84],
giving confidence that matrix-based analysis of the entire ECC will be
successful.

Fourth, Rocco [85], Guevara [86], and their respective co-authors
have developed advanced, mixed-units, matrix-based SUT and IO
techniques. These techniques have been applied to the broader
economy for life cycle assessment of electricity production in waste-to-
energy technology [87], for determining the primary exergy cost of
goods and services [88], for understanding the energy metabolism of
the world [89], for decomposition of primary energy use [90], and for
decoupling of exergy use from economic growth [91]. Their work gives
confidence that techniques developed over decades of economic IO and
SUT research can be applied to energy flows and energy services in an
ECC.

Finally, Chong et al. [92] obtain primary-to-final “energy quantity
conversion factors” via Leontief inverse of an IO table comprised of
aggregated physical quantities. To our knowledge, their work is the first
example of obtaining ECC efficiencies via IO techniques, albeit in
support of the narrow objective of performing LMDI decomposition
analysis of final energy consumption in Guangdong Province, China.
However, it shows that application of IO techniques with quantities
expressed in purely physical, not monetary, units is both feasible and
beneficial for energy analysis.

1.4. Aim, originality, and scope of paper

The aim of this paper, then, is to build upon these recent advances
to develop and demonstrate a PSUT-based energy analysis framework
(the “PSUT framework” for short) that spans the entire ECC and is
pertinent to many energy analysis questions. Such a PSUT framework
should have two important characteristics, namely (a) applicability to
the entire ECC (i.e., primary energy to energy services) and (b) ap-
plicability to both energy and exergy analysis. The representative
contemporary energy analysis questions posed in Section 1.2 provide a
context for demonstrating the PSUT framework. Although answers to
these energy analysis questions can inform policy debates, we consider
policy to be beyond the scope of this paper. Table 1 provides a summary
of differences between recent work and this study.

Table 1
Differences among the previous works of Guevara et al. [86,90,91] and Rocco
et al. [85,87,88], Chong et al. [92], and this study.
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The paper proceeds as follows: Section 2 describes the PSUT fra-
mework. Section 3 gives real-world examples and answers the questions
posed in Section 1.2. A discussion and conclusions (Sections 4 and 5)
follow. Detailed appendices are provided for the interested reader.

2. The PSUT framework

2.1. Introduction to PSUT framework

Our energy analysis framework is a physical framework (the P in
PSUT), because all values are quantified in physical units (e.g., ktoe, TJ,
or passenger-km), not monetary units (e.g., $ or £). The framework
accommodates industries with multiple inputs and multiple outputs,
because it is based on supply-use table methods (the SUT in PSUT). The
PSUT framework is applicable to analyses conducted in either energy or
exergy terms, although we write simply “energy” where possible to
avoid the awkward phrase “energy or exergy”.

The structure of the PSUT framework comprises four matrices. The
first three are typical of supply-use table (SUT) formulations of IO
analyses, and we refer to them as the PSUT matrices:

×
U
p i

(a product-by-

industry “use” matrix),
×
V
i p

(an industry-by-product “supply” or “make”

matrix), and
×
Y

p s
(a product-by-sector “final demand” matrix). A fourth

matrix is an auxiliary product-by-unit summation matrix (
×
Sunits

p u
) which

identifies the physical units in which products are measured. To in-
dicate whether industries (i), products (p), final demand sectors (s), or
units (u) appear in rows or columns of matrices, we adopt the notation
shown in Table 2. When a matrix is introduced (and when needed for
clarity thereafter), this notation is typeset beneath matrix symbols. We
mostly follow the Eurostat nomenclature for matrix symbols and the
categories of products, industries, and final demand sectors [93].
Table 3 provides a mapping between Eurostat categories and energy
and services concepts in the PSUT framework. See Appendix A for a
comprehensive table of nomenclature.

The U V, , and Y matrices can be arranged spatially as shown in
Fig. 2. Entries in the use matrix (U) give the consumption of energy
carriers and services (in rows) by energy transformation devices (in
columns). Entries in the make matrix (V) indicate the production of

energy carriers and services (in columns) by energy transformation
devices (in rows). Entries in the final demand matrix (Y) specify con-
sumption of energy carriers and services (in rows) by final demand
sectors (in columns). (Non-energy uses of energy carriers or services
appear in a column of Y.) Entries in the units summation matrix (Sunits)
specify the physical units (in columns) by which energy carriers and
services (in rows) are measured. Note that not all final demand sectors
in columns of Y correspond to final demand sectors in systems of na-
tional accounts. For example, Transport is an intermediate sector in
systems of national accounts but a final demand sector here.

2.2. Building and manipulating the PSUT matrices

Building and manipulating the PSUT matrices involves deciding an
analytical approach, constructing and verifying the PSUT matrices,
formulating the IO structure of the ECC, and estimating the effect of
changes in final demand on the ECC. Each activity is described in
subsections below.

2.2.1. Analytical approach
Before constructing the PSUT matrices introduced in Section 2.1, an

analytical approach must be decided, i.e. a set of decisions must be
made about analysis choices that is sufficient to allow construction of
the PSUT matrices. Analysis choices include, but are not limited to, (a)
the country, device, or process of interest (spatial boundary); (b) the
time period over which the analysis applies (temporal boundary); (c)
the method of accounting for primary energy corresponding to re-
newable energy production (partial substitution method, physical
content method, or resource content method [94]); (d) whether to in-
clude non-energy uses of energy carriers in PSUT matrices; (e) whether
entries in PSUT matrices represent energy or exergy quantities; and (f)
whether the last stage of analysis will be final energy, useful energy, or
energy services.

2.2.2. PSUT matrix construction
The PSUT matrices are populated with energy and energy services

data gathered from sources including, but not limited to, (a) the
International Energy Agency (IEA) [95] (for primary and final energy
data), (b) estimates of final-to-useful transformation device efficiencies
[96,97,40,98] (for calculating useful energy), (c) exergy/energy ratios
(ϕ) [99] (for calculating exergy content from energy values), and (d)
national statistical datasets [100, Table 2] (for energy services data).
Note that all primary-to-final, final-to-useful, and useful-to-services
transformation devices are included as “industries” in the U V, , and Y
matrices. All entries in the PSUT matrices should be non-negative
numbers, and all energy entries must be in the same units, typically TJ/
year or ktoe/year for a large economy.

2.2.3. Thermodynamic verification
Regardless of analytical approach, PSUT matrices populated with

energy carriers and energy services are verified by the first law of
thermodynamics (see Appendix B for discussion of exergy and the
second law of thermodynamics). Two fundamental input-output cal-
culations are needed for first law verification: value added and ag-
gregation. A value added matrix (

×
W
p i

) is given by

= −W V U.T (1)

Aggregations are row, column, or matrix sums, and several are given in
Table 4.

With rare exception, the column sums of the value added matrix
(i WT ) are positive in financial SUT analyses, because finished products
are more valuable (in a monetary sense) than the raw materials from
which they are made. (And industries with negative value added don’t
survive for long!). However, in the PSUT framework, column sums of
the value added matrix (i WT ) are often negative, because energy
transformation devices produce less useable energy than they consume

Table 2
Matrix dimension notation.

Notation Meaning

p×p Products in both rows and columns (e.g.,
×
L

p p
)

i×i Industries in both rows and columns (e.g., ̂g)
p×i Products in rows and industries in columns (e.g., U)
i×p Industries in rows and products in columns (e.g., V)
p×s Products in rows and final demand sectors in columns (e.g., Y)
p×u Products in rows and units of products in columns (e.g., Sunits)

Table 3
Eurostat categories.

Eurostat category ECC analogue

Products Energy carriers (e.g., Oil, Electricity, Mechanical drive)
Energy services (e.g., Passenger transport, Illumination)

Industries Energy imports
Energy extraction devices (e.g., Mines, Oil fields)
Energy conversion devices (e.g., Power plants, Furnaces)
Passive devices (e.g., Cars, Homes)

Final demand Energy exports
Energy storage (e.g., Bunkers, Stocks)
Economic sectors (e.g., Residential, Transport)
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due to inefficiencies and wastes. For example, coal-fired power plants
produce about 1/3 as much electrical energy as they consume in coal
energy, the difference being waste heat. Indeed, i WT will contain po-
sitive entries for extractive industries (free gifts from nature) and ne-
gative entries for ECC transformation devices (due to wastes and waste
heat).

Unless the PSUT matrices conform to the first law of thermo-
dynamics, all further calculations will be wrong. With the aggregations
of Table 4 and the value added matrix of Eq. (1) in hand, energy and
services balances should be verified across products and across in-
dustries. To evaluate the first law across products, the following
equation applies:

− =Wi y 0. (2)

Across industries, inputs must equal the sum of valuable products
(outputs) and wastes. Thus, the first law can be expressed as

+ − =outputs wastes inputs 0. (3)

Assuming homogeneous units in the U V, , and W matrices, total
output by industry is g, waste by industry is −W iT (wastes are negative
value added), and input by industry is U iT . Substituting into Eq. (3)
yields

− − =g W i U i 0.T T (4)

For ECCs with inhomogeneous units in the U V, , and W matrices, we
substitute V for outputs, −WT for wastes, and UT for inputs in Eq. (3) to
obtain

− − =V W U 0.T T (5)

Note that Eqs. (4) and (5) are helpful identities for checking cal-
culations. See Appendix D for a short proof of Eq. (4). See Appendix E
for details of the shift from Eq. (4) to Eq. (5).

2.2.4. Input-output structure
After construction (Section 2.2.2) and verification (Section 2.2.3),

the complete IO structure of the ECC can be formulated. The IO
structure of the ECC is represented by the set of matrices shown in
Table 5.

We employ Eurostat Model B (the industry technology assumption)
wherein each industry has its own specific way of production, regard-
less of its product mix [93, p. 349]. This model is appropriate for
analyzing ECCs, because each energy transformation device produces
its products in its own way. For example, coal-fired and gas-fired power
plants must be able to produce electricity, each with its own mix of
energy inputs. Other Eurostat models, which employ different as-
sumptions (in particular, Model A, which assumes that “each product is
produced in its own specific way, irrespective of the industry where it is
produced” [93, p. 347]), are inappropriate for the PSUT framework.

Fig. 2. PSUT structure. See Table A.1 for matrix and vector definitions. Note that y q, , and Wi are column vectors. All others structures are matrices.

Table 4
PSUT framework aggregations. See Table A.1 for matrix and vector nomen-
clature and Appendix C for a summary of relevant matrix and vector mathe-
matics.

Equation Note

=y Yi Final demand by product

i YT Final demand by sector (for homogeneous units)

=
×
Y S Yunits

u s
T Final demand by sector (for inhomogeneous units)

=g Vi Total industry output (for homogeneous units)

=
×
V VSunits

i u
Total industry output (for inhomogeneous units)

= +q Ui y Total product output

=q i VT T Total product output

i UT Consumption by industry (for homogeneous units)

=
×

U S Uunits
u i

T Consumption by industry (for inhomogeneous units)

i WT Value added by industry (for homogeneous units)

=
×

W S Wunits
u i

T Value added by industry (for inhomogeneous units)

= −E s V s Y i( )p p p
T T T Total primary energy supply

=E s Y i( )f f
T Final energy demand
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The calculations in Table 5 can be verified by

=
×
L y g,

i p (6)

and

=
×
L y q.

p p (7)

Note that the description of IO structure in Table 5 requires that co-
products of any industry exhibit unit homogeneity. Specifically, rows of
V must contain exactly one nonzero element. If an industry has co-
products with inhomogeneous units (e.g., Airlines make both Passenger
transport [passenger-km/yr] and Freight transport [tonne-km/yr]), the
industry should be split and inputs allocated as appropriate for each
industry. (E.g., “Airlines” becomes “Passenger airlines” and “Freight
airlines” with inputs to “Airlines” allocated between “Passenger air-
lines” and “Freight airlines.”)

2.2.5. Effect of changes to final demand
After the IO structure of an ECC has been characterized by the

matrices of Table 5, an important question may be answered with re-
spect to final demand: “What would be the effect on the ECC of a
change to final demand?” Calculations proceed as shown in Table 6 to
perform an “upstream swim” from the adjusted final demand matrix
( ′Y ) to resource extraction, thereby creating a second set of PSUT ma-
trices (including ′U and ′V ) that describe an adjusted ECC associated
with ′Y . After the calculations in Table 6 are accomplished, the adjusted
PSUT matrices ( ′ ′U V, , and ′Y ) can be (a) analyzed using Eq. (1) and
Tables 4 and 5 and (b) verified using Eqs. (2) and (4)–(7).

3. Results: Demonstrating the PSUT framework for real
applications

With the PSUT framework now established (Section 2), we provide
results for one real-world example for each of the four contemporary
energy questions in Section 1.2, thereby illustrating application across a
range of energy analysis sub-fields, including net energy analysis
(Section 3.1), societal energy analysis (Section 3.2), human needs and

well-being (Section 3.3), and structural path analysis (Section 3.4). The
real-world examples are at the economy-wide level, although the PSUT
framework could be applied at any level: device, firm, sector, economy-
wide, or global.

A real-world ECC (based on the two-path ECC of Fig. 1) illustrates
the four numerical examples. The ECC is revealed sequentially as
needed, the last stage extending from final energy (Section 3.1) to
useful energy (Section 3.2) to energy services (Sections 3.3 and 3.4). All
energy values are in ktoe/year, while energy services are expressed in
differing physical units, e.g. passenger-km/year. All ECCs are con-
structed with energy quantification for energy carriers but could just as
well have been constructed with exergy quantification by multiplying
each energy flow by the appropriate exergy-to-energy ratio (ϕ, see
Serrenho [99, Table 2]). See Appendix B for an ECC constructed from
exergy flows. Data and calculations for all ECCs can be found in the
data repository for this paper [101].

The real-world ECC is based on a portion of the UK’s ECC in 2000,
and energy and services data have been rounded to 1–2 significant
figures. Thus, numerical results should be interpreted with caution.
Data from any combination of country and year would suffice for this
paper, because the real-world ECC is used for demonstration purposes
only. Primary and final energy data come from IEA energy statistics
[95]. Brockway et al. [40] provide useful energy. Energy services data
have been obtained from several sources. Passenger and Freight
transport data are from the UK Department for Transport, Tables
TSGB0702 and TSGB0401, respectively [102]. Illumination data are
from Fouquet and Pearson [103]. We estimate residential Space heating
service for 25 million homes, each with representative 100m2

floor
space, 3 m ceiling height, and average 10 K temperature difference
between heated space and ambient.

3.1. Net energy analysis: What are the energy return ratios (ERRs) for
energy production devices?

Within the sub-field of net energy analysis, an important question is
What are the energy return ratios (ERRs) for energy production devices? A
common ERR is energy return on (energy) invested (EROI), a metric
first explored by Hall [104], and utilized extensively in subsequent
years by Murphy and Hall [105,106], Heun and de Wit [26], Lambert
et al. [107], Brand-Correa et al. [24], and many others.

Significance: Large ERRs indicate an effective energy-producing in-
dustry that provides a large rate of energy to society for small rate of
energy investment.

We adopt the nomenclature of Brandt et al. [108] in which GERγ
and NERγ indicate the gross and net energy return ratios, respectively,
for an energy production device. The subscript γ denotes an ERR ana-
lysis boundary that accounts for multiple interacting energy pathways
(e.g., Oil fields that consume Electricity). Inspired by Brandt [109], we
include the net-to-gross energy ratio (rγ) as well. Larger values of all
ERRs indicate an energy system that is more effective at providing
energy to society with less energy consumed (see Appendix F for deri-
vations of relationships among the three ERRs).

In the context of the PSUT framework, all of GER NER,γ γ, and rγ
become industry column vectors (ger ner,γ γ, and rγ) given by Eqs.
(8)–(10).

= −ger U i g( )γ EIOU
T 1

(8)

= −ner ger iγ γ (9)

= −r ger ner( )γ γ γ
1 (10)

To demonstrate, we calculate ERRs for each device of Fig. 3, the first
version of our real-world ECC, wherein final energy is consumed by
both (a) intermediate industries (Gas wells, Oil fields, Natural gas and
Crude distribution, Power plants, and Oil refineries) and (b) final

Table 6
Estimating the effect of changes to final demand (“upstream swim”).

Equation Note

′ = ′y Y i New final demand by product for ′Y
′ = ′

×
g L y

i p
Industry output for ′Y

′ = ′
×

q L y
p p

Product output for ′Y

′ = ′U Z g Use matrix for ′Y

′ = ′V Dq Make matrix for ′Y

Table 5
Calculations for IO structure.

Equation Note

̂=
×

−Z Ug
p i

1 Input requirements for products
per unit of output of an industry

̂=
×

−C V g
p i

T 1 Product mix matrix

̂=
×

−D Vq
i p

1 Market shares matrix

=
×
A ZD

p p
Input coefficients for intermediates

= −
×

−L I A( )
p p

1 Product-by-product Leontief matrix

= −
×

−L D I A( )
i p

1 Industry-by-product Leontief matrix

̂=
× ×
G L y

i p p p
Assists “footprinting” in PSUT framework
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demand. In comparison to Fig. 1, interacting flows, detailed self-con-
sumption flows (energy industry own use), and distribution sectors are
now included. The PSUT matrices associated with Fig. 3 are shown in
Fig. 4. Fig. 5 shows the energy industry own use matrix (UEIOU ) for the
ECC of Fig. 3.

Fig. 6 shows ERR vectors for the ECC of Fig. 3. ERRs are most re-
levant for production stages of the ECC (Gas wells and Oil fields in this
example), although (8)–(10) provide ERRs for all industries in the ECC.
In Fig. 6, ERRs for Resources are ∞, because the energy to extract Re-
sources is accounted in Gas wells and Oil fields. The ERRs for Elect grid
are ∞, because there is no energy apart from Elect supplied to the Elect
grid in Fig. 3.

Benefit of the PSUT framework: This real-world example shows that
organizing ECC data in the PSUT framework allows computation of any
ERR for all ECC devices with straightforward matrix mathematics.

3.2. Societal energy analysis: Where are the key energy saving opportunities
in an economy?

Within the sub-field of societal energy analysis, an important
question is What are the device and sector energy efficiencies along an
ECC?

Significance: Answers to this question identify key energy saving
opportunities in an economy, which is important because “[t]he effi-
cient provision of energy services not only reduces the required
amounts of primary energy but in general also reduces adverse

environmental impacts” [109, p. 421].
Fig. 7 extends the last stage of analysis in our real-world ECC from

final energy to useful energy such that final demand includes Low-
temperature heat (LTH), Light, and Mechanical drive (MD). Some in-
termediate industries now also consume useful energy (e.g., the dis-
tribution industries consume MD–Truck engines, whereas in Fig. 3 they
consumed Diesel, a final energy carrier). And for simplicity, self-con-
sumption flows are internalized (e.g., self-consumption of 5000 ktoe of
Diesel by Oil refineries in Fig. 3 is now internal to Oil refineries, thereby
providing net Diesel output of 15,500 ktoe in Fig. 7). Given the ECC

Fig. 3. A real-world ECC covering primary and final energy. All energy flows in units of ktoe/year. NG is Natural gas. Line colors indicate products.

Fig. 4. PSUT matrices for the real-world ECC in Fig. 3. All numbers in units of ktoe/year.

Fig. 5. Energy industry own use (EIOU) for the ECC of Fig. 3. All numbers in
units of ktoe/year.
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shown in Fig. 7, PSUT matrices can be constructed as shown in Fig. 8.
A vector of ECC industry efficiencies (ηE γ, ) can be calculated by

= −η U i g( ) .E γ,
T 1

(11)

Fig. 9 shows device efficiencies (ηE γ, ) for the ECC shown in Figs. 7
and 8. Again, these are energy efficiency values for the γ system

boundary, because they account for industry consumption of energy
from other branches of the ECC (see Brandt et al. [108]). The ηE γ, vector
in Fig. 9 shows that Power plants, Car and Truck engines, and Light
fixtures have much lower efficiencies than other devices.

Beyond the last energy stage, all energy transformations are ac-
complished within final demand sectors (in this ECC, Residential and
Transport). The efficiency of a final demand sector can be evaluated by
comparing two final demand matrices (Y). For example, Fig. 4 gives
final demand by sector for final energy (Yf ) and Fig. 8 gives final de-
mand by sector for useful energy (Yu). A vector of efficiencies by which
final demand sectors convert final energy to useful energy (ηE fu, ) can be
calculated by

= −η Y i Y i( ) .E fu f u,
T 1 T

(12)

Fig. 10 shows the final-to-useful energy conversion efficiencies for
final demand sectors of the ECCs shown in Figs. 3 and 7.

Benefit of the PSUT framework: These real-world examples demon-
strate that the PSUT framework allows calculation of efficiencies for all
ECC industries and final demand sectors with convenient matrix op-
erations.

Fig. 6. Energy return ratios (ERRs) for the ECC of Fig. 3. g and U iEIOU
T in ktoe/

year. ger ner,γ γ , and rγ are unitless.

Fig. 7. A real-world ECC covering primary to useful energy. All energy flows in units of ktoe/year. NG is Natural gas. LTH is Low-temperature heat. MD is Mechanical
drive. Line colors indicate products.

Fig. 8. PSUT matrices for the real-world ECC in Fig. 7. All numbers in ktoe/year.
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3.3. Human needs and well-being: How much primary energy is required to
provide energy services?

In general, purchasers of final energy are not interested in energy,
per se. Rather, they are interested in the services that useful energy
(when combined with infrastructure) provides. Indeed, energy services
are desired because they contribute to human well-being by satisfying
human needs such as subsistence, protection, participation, leisure, and
freedom (see Fig. 1).

But final demand (whether expressed as final energy, useful energy,
or energy services) contains “embodied” primary energy: the sum of all
primary energy consumed and wasted throughout the ECC in the pro-
cess of satisfying that final demand. And the ratio of final demand level
to embodied primary energy is the consumption-based energy effi-
ciency of meeting that final demand. When the ECC is extended through
to energy services, this efficiency is important, because (a) primary-to-
services efficiency is a factor in determining the primary energy re-
quirements of providing energy services and (b) primary energy con-
sumption is a proxy for environmental degradation and resource de-
pletion. So an important question in sub-fields of human well-being and
development is What is the consumption-based primary-to-services effi-
ciency of providing energy services?

Significance: If we want to provide human well-being with minimal
environmental impact, consumption-based primary-to-services energy
efficiency is an important metric to monitor.

To illustrate the utility of the PSUT framework to comprehensively
address these issues, we extend the ECC of Fig. 7 through to services,
including final demand for Space heating, Illumination, Passenger
transport, and Freight transport. Several intermediate industries now
consume energy services rather than useful energy as they did in Fig. 7
(e.g., distribution industries consume Freight transport instead of
MD–Truck engines). (Note that the ECC of Fig. 11 is reproduced in
Fig. B.1 with exergy quantification of energy carriers.)

To assess the efficiency of providing an energy service, the embo-
died primary energy of that energy service is needed. The embodied
primary energy of a final demand service is similar to a CO2 [111] or

material [112] “footprint.” Just as a material footprint is the quantity of
material consumed by all industries in the production chain to make a
good (e.g., automobiles), so also embodied primary energy is the pri-
mary energy consumed by all industries in the ECC to provide an energy
service (e.g., Passenger transport). And just as footprinting analysis is
conducted with environmentally-extended input-output (EEIO) techni-
ques developed for supply chains quantified in monetary units
[113,114], calculation of embodied primary energy within the PSUT
framework applies EEIO techniques to ECCs quantified in physical
units.

In EEIO analysis, a diagonal matrix ( ̂e) is formed from a per-unit-
output vector of industry ancillary products (

×
e

i 1
) and pre-multiplied into

G to obtain a “footprint” matrix (
×
Q
i p

).

̂ ̂ ̂= = − −Q e G e D I A y( ) 1 (13)

Extending EEIO analysis from supply chains in monetary units to ECCs
in energy and energy services units in the context of the PSUT frame-
work, we see that the choice of e determines the embodied product
(energy carrier or service) obtained from Eq. (13).

The starting point for forming any number of e vectors is the value
added matrix (W), because its entries give the production (positive
values) and consumption (negative values) of energy carriers and ser-
vices by industry within the ECC. Matrix

×
E

p i
is formed from W, and its

rows give energy carriers or services produced (positive values) or
consumed (negative values) per unit output by industries (in columns).

̂= + −E W U g( )EIOU
1 (14)

Thus, any product row P of E (eP
T) can serve as an appropriate e vector

for Eq. (13):

=Q e G.P P
T (15)

The matrix QP contains positive and/or negative entries. Positive
entries in QP give the “footprint” of P embodied in the product of the jth

column of QP produced by the industry of the ith row of QP. Negative
entries in QP show the consumption of P embodied in the product of the
jth column of QP by the industry of the ith row of QP.

Fig. 13 shows QCrude and QNG matrices for the ECC of Fig. 11. Using
QCrude as an example, we see that the embodied Crude oil in Passenger
transport is 31,998 ktoe/year. Because the entry is in the top row of
QCrude, we know that the embodied Crude was produced by the Re-
sources–Crude industry. Lesser, but still nonzero, amounts of Crude oil
are embodied in Freight transport (17,736 ktoe/year), Illumination
(102.2 ktoe/year), and Space heating (164.3 ktoe/year), due to inter-
actions among sectors of the ECC. The amount of Crude oil embodied in
all final demand products (the sum of all positive entries in QCrude) is
50,000 ktoe/year, the direct production of Crude by Resources–Crude
(see Fig. 11).

Any product created in the ECC, not just primary energy carriers,
can be analyzed like Crude oil and Natural gas above. Another inter-
esting example for the ECC of Fig. 11 is Freight transport, for which
QFreight is shown in Fig. 14. There is some amount of Freight transport
created by Trucks embodied in all energy services (bottom row of
Fig. 14), again because of interactions among the industries in the ECC.
Space heating, for example, embodies ×1 109 tonne-km/year of Freight
transport that was produced by Trucks. The sum of the bottom row in
QFreight is ×1.5 1011 tonne-km/year, the gross production of Freight
transport.

With embodied primary energy in hand, the consumption-based
primary-to-services efficiency of providing an energy service can be
determined by dividing the magnitude of an energy service by the
embodied primary energy for that energy service (summed across all
primary energy carriers). For the example of Passenger transport, we
obtain

Fig. 9. Device efficiencies for the ECC of Fig. 7. g and U iT in ktoe/year. ηE γ, is
unitless.

Fig. 10. Final-to-useful final demand sector efficiencies for the ECC of Fig. 7.
Y iu

T and Y if
T in ktoe/year. ηE fu, is unitless.
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Fig. 11. A real-world ECC covering primary energy to energy services. All energy flows in units of ktoe/year; energy services in units shown. NG is Natural gas. LTH is
Low-temperature heat. MD is Mechanical drive. “tes” is an abbreviation for metric tonnes. Line colors indicate products.

Fig. 12. PSUT matrices for the real-world ECC in Fig. 11. All energy flows in units of ktoe/year; energy services in units shown.

Fig. 13. Q matrices for embodied Crude oil and Natural gas (NG) for the ECC in Fig. 11.
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=
×

+
= ×η

5 10 pass-km/year
31, 998ktoe/year 218.07ktoe/year

1.55 10 pass-km/ktoe.E ps,

11
7

(16)

When each primary energy carrier is produced by a single Resources
industry (as in Fig. 11), nonzero entries in the eP and D matrices will be
1 (see Appendix G), and a vector of consumption-based primary-to-
services energy efficiencies (ηE ps, ) can be obtained directly with

= −η G s y( ) .E ps r,
T 1

(17)

Fig. 15 shows consumption-based primary-to-services energy effi-
ciencies (ηE ps, ) for the real-world ECC in Fig. 11.

We note that consumption-based primary-to-services exergetic ef-
ficiencies (as shown in Fig. 15) account for all direct and indirect pri-
mary energy demanded by each service (the embodied energy of the
service). The provision of Passenger transport to final demand provides
an illustrative example.

For a narrow analysis boundary around automobiles and the service
they provide, the final-to-services energy efficiency of Passenger

transport is

=
×

= ×η
5 10 passenger-km/yr

26, 000ktoe/yr
1.92 10 passenger-km/ktoe,E fs,

11
7

(18)

where the numerator is the service level provided by Cars (Passenger
transport) and the denominator is the final energy consumed by Car
engines (Petrol). However, the consumption-based primary-to-services
energy efficiency of Passenger transport in Fig. 15 was obtained from an
expanded analysis boundary (made possible by the PSUT framework),
which accounts for all energy consumption in the ECC to provide Pas-
senger transport by cars, including (a) Crude required to supply self-
consumption of Petrol and Diesel and (b) Natural gas required to make
electricity. With the wider analysis boundary, we find the consumption-
based primary-to-services energy efficiency of providing Passenger
transport to be 19% less: ×1.55 107 passenger-km/ktoe, as shown in
Fig. 15.

The final-to-services energy efficiency of Passenger transport is,
essentially, an expression of the fleet-average fuel efficiency of auto-
mobiles. We can cast the above results into familiar fuel economy units
(miles per U.S. gallon) by assuming 0.13176 GJ of energy per
U.S. gallon of Petrol and 1.5 passenger-miles per car-mile. Doing so, we
obtain 25.1 car-miles/U.S. gallon as the average fuel economy of the
UK automobile fleet circa 2000 for the narrow analysis boundary.
(Bonilla [114, Fig. 2a] shows fleet average fuel economy of about 10
litres/100 km or 23.5 miles/U.S. gallon, indicating that the rounded
data in our real-world ECC are close to reality and that our estimate of
1.5 passenger-miles/car-mile is reasonable.) Accounting for all indirect
energy consumption along the ECC (expressed in Petrol gallon
equivalents), we obtain 20.2 car-miles/U.S. gallon for the expanded
analysis boundary, again 19% less than the fuel economy obtained from
the narrow boundary.

As discussed above, the ECCs of Figs. 3, 7, and 11 are meant to be
representative, as they contain only two of the many energy pathways
in the UK economy in 2000. Each additional energy pathway included
in this analysis will further reduce the final-to-services energy efficiency
of Passenger transport. Expanding the analysis boundary to include the

Fig. 14. QFreight matrix for embodied Freight transport for the ECC in Fig. 11.

Fig. 15. Consumption-based primary-to-services energetic efficiencies (ηE ps, ) for the ECC in Figs. 11 and 12. For brevity, this figure shows only the Resources
industries of G.
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embodied energy of materials in the automobile (the Ω boundary of
Brandt et al. [108]) will both (a) further increase the embodied energy
content of cars and (b) further reduce ηE fs, and ηE ps, .

Benefit of the PSUT framework: This passenger transport example
demonstrates that when data are organized into PSUT matrices, a pic-
ture of the embodied primary energy of an energy service (exclusive of
the embodied energy of materials) can be obtained quickly and easily.

3.4. Structural path analysis: What are the key supply-chain paths through
the ECC for delivering energy services?

We showed that embodied primary energy of final demand can be
determined within the PSUT framework in Section 3.3. But as we
evaluate strategies for reducing embodied energy, an important ques-
tion emerges: What are the critical supply chains involved in energy and
services delivery to final demand?

Significance: One approach to reducing environmental impacts of
economic activity is to minimize the embodied primary energy of final
demand as energy moves through the ECC.

To address this question, one needs to trace the large number of
pathways for delivering energy through an ECC. Structural path ana-
lysis (SPA) [116,117] is an established IO technique that uses the
Taylor series expansion [118] to “unravel” the Leontief inverse (

×
L

p p
)

and identify and quantify individual paths through a supply chain. SPA
can be used within the PSUT framework to assess paths from resource
extraction to final demand expressed in any form, including final en-
ergy (Fig. 3), useful energy (Fig. 7), or energy services (Fig. 11).

SPA provides two important results within the PSUT framework: (a)
the lengths of paths from primary resources through the ECC to final
demand and (b) the embodied primary energy of each path. The length
of an ECC path is defined as the number of ECC industries through
which energy or an energy service flows before reaching final demand.
A zero length path is one where energy flows directly from resource
extraction to final demand; a path of length 1 has a single industry
between resources and final demand; etc. For simple supply chains,
path lengths can be determined by inspection, but complex supply
chains in real-world ECCs have far too many paths for each to be
identified visually. Although the ECCs in this paper are increasingly
complex (compare Figs. 3 and 11), it is obvious by inspection that there
are no paths of length 0 or 1. For example, the shortest energy service
delivery path in Fig. 11 has length 4, traversing from Natural gas
through (1) Gas wells and processing to (2) Natural Gas distribution to
(3) Furnaces to (4) Homes and, ultimately, to the Residential sector of
final demand.

The magnitude of an ECC path is defined as the embodied primary
energy of the service delivered by the path. For the real-world ECCs in
this paper, ECC path magnitudes are measured in ktoe/year.

Calculations of path lengths rely on the Taylor series expansion of
the Leontief inverse matrix. For the symmetric Leontief inverse matrix

×
L

p p
, it can be shown [118] that

= − = + + + + + ⋯+ + ⋯
×

−L I A I A A A A A( ) ,n
p p

1 2 3 4
(19)

where n is the number of terms retained for a finite approximation to
the infinite sum.

If the right side of Eq. (19) represents the ECC (instead of
×
L

p p
or

− −I A( ) 1), paths of various lengths are found in matrices with corre-
sponding powers of A. For example, zero length paths are associated
with I, and the shortest path in Fig. 11 (length 4) would be associated
with the A4 term of Eq. (19). (Additional details are provided in
Appendix G.)

To demonstrate SPA within the PSUT framework, we perform five
separate analyses, one for each combination of primary energy resource
(Crude and Natural Gas) and ECC (Figs. 7 and 11) and one for Freight
transport in the ECC of Fig. 11. (Note that Figs. 7 and 11 involve dif-
ferent final demand matrices (Y): the final demand matrix of Fig. 7 is
comprised of useful energy and the final demand matrix of Fig. 11 is
comprised of energy services. SPA works with both types of final de-
mand matrices within the PSUT framework. An SPA could also be
performed with the ECC of Fig. 3, but we focus on Figs. 7 and 11 for
simplicity.) All paths in all five analyses are evaluated for both length
(the number of steps) and magnitude (embodied primary energy).

We first aggregate the magnitudes of all same-length paths origi-
nating at primary energy carriers to create Fig. 16, which shows ag-
gregated magnitudes (as a fraction of total embodied primary energy)
on the vertical axis and path lengths (from 0 to 9) on the horizontal
axis. Nearly all (98%) of embodied Crude energy takes five steps to
reach final demand expressed as useful energy (solid line in Fig. 16a).
To reach final demand expressed as energy service, nearly all the em-
bodied Crude energy takes six steps (dashed line in Fig. 16a). A review
of Figs. 7 and 11 confirms that the energy service ECC (Fig. 11) has one
additional stage compared to the useful energy ECC (Fig. 7). Indeed,
inspection of Fig. 7 shows that the simplest path from Crude to final
demand expressed as useful energy takes five steps: from Resources-
Crude to (1) Oil fields to (2) Crude dist. to (3) Oil refineries to (4) Diesel
or Petrol dist. to (5) Truck or Car engines to Transport. And inspection
of Fig. 11 shows that the simplest path from Crude to final demand
expressed as energy services takes six steps: from Resources-Crude to
(1) Oil fields to (2) Crude dist. to (3) Oil refineries to (4) Diesel or Petrol
dist. to (5) Truck or Car engines to (6) Trucks or Cars to Freight or
Passenger Transport. Appendix G provides additional details of the path
from Crude to Freight transport.

Paths from Natural gas extraction are slightly more complex. 61% of
the embodied Natural gas takes three steps to reach final demand ex-
pressed as useful energy with a further 37% taking five steps (solid line
in Fig. 16b). Again, the paths to final demand expressed as energy
services (dashed line in Fig. 16b) are one step longer (four and six
steps).

With the help of Figs. 7 and 11, it is possible to use Fig. 16 to in-
terpret the primary paths through the real-world ECC. However, the
embodied energy of more complex paths (e.g., paths which include

Fig. 16. Fraction of embodied Crude and Natural gas energy captured by paths of varying lengths in the useful energy ECC of Fig. 7 (solid line) and the energy
services ECC of Fig. 11 (dashed line).
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Electricity inputs to Gas wells & proc.) cannot be identified by inspec-
tion.

SPA provides an additional method to investigate details of specific
paths within the ECCs. To do so, the Leontief inverse (

×
L

p p
) in Eq. (19) is

expanded again such that the path from industry i to industry j via
industry k is described by matrix elements Aik and Akj. With the doubly-
expanded form of the Leontief inverse, it is possible to identify and rank
the most important (largest magnitude) paths through the ECC (see
Appendix G for additional details).

To illustrate the capability of SPA to identify paths within an ECC,
we show results for the most interesting combination of resource and
ECC, namely Natural gas through to energy services in Fig. 11 (the
dashed line in Fig. 16b). The 10 paths of largest magnitude are shown in
Table 7, comprising 99.8% of all embodied Natural gas in the ECC of
Fig. 11. The largest magnitude path has length 4: from Resources-NG to
(1) Gas wells & proc. to (2) NG dist. to (3) Furnaces to (4) Homes to
Residential final demand. The second-largest path is a six-step path and
the shortest path that provides Illumination: from Resources-NG to (1)
Gas wells & proc. to (2) NG dist. to (3) Power plants to (4) Elect. grid to
(5) Light fixtures to (6) Rooms to Residential final demand. The results
of Table 7 confirm that the embodied energy captured in 4 and 6 steps
(shown by the dashed line in Fig. 16b) comprises two large-magnitude
paths only.

However, there are several more-complex routes from Natural gas to
final demand through the ECC of Fig. 11. For example, the routes of
paths with size rank 2–10 in Table 7 go through Power plants and the
Elect. grid to make Electricity available to other portions of the ECC,
some of which flows to industries that serve end uses other than Illu-
mination. It would be impossible to find all paths by inspection from
Figs. 11 and 16b, and this detailed SPA method is likely the only way to
identify the length and magnitude of paths longer than, say, 6 steps.

In addition to primary energy carriers created at the upstream end
of an ECC, SPA can be performed on any product created anywhere in
the ECC. In the ECC of Fig. 11, Freight transport is created by Trucks
and delivered to Transport final demand as well as distribution in-
dustries within the ECC. Most (95%) embodied Freight transport
reaches Transport final demand directly (0 steps), but some Freight
transport is provided to the distribution industries within the ECC. The
shortest indirect path through the distribution industries to Transport
final demand has length 3: from Trucks to (1) Diesel dist. to (2) Truck
engines to (3) Trucks to Transport final demand. (A similar path with
length 3 goes through Petrol dist.) Exponentially-decreasing amounts of
embodied Freight transport complete this cycle twice, then three times,
then four times, etc., each much smaller in magnitude than the last. The
semi-log plot in Fig. 17 is the Freight transport version of Fig. 16, and it
shows exponentially-decreasing embodied Freight as a (nearly) log-
linear descending function of path length.

Benefit of the PSUT framework: This extended example demonstrates
that when ECC data are arranged in a PSUT format, quantification of
the magnitude of embodied product flows through every route of an
ECC can be accomplished using SPA techniques.
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Fig. 17. Fraction of embodied Freight captured by paths of varying lengths in
the energy services ECC of Fig. 11, expressed in log10 such that, e.g., −2 on the
vertical axis is 10−2 or 1% of all embodied Freight transport.
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4. Discussion

In this discussion, we briefly discuss the originality of this work
(Section 4.1), explain limitations of the PSUT framework (Section 4.2),
identify several additional applications (Section 4.3), and suggest future
work (Section 4.4).

4.1. Originality

To our knowledge, the following elements of this paper are novel
advances that appear in the literature for the first time:

(1) We performed energy analysis on an ECC using PSUT matrices
comprised of disaggregated products with physical units only. (In
Section 3, energy terms are in ktoe/year, energy services terms are
in various units such as passenger-km/year. Previous papers mixed
financial and physical units or performed analyses with aggregated
products in physical units only in IO, not SUT, matrices.)

(2) We demonstrated that (1) could be accomplished with either energy
or exergy entries in the PSUT matrices. (Section 3 utilizes energy
entries, and Appendix B utilizes exergy entries.)

(3) We showed that the PSUT energy analysis framework could be used
anywhere along an ECC. In particular, we showed that the frame-
work could be used when energy services are the last stage of an
ECC (Sections 3.3 and 3.4).

(4) We illustrated that changing the last stage of an ECC (from final
energy to useful energy to energy services) can provide insights into
ECC characteristics (Sections 3.2 and 3.4).

(5) We performed SPA on an ECC (Section 3.4 and Appendix G).
(6) We developed and utilized the Sunits matrix to aggregate products

with inhomogeneous units in the PSUT matrices (Appendix E).
(7) We derived relationships among the three ERRs: GER NER, , and r

(Appendix F).

4.2. Limitations

We suggest two limitations of the PSUT framework. The first arises
from the fact that the accuracy and level of detail of analyses performed
with the PSUT framework are a function of the accuracy and avail-
ability of ECC data. At the primary and final energy stages of an ECC,
data are readily available from the IEA [95] and national energy
agencies, but they must be applied correctly [119], are they not without
measurement errors and inaccuracies [120].

On the other hand, data availability at the useful energy or energy
services stages are a challenge. At the useful stage, energy flows must be
calculated from (a) estimates of allocation of final energy to end-use
devices and (b) estimates of final-to-useful end-use device efficiencies
(ηfu). Many challenges arise when estimating allocations and device
efficiencies. Progress is being made on allocation of IEA final energy
data [97,40], and probabilistic models are under development to
quantify effects of allocation uncertainty [121]. Estimating time series
for final-to-useful device efficiencies (ηfu) is time consuming, because
economy-wide efficiencies are a function of many factors, including
diffusion rates of new technologies, statistical distributions of device
vintage, maintenance schedules, etc. All of these factors must be eval-
uated per device for each economy when estimating time series of de-
vice efficiencies (ηfu). Fortunately, here, too, progress is being made,
and many countries have been analyzed, including the U.S. [40,122],
the UK [40,123], the EU-15 [99], China [98], Mexico [124], and Por-
tugal [39].

When pushing through to energy services, some data are readily
available (e.g., Freight and Passenger transport) while other data are
less available (e.g., Lighting).

However, we note that data limitations are not unique to the PSUT
framework: all energy analyses on the ECC face similar challenges.
Indeed, the PSUT framework is not a means to obtain or generate final

energy or energy services data. Rather, it is a way to organize available
data and streamline analyses of that data.

The second limitation arises from the inherent linearity of IO and
SUT analysis methods, which are often and rightly criticized for their
inability to represent non-linear effects and dynamics related to
changes in final demand (see Section 2.2.5). We note here that non-
linear effects exist in both (a) the physical realm (e.g., larger buildings
are more efficient because heat loss scales with surface area but space
heating service scales with volume) and (b) the economic realm (e.g.,
“economies of scale”). For the purposes of energy analysis, we believe
that physical SUT techniques are less problematic than economic SUT
techniques, because PSUT techniques avoid purely-economic non-line-
arities.

That said, we recognize that, at the economy-wide scale, the phy-
sical realm and the economic realm may interact in unexpected ways to
produce non-linear effects. For example, if demand for electricity de-
creases, markets may prefer to mothball inefficient plants, thereby in-
creasing the aggregate efficiency of electricity production. The methods
of Section 2.2.5 would not predict such efficiency improvements and
would instead assume that efficiency remains constant as final demand
shifts. (To capture these non-linearities in a predictive sense, dynamic
energy-economy models are needed.) However, when annual data for
the entire ECC are available (e.g., IEA world energy statistics [95] as
discussed in Appendix H), each year can be analyzed independently,
and the PSUT framework will correctly observe and calculate year-to-
year physical changes in an ECC (e.g., increasing efficiency of elec-
tricity production), regardless of their root cause (e.g., economic
structural changes or technological efficiency changes). Section 4.3
discusses structural decomposition analysis (SDA) which can be applied
to determine the dominant drivers of temporal trends.

4.3. Additional applications

There are many additional applications for the PSUT framework
described in Section 2 and demonstrated in Section 3. Most of the ad-
ditional applications are enabled by the supply-use table structure of
the framework. For each additional application discussed below, we
include questions that, taken together, illustrate the breadth of ap-
plicability of the PSUT framework. Due to space constraints, we do not
provide real-world examples.

The PSUT framework could be used to study the question Which
country can provide energy services most efficiently? To answer this
question, a multi-regional PSUT (MR-PSUT) would need to be con-
structed. A MR-PSUT model would enable the calculation of embodied
energy content of energy services consumed anywhere in the world,
taking into account global supply chains that cover any energy con-
version process in any country.

Further development of the MR-PSUT could involve producing an-
nual tables, allowing the following question to be addressed: What are
the most important drivers of difference of the embodied energy of final
demand between (a) two countries at a given time? and (b) for a given
country between two times? This question can be analyzed within the
PSUT framework by the application of Structural Decomposition
Analysis (SDA). SDA is an “analysis of …change by means of a set of
comparative static changes in key parameters in an input-output table”
[124, p. 3]. An SDA would be able to determine the importance of the
following factors in contributing to country-by-country or year-by-year
differences: (a) larger final demand for the energy service (b) the
structure of the ECC involved in the delivery of the energy service, and
(c) increasing or decreasing waste energy at various stages of the ECC.

Regarding energy services, an important question is Are energy ser-
vices being provided more efficiently over time? Steps to answer this
question using the PSUT framework would comprise: (a) gathering ECC
time series data (through to energy services), (b) organizing time series
data into PSUT matrices, with one set of U V, , and Y matrices for each
time period (typically, one year) as shown in Appendix H, and (c)
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repeating the analysis of Section 3.3 for each year to obtain a time
series of consumption-based primary-to-services energy efficiencies.
The evolution of energy service efficiencies will then be obvious when
graphed against time.

Turning to economics-related questions, one might want to know
What are the consumption-based energy intensities (in GJ/$) of economic
sectors as defined by the system of national accounts? (This question
hearkens back forty years to the works of Bullard et al. [13], Costanza
[126], and Roberts, whose 1978 definition of energy analysis was “a
systematic way of tracing the flows of energy through an industrial
system, resulting in the apportioning of a fraction of the primary energy
inputs into the system to each of the outputs of that system” [17, p.
200].) To answer this question, the PSUT matrices should be embedded
within a larger mixed units energy-economy SUT analysis that includes
financial flows for non-energy sectors. Recent work by Guevara and co-
authors [86,90,91] and Rocco and co-authors [85,87,88] has pursued
this line of inquiry (see Table 1).

In addition, we speculate that analyses typically performed on in-
dividual energy conversion devices in the sub-field of exergoeconomics
[127,128] could be applied to the economy-wide ECC boundary. A core
question would be: What is the optimum design of an economy-wide ECC to
minimize its costs or its exergy destruction? To answer this question, analysts
would need to (a) obtain or generate efficiency vs. cost relationships for
each device in an economy-wide ECC and (b) apply exergoeconomic tech-
niques. Estimates of the cost of exergy destruction by each device in the ECC
would be generated, and optimization of the ECC could be pursued for
various objective functions, including minimizing exergy destruction or
minimizing cost of energy service delivery. An optimal mix of exergy con-
version devices could be determined for each objective.

Finally, we note that energy carriers and services change form
through the ECC: all primary energy is completely consumed by
transformation processes on the way to providing energy services. The
PSUT framework is able to track all of these changes of form, even when
the transformation is so complete that the quantities involved no longer
exist as useable energy but rather as services only.

Of course, energy is not the only resource whose primary resources
are “used up” to provide services measured in different units. Thus, we
speculate that a version of the PSUT energy analysis framework could
be applied to other service delivery networks involving other resource
flows. For example, materials of all types (paper and wood [79], steel
[129], water [130], the entire economy [112,131]) provide material
services to society [132,133] and are (at least partially) “used up” in the
process. A key question for a materials application of the PSUT fra-
mework would be What is the consumption-based efficiency of providing
material services to society?

4.4. Future work

There are several areas available for future work on this topic. First,
because the PSUT framework will be applied to real ECCs (see Hardt
et al. [134] for application with LMDI decomposition analysis), efforts
to improve the availability and accuracy of data along the ECC are
needed, particularly regarding useful energy (see Section 4.2). If ana-
lyses are to reach energy services, robust data on services will be re-
quired. Therefore, additional work is encouraged on developing a
common method to estimate useful energy and publishing databases of
useful energy and energy services statistics. (These new directions
should build on related efforts to develop consistent societal exergy
accounting methods [94,135], to assess the effect of allocation un-
certainties in societal exergy accounting [121], and to understand the
basic driver of the energy system, end use [136].)

Second, further development of the additional PSUT framework
applications described in Section 4.3 should be undertaken and de-
monstrated via real-world examples, similar to those in Section 3.

Third, development of a generalized mathematical approach for
unit inhomogeneity of sector co-products would advance the PSUT

framework by removing the requirement of co-product unit homo-
geneity and the need to split industries whose co-products are unit-
inhomogeneous (see Section 2.2.4).

5. Conclusions

In this paper, we have built upon prior work in related fields to
develop and demonstrate, via four real-world examples that address
contemporary energy analysis questions, a new physical supply-use
table energy analysis framework. The framework is applicable to all
parts of the energy conversion chain and provides several important
benefits to the field of energy analysis.

First, because physical supply-use table matrices can be asymmetric
(i.e., non-square), the physical supply-use table framework allows
analysis of energy conversion chains that include co-producing in-
dustries with disaggregated products. (In the energy conversion chain
of Figs. 3, 7, and 11, Oil refineries co-produce Petrol and Diesel. Real
refineries make dozens of products.) This characteristic overcomes a
limitation of input-output-based methods that require symmetric (i.e.,
square) matrices, which, in turn, necessitate aggregations that discard
energy conversion chain information.

Second, because the physical supply-use table framework allows
analysis on the entire energy conversion chain, including co-producing
industries, it can overcome communication challenges that may arise
when different analysis techniques or different terms are used by dif-
ferent research communities who study different portions of the energy
conversion chain.

Next, two advantages arise from units and product quantification.
Because the physical supply-use table framework utilizes physical units
exclusively, it overcomes a limitation of financial input-output and
supply-use table methods in which monetary flows are proxies for
physical flows, thereby introducing distortions into what otherwise
should be purely physical (energy) analysis. Indeed, one of the main
challenges with year-by-year economic, rather than physical, input-
output or supply-use table energy decompositions is that effects of in-
flation must be removed before performing the analysis. If not, the
importance of temporal changes in final demand is often exaggerated
due to inflationary price increases. The physical supply-use table fra-
mework has a significant advantage over economic input-output and
supply-use table analyses, because it uses data in physical units rather
than economic spending information in monetary units. And because
the physical supply-use table framework allows analyses in either en-
ergy or exergy quantifications of energy carriers, it can assist answering
energy analysis questions posed in either energy or exergy terms.

Finally, we note that the physical supply-use table framework is
useable by many sub-fields of energy analysis because it both (a) allows
analysis anywhere along the energy conversion chain and (b) is flexible
regarding energy quantification. For example, emissions footprinting is
conducted with energy quantification and is concerned with extracted
fossil fuels (primary energy) at the upstream end of the energy con-
version chain, while societal exergy analysis is conducted with exergy
quantification and is often concerned with useful exergy and exergy
services at the downstream end of the energy conversion chain.

We believe that these advantages commend the physical supply-use
table framework to the field of energy analysis. It can provide data
structure uniformity and methodological consistency for many sub-
fields. (For example, physical supply-use table matrices could comple-
ment the energy balance format currently employed by national and
international energy agencies.) And, being a common framework, it
could organize and streamline questions to be asked, data to be gath-
ered, analyses to be performed, and results to be reported.
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Appendix A. Nomenclature

We employ several symbol conventions in this paper. Boldface capital letters (e.g., U) represent matrices. Boldface lowercase letters (e.g., g)
identify column vectors. (All vectors are assumed to be column vectors.) Symbols for PSUT matrices and vectors mostly follow Eurostat naming
conventions [93, pp. 349–350]. Table A.1 lists the nomenclature for this paper.

Table A.1
Nomenclature.

Symbol Description

E Energy quantities
m Summation index for infinite series
n Number of terms to be retained in an infinite series
r Net-to-gross energy ratio
X Exergy quantities

Acronyms/abbreviations
ECC Energy conversion chain
EEIO Environmentally-extended input-output
EIOU Energy industry own use
EROI Energy return on energy investment
ERR Energy return ratio
EU European Union

GER Gross energy ratio
IO Input-output

LMDI Log-mean divisia index
LTH Low-temperature heat
MD Mechanical drive
NER Net energy ratio
NG Natural gas (primarily methane, CH4)

PSUT Physical supply-use table
SDA Structural decomposition analysis
SPA Structural path analysis
SUT Supply-use table
UK United Kingdom

U.S. United States
Greek

γ The γ system boundary of Brandt et al. [108]
Ω The Ω system boundary of Brandt et al. [108]
ϕ Exergy-to-energy ratio at a point in the ECC
η Efficiency

Subscripts
Crude Pertains to Crude oil, a primary energy carrier

E Pertains to energy
EROI Energy return on energy investment

f Pertains to final stage of the ECC
Freight Pertains to Freight transport, an energy service

fu Pertains to final-to-useful conversion devices
i Matrix row or column index; also step along an ECC

path
j Matrix row or column index
k Matrix row or column index

NG Pertains to Natural gas, a primary energy carrier
Oil Pertains to Oil and oil products
P Pertains to a product; also a row index for E
p Pertains to primary stage of the ECC
pf Pertains to primary-to-final conversion devices
pu Spans the primary-to-useful stages of the ECC
r Pertains to Resources industries
s Pertains to energy services stage of the ECC
u Pertains to useful stage of the ECC
us Pertains to useful-to-services passive devices
X Pertains to exergy
− Pertains to negative elements

(continued on next page)
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Appendix B. Exergy quantification in the PSUT framework

As discussed in Section 1.1, the sub-field of societal exergy analysis has informed discussions of the role of energy in society and the economy in
recent years [85,96,137]. Analyses within the sub-field of societal exergy analysis are conducted with exergy quantification for energy carriers.
Exergy is an alternative quantification of energy that gives the maximum useful work that could be generated by bringing a system into equilibrium
with its surroundings. The purpose of this appendix is to demonstrate that the analyses conducted with energy quantification in Section 3 can also be
conducted with exergy quantification.

When exergy quantifications are used for energy carriers, the equations of Sections 2 and 3 are unchanged, but nonzero energy entries in the
PSUT matrices are different by the exergy-to-energy ratio (ϕ, see Serrenho [99, Table 2]). We assume that wastes and waste heat from each industry
represent exergy destroyed by the industry, accounted by the second law of thermodynamics. We re-present the key results of Sections 3.3 and 3.4 in
exergy terms below.

Table A.1 (continued)

Symbol Description

+ Pertains to positive elements
γ Pertains to the γ energy return ratio system boundary

Superscripts
−1 Denotes square matrix inverse
T Denotes transpose of a vector or matrix
′ Denotes a new version of a vector or matrix

Subannotations
i Denotes industries (Table 2)
p Denotes products (Table 2)
s Denotes final demand sectors (Table 2)
u Denotes units of products (Table 2)

Superannotations
̂v Denotes a square diagonal matrix formed by placing

the elements of v on the diagonal of I
M Denotes collapse by summation over like units in M (E)

Column vectors
e Vector formed from a single row of E (i×1)
g Total industry output (i×1)

gerγ Gross energy ratios for the γ system boundary (i×1)

i Identity column vector (iT is the identity row vector)
nerγ Net energy ratios for the γ system boundary (i×1)

q Total product output (p×1)
rγ Net-to-gross energy ratios for the γ system boundary

(i×1)
y Row sums of Y (p×1)
0 Zero vector
η Efficiencies

Summation vectors
sf Logical inverse of sp: 0’s for primary industries, 1’s

elsewhere
sp 1’s for primary industries (Resources, Imports, Exports

International aviation and marine bunkers, and Stock
changes)
0’s elsewhere

sr 1’s for resource industries, 0’s elsewhere
−s 1’s for negative elements, 0’s elsewhere
+s 1’s for positive elements, 0’s elsewhere

Matrices
A Input coefficients for intermediate products (p×p)
C Product mix matrix (p×i)
D Market shares matrix (i×p)
E Waste per unit of industry output (p×i)
G Industry output requirements for final demand (i×p)
I Identity matrix (1’s on diagonal, 0’s elsewhere)

×
L

i p
Industry-by-product Leontief inverse matrix (i×p)

×
L

p p
Product-by-product Leontief inverse matrix (p×p)

Q Footprint matrix (i×p)
U Use matrix (p×i)

UEIOU Energy industry own use portion of the U matrix
V Make matrix (i×p)

W Value added matrix (p×i)
Y Final demand matrix (p×s)
Z Input requirements per unit of industry output (p×i)
0 Zero matrix

Summation matrices
Sunits Summation matrix for unit manipulation (p×u)
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To begin, we convert all energy flows in Fig. 11 to exergy flows via multiplication by the exergy-to-energy ratio (ϕ), thereby obtaining Figs. B.1
and B.2.

Calculating the consumption-based primary-to-services exergetic efficiencies proceeds as discussed in Section 3.3 using the PSUT matrices of Fig.
B.2. QCrude and QNG are shown in Fig. B.3. The vector of consumption-based primary-to-services efficiencies (ηX ps, ) is shown in Fig. B.4.

The final-to-services exergetic efficiency for Passenger transport is given by

=
×

= ×η
5 10 passenger-km/yr

27820ktoe/yr
1.8 10 passenger-km/ktoe,X fs,

11
7

(B.1)

slightly less than ×1.92 107 passenger-km/ktoe reported in Eq. (18) due to exergy quantification in the denominator of Eq. (B.1) and energy
quantification in the denominator of Eq. (18). The denominators are different by the exergy-to-efficiency ratio for oil and oil products ( =ϕ 1.07Oil ).

Similarly, structural path analysis can be conducted using exergy quantification of energy carriers. Calculations proceed as discussed in Sections
3.4 and Appendix G using the PSUT matrices whose entries are now quantified as exergy (Fig. B.2). The fraction of embodied primary exergy
captured by paths of varying lengths is shown in Fig. B.5, and largest magnitude paths for delivery of exergy services from natural gas are shown in
Table B.1.

We note that Figs. 14 and 17 are unchanged for the exergy ECC of Fig. B.1, because the Freight transport quantities are unchanged between
Figs. 11 and B.1.

Fig. B.1. A real-world ECC covering primary exergy to exergy services. All exergy flows in units of ktoe/year; exergy services in units shown. NG is Natural gas. LTH
is Low-temperature heat. MD is Mechanical drive. Line colors indicate products. “tes” is an abbreviation for metric tonnes. This figure is the exergy version of Fig. 11.

Fig. B.2. PSUT matrices for the ECC in Fig. B.1. All exergy flows in units of ktoe/year; exergy services in units shown. This figure is the exergy version of Fig. 12.
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Fig. B.3. Q matrices for embodied Crude oil and Natural gas (NG) for the ECC in Fig. B.1. This figure is the exergy version of Fig. 13.

Fig. B.4. Consumption-based primary-to-services exergetic efficiencies (ηX ps, ) for the ECC in Figs. B.1 and B.2. For brevity, this figure shows only the Resources
industries of G. This figure is the exergy version of Fig. 15.

Fig. B.5. Fraction of embodied Crude and Natural gas exergy captured by paths of varying lengths in the exergy version of the useful energy ECC of Fig. 7 (solid line)
and the exergy services ECC of Fig. 11 (dashed line). This figure is the exergy version of Fig. 16.
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Appendix C. Matrix and vector algebra relationships

In this appendix, we present some relationships from matrix and vector algebra that may assist the reader.
First, column sums and row sums are conveniently calculated with identity vectors. For example, post-multiplying a matrix (M) by the identity

column vector (i) gives row sums in a column vector.

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨⎩

⎫
⎬⎭

=
⎧
⎨
⎩

+ +
+ +
+ +

⎫
⎬
⎭

M M M
M M M
M M M

M M M
M M M
M M M

Mi
1
1
1

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33 (C.1)

Pre-multiplying M by the transpose of the identity vector (iT) gives column sums in a row vector.

=
⎡

⎣
⎢
⎢
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{ }

T
11 12 13
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31 32 33

11 21 31 12 22 32 13 23 33 (C.2)

Second, given a matrix M and identity vector i, row sums of transposed M are the same as column sums of M transposed:

=M i i M( )T T T (C.3)
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Third, Section 3 includes several terms of the form
−̂b a1

, which is the matrix algebra notation for an element-wise quotient of two same-length
column vectors:
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Finally, we point out that Tables 5 and 6 contain several terms of the form −̂Mv 1, which is equivalent to dividing each column of matrix M by the
associated entry in column vector v .

̂ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
M M M
M M M
M M M

v
v

v

M v M v M v
M v M v M v
M v M v M v

Mv
1/ 0 0

0 1/ 0
0 0 1/

/ / /
/ / /
/ / /

1
11 12 13

21 22 23

31 32 33

1

2

3

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3 (C.5)

Reversing the order of multiplication divides each row of M by the corresponding element of v .
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Appendix D. Proof that Eq. (4) is an identity

We begin with a restatement of Eq. (4).

− − =g W i U i 0T T T (4)

Next, we substitute definitions for g and W from Table 4 and Eq. (1).
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− − − =Vi V U i U i 0( )T T T (D.1)

Simplification gives

− + − =Vi Vi U i U i 0 ,T T (D.2)

and

=0 0. (D.3)

Appendix E. Aggregation across products with inhomogeneous units

When inhomogeneous units are present along the product dimension of any of the U V W, , , or Y matrices, care must be taken to obtain
appropriate row and column sums for energy and energy services balances. Inhomogeneous product units are likely when any of the U V W, , , or Y
matrices contain energy services on their product dimensions. Under such circumstances, aggregation across products must be done in a unit-aware
manner, as shown in Eq. (5).

A units summation matrix (Sunits) facilitates such aggregations. Sunits is products × units and is formed by placing a “1” to indicate the units of any
product. See Fig. E.1 for an example Sunits matrix for the ECC of Fig. 11. Note that if the U V W, , , and Y matrices are unit-homogeneous, Sunits
simplifies to an identity vector that provides simple row sums (i) or column sums (iT).

Post-multiplying V by Sunits or pre-multiplying U W, , or Y by Sunits
T reduces the size of the product dimension from the number of products to the

number of unique product units, aggregating all products of like units. We use an over-bar applied to a matrix symbol (e.g., V) to indicate that
summation across products of the same units has occurred. Aggregation equations are given in Table E.1.

An example is instructive. Fig. E.2 shows the make matrix (V) from Fig. 11. The first 16 columns contain energy quantities in units of ktoe/year.
The last 4 columns contain energy services with varying units. Applying the second equation from Table E.1 to the make matrix of Fig. E.2 with the
unit summation matrix of Fig. E.1 performs row sums by unit to give the result shown in Fig. E.3.

Fig. E.1. Example Sunits matrix. “tes” is an abbreviation for metric tonnes.

Table E.1
Aggregation by units across products.

Equation Meaning

=U S Uunits
T Column sums of U by unit

=V VSunits Row sums of V by unit

=W S Wunits
T Column sums of W by unit

=Y S Yunits
T Column sums of Y by unit
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Appendix F. Relationships among energy return ratios

This appendix demonstrates relationships among the three energy return ratios (ERRs) discussed in Section 3.1 (GER NER, , and r) and proves
that any two can be expressed in terms of the third. We begin with the definitions of net energy (Enet), gross energy ratio (GER), net energy ratio
(NER), and net-to-gross energy ratio (r).

≡ −E E Enet gross consumed (F.1)

Fig. E.2. Make matrix (V) for the ECC in Fig. 11.

Fig. E.3. Example V matrix. for the ECC in Fig. 11. “tes” is an abbreviation for metric tonnes.
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≡GER
E

E
gross

consumed (F.2)

≡NER E
E

net

consumed (F.3)

≡r E
E

net

gross (F.4)

We substitute Eq. (F.1) into Eq. (F.3) to obtain

=
−

NER
E E

E
,gross consumed

consumed (F.5)

which simplifies to

= −NER GER 1, (F.6)

a scalar version of Eq. (9).
Dividing numerator and denominator of Eq. (F.4) by Econsumed yields

=r NER
GER

, (F.7)

which is a scalar version of Eq. (10). For completeness, we note that substituting Eq. (F.6) into Eq. (F.7) gives

= −r
GER

1 1 . (F.8)

Eqs. (F.6) and (F.8) show that NER and r can be expressed in terms of GER.
To show that GER and r can be expressed in terms of NER, we solve Eq. (F.6) for GER to obtain

= +GER NER 1. (F.9)

Substituting Eq. (F.9) into Eq. (F.7) yields

=
+

r 1
1

,
NER

1
(F.10)

thereby demonstrating that GER and r can be expressed in terms of NER.
Finally, solving Eq. (F.8) for GER gives

=
−

GER
r

1
1

, (F.11)

and solving Eq. (F.10) for NER gives

=
−

NER 1
1

,
r
1

(F.12)

showing that GER and NER can be expressed in terms of r and completing the proof that any ERR can be expressed in terms of the other two and that
any two ERRs can be expressed in terms of the third. Table F.1 summarizes these results.

Appendix G. Details of structural path analysis

This appendix provides additional details of the calculations that identify the key supply-chain paths through the ECC. The technique, known as
Structural Path Analysis (SPA), can be used to decompose the embodied primary energy associated with final demand to the sum of an infinite
number of production chains, called paths. Wood and Lenzen [115, p. 371] describe this process as “unraveling the Leontief inverse using its series
expansion.” SPA was developed initially for use with symmetric input-output tables in monetary units [138,139] rather than the SUT format
employed by the PSUT framework discussed in Section 2. We adapt SPA for the PSUT framework here.

SPA proceeds by substituting the right side of Eq. (19) for the − −I A( ) 1 term in Eq. (13) to obtain

̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂= + + + + ⋯+ + ⋯Q e DIy e DAy e DA y e DA y e DA yn2 3 (G.1)

which can be simplified to give

Table F.1
Summary of relationships among ERRs. Rows show that any ERR (row title) can be expressed in terms of the other two
(column titles). Columns show that any two ERRs (row titles) can be expressed in terms of the third (column title).

GER NER r

GER — = +GER NER 1 =
−

GER
r

1
1

NER = −NER GER 1 — =
−

NER
r

1
1 1

r = −r 1
GER

1 =
+

r
NER

1

1 1
—
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̂ ̂∑≈
=

Q e DA y.
m

n
m

0 (G.2)

In practice, Eq. (G.2) is implemented as the product of a series of entries in the ̂e D Z, , , and ̂y matrices for paths through the ECC found by a
search algorithm (see Table 5 for definitions of vectors and matrices in the PSUT framework). The provision of Freight transport in the ECC of Fig. 11
provides an example.

Fig. G.1 shows the calculation of the embodied Crude in Freight transport for a 6-step path. (There are other, longer, paths from Crude to Freight
transport that are not captured by this calculation.) We start with the appropriate entries in the ̂e and D matrices, followed by a series of 6 entries in
the Z and D matrices, representing the 6 steps of the shortest path from Crude to Freight transport. Finally, the Freight transport entry in ̂y is shown.

The product of all values in Fig. G.1 is 17,465 ktoe/year, the embodied primary energy of the 6-step path from Crude to Freight transport. Note
that 17,465 ktoe/year is 98.5% of all embodied Crude in Freight transport (17,736 ktoe/year in Figs. 15 and 13a), the difference being Crude
embodied in paths that take more than 6 steps to reach Freight transport.

In Fig. G.1, the product of the 12 values that comprise the A matrix (entries in Z and D at each step in the path) is × −1.22204 10 7 ktoe/tonne-km.
Fig. G.2 shows the A6 matrix, which contains the sum of magnitudes of all length-6 paths from products in rows to products in columns of the ECC of
Fig. 11. The only length-6 path from Crude to Freight transport appears in the Crude row and the Freight transport column of the A6 matrix, and its
value is the same as the product of all A entries in Fig. G.1.

Fig. G.1. The path from Resources–Crude to Freight transport through the A matrix for the ECC in Fig. 11. “tes” is an abbreviation for metric tonnes.

Fig. G.2. A6 matrix for the ECC in Figs. 11 and 12.
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Appendix H. Constructing PSUT matrices from IEA world energy statistics

This appendix gives rules for populating the PSUT matrices (U V, , and Y) with primary and final energy data from the IEA [95], thereby
providing an example for how to construct PSUT matrices from published country-level energy data. Similar rules for constructing PSUT matrices
could be generated for data from other sources.

The broadest categorization of the IEA data is Supply and Consumption. Supply comprises domestic Production, Imports, Exports, International
marine bunkers, International aviation bunkers, Stock changes, and Transfers. Statistical differences, Transformation processes, and Energy industry
own use are the remaining categories before Consumption. Consumption in the IEA data is final demand in the PSUT framework (expressed as final
energy) and is organized by Industry, Transport, Other (Residential, Commercial and public services, Agriculture/forestry, Fishing, Non-specified
industry), and Non-energy use. Table H.1 gives rules for constructing PSUT matrices from IEA data.
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