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Abstract New satellite missions (e.g., the European Space Agency’s Sentinel-1 constellation), advances in
data downlinking, and rapid product generation now provide us with the ability to access space-geodetic
data within hours of their acquisition. To truly take advantage of this opportunity, we need to be able to
interpret geodetic data in a prompt and robust manner. Here we present a Bayesian approach for the
inversion of multiple geodetic data sets that allows a rapid characterization of posterior probability density
functions (PDFs) of source model parameters. The inversion algorithm efficiently samples posterior PDFs
through a Markov chain Monte Carlo method, incorporating the Metropolis-Hastings algorithm, with
automatic step size selection. We apply our approach to synthetic geodetic data simulating deformation of
magmatic origin and demonstrate its ability to retrieve known source parameters. We also apply the
inversion algorithm to interferometric synthetic aperture radar data measuring co-seismic displacements for a
thrust-faulting earthquake (2015 Mw 6.4 Pishan earthquake, China) and retrieve optimal source parameters
and associated uncertainties. Given its robustness and rapidity in estimating deformation source parameters
and uncertainties, our Bayesian framework is capable of taking advantage of real-time geodetic
measurements. Thus, our approach can be applied to geodetic data to study magmatic, tectonic, and other
geophysical processes, especially in rapid-response operational settings (e.g., volcano observatories). Our
algorithm is fully implemented in a MATLAB®-based software package (Geodetic Bayesian Inversion
Software) that we make freely available to the scientific community.

1. Introduction

Geodetic observational data, most commonly global navigation satellite system (GNSS) and interferometric
synthetic aperture radar (InSAR) measurements, are regularly used to infer information about sources of sur-
face displacements and to understand the underlying processes. With these aims, inverse problem theory has
been applied to geodetic data to study magmatic systems (Pinel et al., 2014, and references therein), the
earthquake cycle (Elliott et al., 2016, and references therein), and many other geophysical phenomena that
cause deformation of the Earth’s interior and surface such as the response to ice load changes, changes in
aquifer storage, and geothermal exploitation (e.g., Auriac et al., 2014; Juncu et al., 2017; Samsonov et al.,
2014). However, many commonly employed inversion approaches aim at solely determining an optimal
set of source parameters—for example, the weighted least-squares “best-fitting”model—by solving an opti-
mization problem that minimizes the weighted misfit between measured and simulated surface displace-
ments. Among these, the most commonly used methods are simulated annealing (e.g., Cervelli et al., 2001)
and genetic algorithm (e.g., Currenti et al., 2005). These have shown to be successful in solving a variety of
optimization problems to study different geophysical problems (Sambridge & Mosegaard, 2002), and a
detailed analysis of these methodologies, applied to the inversion of InSAR data, is presented by Shirzaei
and Walter (2009). Direct-search methods (e.g., simulated annealing and genetic algorithm) do not fully
and appropriately characterize uncertainties associated with the source parameter estimates, with the risk
that results can be inadequately interpreted. In fact, it is common that a wide range of model parameter
values can adequately explain the observations, and it is therefore fundamental to know the credible interval
of such values, especially if interpretations are used for the assessment andmitigation of natural hazards or in
operational settings (e.g., volcano observatories).

The application of a Bayesian approach when inverting geodetic data (e.g., Anderson & Segall, 2013; Fukuda
& Johnson, 2010; Hooper et al., 2013; Jolivet et al., 2015; Minson et al., 2013) allows the characterization of
posterior probability density functions (PDFs) of source parameters, which are formulated by taking into
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account uncertainties in the data (e.g., data errors and incompleteness) and any available prior information
(in the form of a prior PDF). The Bayesian method provides the means to investigate a wealth of statistical
inferences, such as point estimates (e.g., mean and median of posterior distributions), credible intervals
(e.g., quantiles), and direct probability statements about parameters (e.g., the probability that a certain
parameter is greater than a certain value). It also allows analyses of joint and conditional probabilities of
pairs or sets of parameters and is particularly instructive in the case of non-Gaussian multimodal posterior
PDFs. An optimal set of source parameters can also be extracted from the posterior PDF by finding the
maximum a posteriori probability solution.

In this work we propose an approach, summarized in Figure 1, for inverting geodetic data—in particular
those derived from InSAR measurements—using a Bayesian probabilistic inversion algorithm capable of
including multiple independent data sets (e.g., González et al., 2015; Hooper et al., 2013; Sigmundsson
et al., 2014). To efficiently sample the posterior PDFs, we implement a Markov chain Monte Carlo method
(MCMC), incorporating the Metropolis-Hastings algorithm (e.g., Hastings, 1970; Mosegaard & Tarantola,
1995), with automatic step size selection. We then review and discuss existing methodologies to characterize
errors in InSAR data and to subsample large data sets, which are both necessary steps to be performed prior
to an inversion. The proposed method is applied to the inversion of synthetic InSAR and GNSS data to
demonstrate the ability of the algorithm to retrieve known source parameters. Finally, as a test case, we invert
InSAR data spanning the 2015 Mw 6.4 Pishan (China) earthquake and determine the fault model parameters
for this blind thrusting event and validate our results through the comparison with other independent stu-
dies (e.g., Ainscoe et al., 2017; He et al., 2016; Wen et al., 2016).

The proposed approach has been implemented in a software package (Geodetic Bayesian Inversion Software
[GBIS], http://comet.nerc.ac.uk/gbis) that we make freely available to the scientific community. The software
is written in MATLAB® (which is a commercial software and needs to be installed in order to run GBIS) and
uses, among others, analytical forward models from the dMODELS software package (Battaglia et al., 2013).
Simple mechanical models of crustal deformation that use closed-form analytical solutions for the character-
ization of magmatically or tectonically induced deformation processes (e.g., Lisowski, 2007; Segall, 2010) can

Figure 1. Schematic representation of the proposed Bayesian inversion approach, including the Markov chain Monte Carlo
method-Metropolis-Hastings iterative algorithm. Each step is fully described in the text. b is a random value from a uniform
distribution within the range [0, 1]. Note that for i< 20,000, we perform a sensitivity test (see section 2.2) every Ns iterations
to tune the step size Δmj. GNSS = global navigation satellite system, InSAR = interferometric synthetic aperture radar.
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compute surface displacements at 103–105 observation points in 10�3–101 s on consumer-grade computers.
These models can be used to place constraints on source location, geometry, orientation, and strength (e.g.,
volume changes in a magma reservoir and slip on a fault), and their rapidity in computing surface displace-
ments makes them suitable for exploring large numbers (e.g., 106) of model parameter combinations.
Numerical forward models (e.g., boundary elements method) can also be used to explore more complex
source geometries or to take into account complexities in the Earth’s crust (e.g., nonflat topographic surface;
e.g., Bathke et al., 2015; Cayol & Cornet, 1997; Hooper et al., 2011). However, the increase in complexity in the
forward model significantly increases the computational burden, making numerical models less efficient in
operational or rapid-response investigations.

Finally, with this work we aim at proposing a detailed guideline for the use of geodetic measurements in
inverse problems and present a potential standardized procedure that would allow appropriate comparisons
of results obtained by different entities. Inversion results are often used to populate global data sets of defor-
mation source models (e.g., Biggs & Pritchard, 2017; Ebmeier et al., 2018) and should therefore be of compar-
able quality and obtained with a congruent approach.

2. Bayesian Inversion

For a given discrete inverse problem, the data vector d = {d1, d2,…, dND} is equal to a nonlinear model func-
tion, G, of the model parameters m = {m1, m2, …, mNM}, plus error ϵ:

d ¼ G mð Þ þ ϵ (1)

In a Bayesian framework, the posterior PDF, p (m|d), describes the probability associated with a given set of
model parametersm that is based on how well such parameters can explain the data d given their uncertain-
ties, while considering any prior information. The posterior PDF is calculated as follows:

p mjdð Þ ¼ p djmð Þ p mð Þ
p dð Þ (2)

where p(d|m) is the likelihood function ofm given d based on residuals between the data and the model pre-
diction of the observations, p(m) expresses the prior information (in the form of a prior joint PDF) of the
model parameters, and the denominator is a normalizing constant independent of m.

When the errors are multivariate Gaussian with zero mean and covariance matrix Σd, ϵ ~ N(0, Σd), the likeli-
hood function is calculated as follows:

p djmð Þ ¼ 2πð Þ�N=2 Σdj j�1
2� exp � 1

2
d� Gmð ÞT Σ�1

d d� Gmð Þ
� �

(3)

where N is the total number of data points andΣ�1
d is the inverse of the variance-covariance matrix for a given

set of data. The data vector d can be formed from multiple data sets (e.g., multiple SAR interferograms or a
combination of interferograms and GNSS data). The likelihood function for multiple data sets, assuming inde-
pendence, can therefore be expressed as the product of the likelihoods of the data sets (e.g., Fukuda &
Johnson, 2008):

p djmð Þ ¼ ∏K
k¼1 2πð Þ�Nk=2 Σkj j�1

2� exp � 1
2
rTk Σ

�1
k rk

� �
(4)

where Nk is the number of data points and rk are the residual vectors (difference between observed andmod-
eled data, rk = dk � Gkm) associated with each kth data set and K is the total number of data sets. Similarly,
the prior probability of the model vector, assuming independence for the model parameters, is the product
of the prior probabilities of the different model parameters mj:

p mð Þ ¼ ∏NM
j¼1p mj

� �
(5)

where NM is the total number of model parameters.
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When inverting geodetic data to infer model parameters for deformation sources, prior information is often
not available, in which case a so-called uninformative Jeffreys prior is used (Jeffreys, 1939; Ulrych et al., 2001).
This depends on the universe of possible outcomes and, in cases where all values for a given parameter are
equally probable, for example, source location parameters, is simply uniform. If there is a finite range of pos-
sible values, upper and lower bounds can be added outside which p(m) = 0. However, some source para-
meters cannot assume negative values (for example, length and width of a rectangular dislocation or the
aspect ratio describing a magmatic source) and must be treated accordingly. An appropriate uninformative
prior for nonnegative parameters that could equally well be described by the reciprocal of the parameter is a
logarithmic prior. In our generalized algorithm, we transform the prior for these cases into a uniform prior, by
treating the logarithm of the parameter of interest as the actual model parameter.

Finally, there are other sources of error that are intrinsic to the chosen model (e.g., material properties of the
crust) and its ability to accurately predict the data (known as model or prediction errors, e.g., Duputel et al.,
2014). While the effect of model/prediction errors should still be considered in any ultimate interpretation
(e.g., Jolivet et al., 2015), they are strongly case dependent and difficult to implement in a widely applicable
approach. We therefore do not consider model/prediction errors further in this manuscript, as they are also
not implemented in the GBIS software.

2.1. Sampling the Posterior Probability With MCMC

An efficient way to sample and therefore characterize a posterior probability distribution is through a MCMC
sampling method (Mosegaard & Tarantola, 1995). Using the Metropolis-Hastings algorithm (Hastings, 1970;
Metropolis et al., 1953), the sampling can be efficiently controlled so that after a sufficiently large number
of iterations, the density of the samples approximates the posterior distribution.

The approach, summarized in Figure 1, starts with the selection of an initial set of model parameters mi = 0

from the prior distribution p(m)—either arbitrarily chosen or previously estimated using a direct-search
method such as simulated annealing—and the estimation of the associated likelihood function p(d|mi). A
new trial set of model parameters is generated by taking a random step within p(m). When the prior for each
model parameter is uniform and independent, this is achieved by perturbing each parameter in mi by an
amount anΔm

j, where an is a random value generated from a uniform distribution within the range [�1, 1]
and Δmj is the maximum random walk step size for each parameter mj. If a model parameter of the new
model trial falls outside the bounds of the uniform prior probability, we replace this value,mj

TRIAL*, as follows:

mj
TRIAL ¼ 2�UBj �mj

TRIAL� if mj
TRIAL� > UBj

mj
TRIAL ¼ 2�LBj �mj

TRIAL� if mj
TRIAL� < LBj

(
(6)

where UBj and LBj are the upper and lower bounds, respectively, of the uniform probability for a given model
parametermj. The likelihood for the new set of model parameters p(d|mi + 1) is then calculated, and if its value
is greater than the previous one, p(d|mi + 1) > p(d|mi), the step is taken and the trial model values are
retained. If the new likelihood value is less than the previous one, p(d|mi + 1)< p(d|mi), the step is taken with
a probability equal to the ratio of the new likelihood and the previous one, that is, if p(d|mi + 1)/p(d|mi) ≥ b,
where b is a random value from a uniform distribution within the range [0, 1]. Otherwise the previous set of
model parameters is retained by settingmi + 1 tomi. i is then incremented, and the steps described above are
iterated from the selection of a new trial set of model parameters.

This approach guarantees that sets of model parameters that improve the probability of the current model
are always retained, while those with lower probability are sometimes retained, allowing the algorithm to
escape local minima. The process is repeated until a representative sampling of the posterior distribution
is achieved (e.g., 105–107 iterations).

2.2. Automatic Step Size Selection

The efficiency of the Metropolis-Hastings algorithm in sampling the posterior probability distribution
depends on the maximum size of the random walk step for each model parameter, Δmj, that can be taken
within p(m). If even one step is too small, the inversion will converge too slowly. Conversely, if one or more
steps are too large, the algorithm will reject too many proposed sets of model parameters, also leading to
slow convergence. To ensure an appropriate convergence and maximize the efficiency of the algorithm,
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we automatically tune the size of Δmj for each model parameter during the first 20,000 iterations by perform-
ing a sensitivity test every Ns iterations (e.g., Ns = 100 for i < 1,000; Ns = 1,000 for 1,000 < i < 20,000). In a
similar way to Amey et al. (2018), we aim at finding Δmj such that themean chance of acceptance approaches
the optimal acceptance rate of 23.4% (Roberts et al., 1997) and to ensure that all parameters approximately
equally contribute to the changes in likelihood. The optimal acceptance/rejection ratios are maintained by
monitoring the evolution of the perturbed probability ratio (PPR) for each parameter, defined as the ratio
between the current posterior probability and the posterior probability calculated after perturbing the para-
meter value by half of the current step size. If the PPR is greater than one, its reciprocal is taken. A target PPR,
PPRTARGET, is set as follows:

PPRTARGET ¼ 1
2

1
NM

� �
i ¼ 1

PPRTARGET ¼ PPRTARGET i�Ns�RRCURRENT
RROPTIMAL

i > 1

8>><>>: (7)

where PPRTARGETi-Ns is the target PPR at the time of the previous sensitivity test, RRCURRENT is the current rejec-
tion rate, and RROPTIMAL is the optimal rejection rate (76.6%). In this approach, if too many model trials are
rejected, PPRTARGET will decrease, while if not enough model trials are kept, PPRTARGET will increase.

The step size for each parameter is then adjusted, with the aim that its PPR approaches PPRTARGET. Such
changes are achieved by adjusting the maximum step size, Δmj, for each model parameter as follows: first,
we calculate the PPR and subtract it from PPRTARGET. We define this difference as pDIFF. If pDIFF < 0, which
means that the model parameter’s contribution to the posterior probability change is too large, the step size
must be reduced. If pDIFF > 0, the model parameter’s contribution must be increased by increasing the step
size. For each case, the step size is adapted as follows:

Δmj
i ¼ Δmj

i�Ns� exp
�pDIFF

PPRTARGET�2

� �
if pDIFF < 0

Δmj
i ¼ Δmj

i�Ns� exp
�pDIFF

1� PPRTARGET

� �
if pDIFF > 0

8>>><>>>: (8)

After 20,000 iterations, the maximum step size, Δmj, is fixed to that tuned through the sensitivity tests for all
remaining iterations. The aim is to achieve, at the end of the inversion, an acceptance rate between 15% and
50% (e.g., Roberts & Rosenthal, 2001).

2.3. Estimating Convergence and Burn-in Period

After all iterations have been completed (i = I) and before working on the statistics of posterior PDFs, it is
important to check that the Markov chain has converged. If a Markov chain does not converge, it does not
explore the parameter space sufficiently, and the sampled posterior distribution does not approximate the
target distribution well. Note that the convergence for all parameters should be checked. While there are
no exact ways to determine the convergence of a Markov chain, there are empirical tools to evaluate it.
For example, the visual examination of the trace plots, which display the accepted values of a parameter
as a function of iteration number, can be instructive (Figure 2). Trace plots are also useful to determine the
number of early samples that strongly depend on the choice of the starting value, known as the “burn-in”
period, during which the MCMC algorithmwalks from a highly improbable startingmodel to models with rea-
sonable values of p(d|m), and starts adequately sampling the posterior PDF. Choosing a burn-in period that is
too short may leave unrepresentative samples in the posterior PDF, and since these samples have parameter
values that are typically far from those in high posterior probability areas, they may unrealistically increase
the credible interval for a given parameter. Conversely, choosing a too large burn-in period will discard repre-
sentative samples of the posterior PDF that could instead be used to improve the accuracy of the statistics
(e.g., Sahlin, 2011). In Figure 2 we display examples of trace plots showing a chain that has converged after
the burn-in period, and one that did not converge.

Finally, multiple, independent MCMC inversions can be run in sequence or in parallel, and the results can be
combined in a final posterior PDF consisting of the combination of the independent Markov chains (e.g.,
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Anderson & Poland, 2016). This step can also be used to check that PDFs for all chains converge to similar
distributions, independently from the chosen initial set of model parameters.

3. Data Errors and Subsampling
3.1. Estimates of Data Errors

The Bayesian approach requires that we quantify errors in the data, which we assume are drawn from amulti-
variate Gaussian distribution. We achieve this by estimating the data variance and covariance, for each inde-
pendent data set. In our approach, GNSS data are characterized by variances associated to each displacement
component, namely, σ2N, σ

2
E, and σ2V, for the north, east, and vertical components at each site, respectively.

Such values, obtained through standard GNSS data processing (e.g., Herring et al., 2015), populate the diag-
onal of the variance-covariance matrix Σd, which has all remaining off-diagonal elements set to 0, assuming
that no covariance exists between the three components of displacement or between individual GNSS mea-
surement sites. However, when available, covariance between components can be placed in the variance-
covariance matrix accordingly.

Conversely, we directly characterize the errors in InSAR data by experimentally estimating variance and cov-
ariance in each independent data set. Together with randomly distributed noise caused by phase decorrela-
tion, it is well known that InSAR data are affected by spatially correlated phase delays that are mainly caused
by spatiotemporal changes in water vapor content in the atmosphere, known as the “wet” tropospheric delay
(e.g., Hanssen et al., 1999). Further spatially correlated errors can be caused by topographic residuals, which
are phase change artifacts introduced during data processing. Although errors in InSAR data may sometimes
have two-dimensional spatial structures (anisotropy; Knospe & Jónsson, 2010), for simplicity we assume that
they are isotropic and stationary (e.g., errors estimated in non-deforming areas are the same as in adjacent
deforming areas) and calculate theoretical semivariograms that have the same characteristics as the data
(e.g., Lohman & Simons, 2005; Sudhaus & Jónsson, 2009).

A semivariogram measures the spatial variability of a regionalized variable by computing the dissimilarity
between pairs of data values (e.g., Wackernagel, 1995). Usually, values at two places near to one another
are similar, whereas those at more widely separated distances are less so. By expressing the lag distance h
(Euclidean distance) between two observation points xi and xi + h and by averaging increments in equidistant
bins, the experimental semivariogram bγ hð Þ for a quantity Q is calculated as follows:

Figure 2. Examples of trace plots for (a) converging and (b) nonconverging Markov chains. The first 20,000 iterations, used
to tune the maximum step size, are also discarded as part of the burn-in period, because a variable step size may also lead
to unrepresentative sampling of the posterior PDF.
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bγ hð Þ ¼ 1
2N

∑Ni¼1 Q xiþhð Þ–Q xið Þð �2�
(9)

where N is the number of data-point pairs in each distance bin. For second-order stationary processes, the
semivariogram and the covariance function are related as follows:

γ hð Þ ¼ C 0ð Þ � C hð Þ (10)

where C(0) is the covariance at lag distance h = 0—i.e., the variance—and C (h) is the covariance at any given
distance h.

For InSAR data, we recommend calculating the experimental semivariogram over an area of the data set of at
least the same size as the area subject to surface deformation under investigation and where deformation is
also not expected and/or observed. An efficient way to achieve this is to mask deforming areas from the data
set and to calculate the semivariogram using all remaining data points (e.g., Figure 3). It is also recommended
to remove a linear ramp of the form Z(x,y) = ax + by, where a and b are linear coefficients of the x and y coor-
dinates, respectively, to account for any residual orbital error or very long wavelength atmospheric delay
across the entire InSAR data set (e.g., Sudhaus & Jónsson, 2009). The parameters for a linear ramp across
an entire image can then be estimated directly from the data during the inversion.

In our approach, to keep the problem computationally efficient but still adequately representative of the
entire data set, the semivariogram is calculated from 3,000 randomly drawn points over 30 equal distance

Figure 3. (a) Sentinel-1 descending interferogram over southern Isabela Island, Galápagos (Ecuador). Track 128, 24 June
2017 to 06 July 2017. Black arrows show the flight direction of the satellite and the look direction with the incidence
angle in degrees. Cerro Azul and Sierra Negra are two active volcanoes. Gray shading covers an area of deformation that
should be masked when computing the experimental semivariogram. (b) Experimental (diamonds) and theoretical (solid
line) semivariograms computed for the image in panel (a), with the exception of the deforming area. The continuous
function γ(h) is an unbounded exponential one-dimensional function with a nugget, defined in equation (11), with
s = 6.25 mm2, r = 5,080 m, and s0 = 0.005 mm2.
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bins (h = maximum distance between points/30). We successively estimate the least squares best fit to the
experimental semivariogram using an unbounded exponential one-dimensional function with a nugget:

γ hð Þ ¼ s0 þ s� s0ð Þ 1– exp � h
r

� �� �
(11)

where s0 is the nugget variance—that is, the variance value as the lag distance approaches 0 and represent-
ing the variability at distances smaller than the sample spacing—s is the sill variance (including the nugget
variance), and r is the the range (Figure 3). Note that for an unbounded exponential function, where the semi-
variogram increases asymptotically toward its sill value, the effective range rε equals 3r and is the distance at
which γ(h) has increased to 95% of the sill variance s. Based on equation (10), the covariance can be calculated
for any distance between points as follows:

C hð Þ ¼
s h ¼ 0

s0 þ s� s0ð Þ exp
�h
r

� �� �
h > 0

8<:
9=; (12)

A large number of theoretical functions can be used to fit the experimental semivariogram and to simulate
the covariance in InSAR data (for example, see González & Fernández, 2011, and references therein).
Among these models, we chose the unbounded exponential one-dimesional function with nugget because
of its simple implementation and ability to well approximate the power law behavior exhibited by the spatial
structure of atmospheric delay.

3.2. Subsampling of InSAR Data

InSAR data can provide surface displacement measurements over continuous large areas (for example, a
Sentinel-1 wide-swath image product covers an area of ~250 × 180 km2) with over 108 measurement points
when data are processed at full resolution. The inversion of such large data sets would be therefore extremely
computationally expensive, making spatial subsampling a necessary step to achieve a tractable computa-
tional burden. Any subsampling approachmust, on the other hand, maintain enough information as possible
for the inversion to be successful.

Three main types of InSAR data downsampling methods can be applied: uniform sampling (e.g., Pritchard
et al., 2002), resolution-based sampling (e.g., Lohman & Simons, 2005; Wang et al., 2014), and gradient-based
sampling (e.g., Jonsson, 2002; Simons, 2002). Uniform sampling extracts data at regularly spaced locations
across the image, and while it is the simplest approach, it is also the least suitable for an effective sampling
of those areas where surface displacements are most diagnostic for estimates of deformation source para-
meters. To achieve the appropriate data point density in such areas, this approach often leads to a data vector
that is still too large for efficient inversions. Conversely, resolution-based sampling uses the design of the
inverse problem to determine the optimal data sampling density and is based on the data resolution matrix,
with higher density of points in the near field and fewer points in the far field. This approach, despite being
shown to be the best performing in the inversion of InSAR data (Wang et al., 2014), requires some knowledge
of the source of deformation itself (e.g., the fault plane geometry) and is therefore not always applicable,
especially when the estimation of source location and geometry is the main goal of the inversion. Finally,
gradient-based sampling methods increase data point density in those areas characterized by higher displa-
cement gradients and vice versa. While this approach may oversample areas where higher displacement gra-
dients are not caused by deformation but by noise (e.g., atmospheric delay or topographic errors), it is the
most generally suitable in cases where no prior knowledge on the source geometry and location is available.
An appropriate characterization of the data errors (see section 3.1) can also mitigate the effect of oversam-
pling noisy areas.

In our approach, we adopt an adaptive quadtree sampling (gradient-basedmethod; Decriem et al., 2010) cap-
able of dealing with points irrespective of whether they are regularly spaced (e.g., data in gridded format) or
not (e.g., persistent scatterers). The algorithm recursively divides the data set into sets of four polygons
(squares for regularly spaced data) until the phase variance of the points within a polygon is below a given
threshold (Figures 4h and 4i). Areas with high variance (e.g., deforming areas, near field) will be subdivided
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more finely than areas with low variance (e.g., nondeforming areas, far field). Once the points within a
polygon have variance lower than the selected threshold, the mean value of such points is assigned to a
sample point with the coordinates of the centroid of the polygon. This strategy allows for nonsquare,
irregularly aligned polygons, which reduce the effect of data gaps within and at the edges of InSAR
images, a shortcoming of the “classic” quadtree approach. Small polygons with less than three points are
eliminated to avoid sampling in areas with extreme deformation gradients, where these are likely to be
inaccurately unwrapped during processing (e.g., very near field, surface rupture of faults). The variance

Figure 4. Synthetic global navigation satellite system (GNSS) and interferometric synthetic aperture radar (InSAR) data sets used to assess the inversion approach. In
panel (a) the horizontal components of the GNSS data are plotted with black arrows. Panels (a) and (d) show the InSAR simulated surface displacements and the linear
ramp for the descending and ascending data sets, respectively. InSAR line-of-sight displacements are wrapped to 2.8-cm color cycles. Panels (b) and (e) show
the simulated atmospheric noise and the coherence mask in white. Panels (c) and (f) are the final data sets. In panel (g) we show the experimental (diamonds) and
theoretical (solid line) semivariograms for the two InSAR data sets. Panels (h) and (i) show the subsampled unwrapped InSAR data sets obtained using the quadtree
algorithm.
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threshold can be iteratively adjusted until the minimum possible data vector length is achieved while main-
taining a sampling sufficiently high to characterize the deformation field.

After subsampling the InSAR data, the theoretical covariance function estimated using the experimental
semivariogram (see section 3.1) is used to populate the variance-covariance matrix according to the distance
between the polygon centroids.

4. Validation Using Synthetic GNSS and InSAR Data

We demonstrate and assess the validity of our Bayesian inversion approach using synthetic deformation data
that simulate surface displacements caused by magmatic sources. In this example, we produce two InSAR
line-of-sight (LOS) displacement maps, simulating images from a descending and from an ascending pass
of the satellite (Figures 4a–4f), and GNSS three-dimensional displacements at 20 sites randomly distributed
over the area of interest (black arrows in Figure 4a show the GNSS horizontal components). Surface displace-
ments are generated using a set of arbitrarily chosen model parameters (Table 1) and forward models for a
deflating finite spherical source (McTigue, 1987) and a rectangular dipping dike with uniform opening
(Okada, 1985), assuming an isotropic elastic half-space with Poisson’s ratio ν = 0.25.

To make the synthetic data more representative of real measurements, we randomly assign a standard devia-
tion to each component of the GNSS data ranging between 1 and 9 mm (the standard deviation of the ver-
tical component is on average five times larger than that of the horizontal components). In the case of InSAR
data, we first add a linear ramp and a rigid offset in the LOS direction, we then simulate atmospheric noise
using an isotropic two-dimensional fractal surface with a power law behavior (Hanssen, 2001), and finally
we remove randomly distributed portions of the data sets to simulate low-coherence areas (Figures 4b
and 4e). Synthetic three-dimensional displacements are projected into the LOS direction using uniform inci-
dence angles of 41° and 29° and heading angles of 191° and 349° for the descending and ascending data
sets, respectively.

We calculate the experimental semivariogram of the added atmospheric noise in each InSAR data set
and estimate best-fit exponential functions (Figure 4g) with sill variance sDESC = 4.85 mm2

(s0DESC = 4 × 10�9 mm2) and a range distance rDESC = 9,380 m for the descending data, and
sASC = 5.42 mm2 (s0ASC = 8 × 10�9 mm2) and rASC = 8,350 m for the ascending data. We then apply the quad-
tree subsampling algorithm and retrieve the data vectors dDESC with 1,453 data points and dASC with 1,292
data points (Figures 4h–4i).

The inversion algorithm is tested using five data combinations: GNSS data only, the descending InSAR data
set, the ascending InSAR data set, both InSAR data sets, and finally all three data sets (2× InSAR + GNSS).
We assume a uniform prior probability for all source parameters (logarithmic for nonnegative parameters)
between reasonable bounds and perform 106 iterations to sample the posterior PDFs (the first 2 × 104 itera-
tions are not retained as they represent the burn-in period/step size adjustment). All inversion results are
reported in Table 1.

In all cases, the true input model parameters fall between the 2.5 and 97.5 percentiles of the posterior PDFs,
which validates our inversion algorithm. As expected, the uncertainty in the model parameters varies as a
function of the size of the data vector (e.g., looser when using only GNSS data and tighter for all combinations
that use InSAR data) and the errors in the data. The duration of each inversion, when performed on a
consumer-grade computer, varies between 3 min (GNSS only) and 3.5 hr (all data).

5. Application to the 2015 Mw 6.4 Pishan Earthquake

As a test case, we apply the Bayesian inversion approach to three InSAR data sets spanning the 3 July 2015Mw

6.4 Pishan (China) earthquake (Figure 5), a predominantly thrust-slip event with a minor left-lateral strike-slip
component (U.S. Geological Survey-National Earthquake Information Center, https://earthquake.usgs.gov/
earthquakes/eventpage/us10002n4w#moment-tensor; global centroid moment tensor, http://www.glo-
balcmt.org/CMTsearch.html). SAR data were acquired by the European Space Agency’s Sentinel-1 satellite,
with two interferograms from ascending orbits (track 129, 11 June 2015 to 05 July 2015; track 56, 30 June
2015 to 24 July 2015) and one from a descending orbit (track 136, 24 June 2015 to 18 July 2015), each with
a time span of 24 days. Interferograms were formed using the COMET InSAR processing software LiCSAR
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(González et al., 2016), which uses routines from the GAMMA InSAR software package to process Sentinel-1
terrain observation by progressive scans SAR data.

The three Sentinel-1 interferograms show coseismic deformation consistent with thrust faulting on an ENE-
WSW striking structure. Ascending interferograms (Figures 5a and 5d) show two lobes with a characteristic
“butterfly” shape, where LOS displacements are toward the satellite (a combination of uplift and predomi-
nantly northward horizontal motion) northwest of the epicenter and away from the satellite (a combination
of subsidence and predominantly southward horizontal motion) west-southwest of the epicenter. The des-
cending interferogram (Figure 5g), which only covers the northern portion of the coseismic displacement
field, also shows LOS displacements toward the satellite north of the epicenter. Maximum LOS displacements
of ~0.12 m are recorded at the center of the uplifting lobe.

We first estimate the experimental semivariogram for deformation-free regions of each InSAR data set and fit
the theoretical exponential function (see Table 2). We then subsample the data sets using a variance

Figure 5. (left column) Sentinel-1 terrain observation by progressive scan interferograms for 2015Mw 6.4 Pishan earthquake; (middle column) forward model using
the maximum a posteriori probability solution; and (right column) residual maps. Black arrows on data plots show the flight direction of the satellite, the look
direction with the incidence angle in degrees, and the track number. The beach ball represents the fault plane solution from global centroid moment tensor
catalogue and marks the epicentral location. The black rectangle on model plots represents the outline of the optimal fault plane, with the thicker line outlining the
updip edge of the fault and the arrow representing the direction of slip. Differential interferograms show coseismic displacements measured between (top row) 30
June 2015 to 24 July 2015, (middle row) 11 June 2015 to 05 July 2015, and (bottom row) 24 June 2015 to 18 July 2015.

Table 2
Details for Interferometric Synthetic Aperture Radar Data Sets Used in the Inversion

Track-pass Sill variance (m2) Nugget variance (m2) Range distance (m) No. of data points

129-ascending 7.6 × 10�5 8 × 10�9 12,900 310
56-ascending 2.5 × 10�5 4 × 10�9 15,000 475
136-descending 2.6 × 10�5 8 × 10�9 8,900 361
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threshold of 3 × 10�5 m2 and obtain a data vector composed of 1,146 data points (the contribution of each
data set is reported in Table 2). The inversion is carried out using a kinematic forward model for a rectangular
dislocation source (Okada, 1985) with nine source model parameters: length, width, depth of the lower edge,
dip angle (positive upward from horizontal), strike (measured clockwise from north), X and Y coordinates of
the midpoint of the lower edge, uniform slip in the strike direction, and uniform slip in the dip direction. We
also estimate a rigid shift in the LOS direction since all InSAR measurements are relative to an arbitrary refer-
ence point, and the coefficients for a linear ramp, a (x) and b (y), for each interferogram. The model parameter
vectorm is therefore composed of 18 parameters, for which we assume uniform priors between reasonable
bounds (logarithmic for nonnegative parameters; see Table 3). Priors for fault geometry are based on pre-
vious results (Ainscoe et al., 2017; He et al., 2016; Wen et al., 2016) and on the size of the measured deforma-
tion field, while no constraints are imposed onto fault strike (varying between 0° and 360°) and dip angles
(varying between �90° and +90° from horizontal) and direction of slip, to explore all possible fault orienta-
tions and kinematics.

In Figure 6 we show the posterior PDFs for the nine fault source parameters obtained after 106 iterations (a
burn-in period of 2 × 104 iterations is removed), with the bottom row showing histograms of marginal distri-
butions for each parameter and the remaining rows showing the joint distributions between pairs of para-
meters. The maximum a posteriori probability solution and the 95% credible intervals are reported in
Table 3.

The inversion reveals that coseismic surface displacements can be well explained by slip on a 19.5–22.2-km-
long and 7.6–11.7-km-wide fault, striking 113°–120° and shallowly dipping at 20°–29°. The slip direction is
consistent with that of a thrust fault with a minor left-lateral component, with 0.4–0.6 m and 0.03–0.14 m
of slip in the two directions, respectively. From the analysis of the marginal posterior probabilities
(Figure 6), we can observe correlations between fault width, dip, and horizontal position. Conversely, we
can well constrain the fault length, depth, strike direction, and the amount of slip in both the dip and strike
directions. Assuming a shear modulus of 3.32 × 1010 N/m2 (Wen et al., 2016) and the marginal posterior prob-
abilities for fault geometry and slip, the geodetic moment magnitude Mw is equal to 6.3 for the entire prob-
ability distribution, similar to the U.S. Geological Survey-National Earthquake Information Center and global
centroid moment tensor solutions, and in agreement with previous studies of this earthquake (Ainscoe et al.,
2017; He et al., 2016; Wen et al., 2016).

In Table 4 we compare our inversion results with previous studies and show a consistent agreement in opti-
mal source parameters. He et al. (2016) performed the source parameter optimization using a simplex algo-
rithm but did not report how the associated uncertainties were estimated. The extremely narrow
uncertainties they provide may represent an improper handling of errors in the data or an inappropriate
approach in determining uncertainties. Wen et al. (2016) estimated optimal source parameters using a parti-
cle swarm optimization and Ainscoe et al. (2017) using a downhill Powell’s algorithm. Both these last two stu-
dies estimated model parameter uncertainties by running 100 and 250 inversions, respectively, of the InSAR
data sets perturbed with simulated noise (e.g., Wright et al., 2003). Uncertainties estimated by Wen et al.
(2016) seem still too optimistic while those by Ainscoe et al. (2017) are similar to our estimates obtained using
the proposed Bayesian approach.

Table 3
Priors and Inversion Results for the 2015 Mw 6.4 Pishan Earthquake

Rectangular dislocation with uniform slip (Okada, 1985)

Length (m) Width (m) Depth (m) Dip (°) Strike (°) X center (m) Y center (m) Strike slipa (m) Dip slipb (m)

Lower 10,000 1,000 1,000 �90 0 �30,000 30,000 �1.0 �5.0
Upper 40,000 30,000 20,000 90 360 30,000 90,000 1.0 5.0
Optimal 20,736 9,448 11,932 25 116 1,399 55,842 �0.09 0.51
2.5% 19,541 7,574 11,152 20 113 326 53,723 �0.14 0.42
97.5% 22,179 11,675 12,413 29 120 2,139 57,089 �0.03 0.63

Note. We report maximum a posteriori probability solutions, 2.5 and 97.5 percentiles of posterior probability density functions of fault parameters.
aStrike slip is positive if right lateral and negative if left lateral. bDip slip is positive for thrust faulting and negative for normal faulting.
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6. Discussion

Our Bayesian inversion framework is aimed at taking advantage of new opportunities offered by unprece-
dented improvements in the availability and resolution, both temporal and spatial, of geodetic data. We
show that with our approach, the inversion of net surface displacements from GNSS data, which in many
cases are telemetered in real-time to geophysical monitoring facilities (e.g., https://www.unavco.org/data/

Table 4
Comparison of Results From Inversion of Interferometric Synthetic Aperture Radar Data for the 2015 Mw 6.4 Pishan Earthquake

Rectangular dislocation with uniform slip (Okada, 1985)

Length (km) Width (km) Depth (km) Dip (°) Strike (°) Lon (deg) Lat (deg) Slipa (m)

This study 20.7 �1.2/+1.4 9.4 �1.9/+2.2 11.9 �0.7/+0.5 25 �5/+4 116 �3/+4 78.016 �1.1/+0.7 km 37.503 �2.1/+1.2 km 0.52 �0.09/+0.11
He et al. (2016) 22.18 ± 0.05 8 N/A 10.98 ± 0.05 27.2 ± 0.2 113.8 ± 0.2 78.1390 ± 0.0004 37.7157 ± 0.00005 0.6 N/A
Wen et al.
(2016)

22.1 ± 0.5 10.1 ± 1.0 8.8 ± 0.4 23.6 ± 1.5 114.0 ± 1.6 78.057 ± 0.4 km 37.571 ± 0.3 km 0.59 ± 0.06

Ainscoe et al.
(2017)

21.5 ± 1.1 9.3 ± 2.1 11.0 ± 0.8 21 ± 2.5 112 ± 2.4 78.140 ± 1.7 km 37.777 ± 2.7 km 0.6 ± 0.2

Note. Data on previous studies as in Ainscoe et al. (2017).
aTotal slip is calculated from the two components. Uncertainties are calculated through propagation of errors associated with the two slip components.

Figure 6. Marginal posterior probability distributions for the fault model parameters for the 2015 Mw 6.4 Pishan earth-
quake. Red lines represent the maximum a posteriori probability solution. Scatter plots are contoured according to fre-
quency (cold colors for low frequency, warm colors for high frequency).

10.1029/2018GC007585Geochemistry, Geophysics, Geosystems

BAGNARDI AND HOOPER 2207

https://www.unavco.org/data/gps-gnss/real-time/real-time.html


gps-gnss/real-time/real-time.html), can offer robust estimates of source parameters and uncertainties very
rapidly (e.g., 3 min in the case of our synthetic GNSS data set). Similarly, we independently or jointly invert
InSAR data to provide reliable estimates of deformation source parameters in 1.5–3.5 hr, depending on the
size of the data sets. This becomes of unique value when using InSAR data from new satellite missions, such
as Sentinel-1, which are acquired with much shorter revisit time (e.g., Sentinel-1, 6–12 days) and made avail-
able within a few hours of acquisition.

For example, in March 2017 we applied our approach to an episode of volcanic unrest at Cerro Azul volcano
(Galápagos Islands, Ecuador). Using the GBIS software, which implements our Bayesian inversion algorithm,
we inverted InSAR data spanning a period of sudden and frequent seismicity beneath the flanks of the vol-
cano. Within 5 hr from being alerted by Ecuador’s Instituto Geofisico-Escuela Politecnica National
(Geophysical Institute-National Polytechnic School), we were able to access and process Sentinel-1 SAR data
for the area of interest, which were acquired only a few hours earlier and which showed contemporary sub-
sidence of the summit of the volcano and uplift of the lower flank (e.g., Figure 7). The unwrapped interfero-
grams were then inverted to gain information on the sources of surface displacements that were
accompanying this episode of volcanic unrest, and inversion results were reported to Ecuador’s Instituto
Geofisico-Escuela Politecnica National in less than 10 hr from receiving the first alert (http://www.igepn.
edu.ec/servicios/noticias/1473-informe-especial-cerro-azul-no-2-2017). With this event, we demonstrated
the potential of our approach for a quantitative interpretation of InSAR data in a rapid-response operational
setting. In fact, our estimates of the credible interval of magma volumes involved in the volcanic unrest epi-
sode were used by Ecuador’s Instituto Geofisico-Escuela Politecnica National to evaluate hazards associated
with the event.

When inverting InSAR data, a frequently applied alternative approach for the estimate of uncertainties in
model parameters, also used in previous studies of the 2015 Pishan earthquake (see section 5; Ainscoe
et al., 2017; Wen et al., 2016), implies the use of a nonlinear inversion technique capable of finding the
weighted least-squares best-fit solution given the data plus simulated noise (e.g., Wright et al., 2003). This
process is repeated several times (e.g., 102) using different simulations of the noise in the data, with the
resulting distribution of solutions representing the posterior probability distribution of model parameters.
While this approach and ours should provide similar results in cases were all priors are uniform, Hooper
et al. (2010) showed that an MCMC approach, similar to the one presented here, is two orders of magnitude
more efficient in terms of the number of forward models that need to be run, hence significantly faster.

Figure 7. Sentinel-1 descending interferogram (08 March 2017 to 20 March 2017) spanning the first ~48 hr of volcanic unrest
at Cerro Azul volcano, Galápagos Islands, Ecuador (modified fromhttp://comet.nerc.ac.uk/intrusive-activity-cerro-azul-volcano-
galapagos-islands-ecuador/). Each color fringe corresponds to ~2.8 cm of line-of-sight displacement. Black arrows in the
bottom right show the flight direction of the satellite and the look direction with the incidence angle in degrees.
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Therefore, the Bayesian inversion approach may be preferable in rapid-response or operational settings (e.g.,
volcano observatories) and in all those cases where fast and robust estimates of source parameters may be
needed. If prior probabilities on model parameters are also available, then the Bayesian approach is the only
one capable of including these in the inversion. The rapidity of the inversion approach in estimating source
parameters, especially in the case of a limited number of GNSS sites (e.g., GNSS data only in the validation
example), can also be of use in the planning and design of geodetic monitoring networks. Through the
use of synthetic data sets, the effect of a given measurement site can be quantified in terms of its contribu-
tion to changes in source parameter uncertainties.

The proposed approach is aimed at the characterization of deformation source parameters through the
inversion of static surface displacements spanning a given time interval. While this is of great value for early
warning and in the rapid response to events of volcanic unrest and earthquakes, it is not optimized for the
study of time-dependent dynamic processes. However, inversion results obtained through our approach
are complementary and valuable in instructing other time-variable data assimilation algorithms (e.g., the
ensemble Kalman Filter approach for volcano monitoring; Bato et al., 2017; Gregg & Pettijohn, 2016; Zhan
& Gregg, 2017). Similarly, the Bayesian approach presented here can instruct or be extended to physical
and dynamic models of geodetic and other geophysical measurements, as successfully demonstrated by
Anderson and Segall (2013) in the study and forecasting of an episode of volcanic unrest.

Our Bayesian inversion framework aims at being applicable to different geophysical processes, in particular
those related to tectonic and magmatic activity, and to both scientific research and natural hazard monitor-
ing. To maintain the flexibility of the algorithm and its ability to efficiently invert different types of geodetic
data for a multiplicity of deformation sources, we must rely on certain assumptions and reduce the level of
complexity of certain steps. For example, a variety of one- and two-dimensional covariance functions could
be applied to characterize errors in InSAR data (e.g., González & Fernández, 2011; Knospe & Jónsson, 2010), or
different subsampling methods could be applied to subsample the data (see Section 3.2). While, at this stage,
such complexities are not implemented in our approach and in the GBIS software, users can optionally adapt
the algorithms to better fit their aims and the desired level of complexity.

7. Conclusions

We have presented a Bayesian approach for the simultaneous inversion of independent geodetic data sets, in
particular those from GNSS and InSAR, which takes into account errors in the data and prior information on
model parameters. The inversion algorithm, which we implemented in the freely available MATLAB®-based
GBIS software, is designed to rapidly estimate optimal model parameters and associated uncertainties
through an efficient sampling of the posterior PDFs. Such sampling is performed using a MCMC method
incorporating the Metropolis-Hastings algorithm and with an automatic step-size selection. We have applied
the inversion method to synthetic GNSS and InSAR data sets and demonstrated its ability to retrieve the true
input model parameters. We have also applied the same approach to InSAR data spanning a thrust earth-
quake and retrieved source parameters for a rectangular fault with uniform slip. Our results are similar to
those of previous studies that estimated uncertainties using the added simulated-noise method, but our
methodology has been shown to be significantly faster in characterizing optimal model parameters and asso-
ciated uncertainties, demonstrating its value in rapid-response and operational settings.
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