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Abstract. Using valuation rings and valued fields as examples, we discuss
in which ways the notions of “topological IFS attractor” and “fractal
space” can be generalized to cover more general settings.
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Given functions f1, . . . , fn on a set X, we will associate to them an iterated
function system (IFS), denoted by

F = [f1, . . . , fn],

where we view F as a function on the power set P(X) defined by

P(X) � S �→ F (S) :=
n⋃

i=1

fi(S).

One of the basic approaches to calling a space X “fractal” is to ask that there
is an iterated function system F such that F (X) = X, and that the functions
in the system satisfy certain additional forms of being “contracting”:

Definition 1. A compact metric space (X, d) is called fractal if there is an
iterated function system F = [f1, . . . , fn] with F (X) = X where the functions
fi are weakly contracting, that is, d(fix, fiy) < d(x, y) for any distinct x, y ∈
X.
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Alternatively, one may ask that the functions fi are contracting, that is,
there is some positive real number C < 1 such that d(fix, fiy) ≤ Cd(x, y) for
all x, y ∈ X.

Iterated function systems consisting of weakly contracting functions are
studied in, e.g., [4,5,7].

In the absence of a metric, one has to find other ways of encoding what is
meant by “contracting”. In [1], Banakh and Nowak give a topological analogue
for the common definition of “fractal” that uses iterated function systems; for
a detailed continuation of this approach, see [2,3].

Definition 2. A compact topological space X is called fractal if there is an
iterated function system F = [f1, . . . , fn] consisting of continuous functions
fi : X → X such that F (X) = X and the following “shrinking condition” is
satisfied:

(SC) for every open covering C of X, there is some k ∈ N such that for
every sequence (i1, . . . , ik) ∈ {1, . . . , n}k there is U ∈ C with

fi1 ◦ · · · ◦ fik(X) ⊂ U.

Clearly, it suffices to check (SC) only for finite coverings. If we fix a basis for
the open sets, then it suffices to check (SC) only for finite coverings consisting
of basic sets, as every finite covering can be refined to such a covering.

We will now give examples of iterated function systems in the special case
where the topology is induced by a valuation on a field. For general background
on valuation theory, see, e.g., [6,8–10]. For the topology induced by a valuation
v on a field K with value group vK, one can take the collection of ultrametric
balls

Bα(a) := {b ∈ K | v(a − b) ≥ α} where α ∈ vK and a ∈ K

as a basis; note that by the ultrametric triangle law, this set is closed under
nonempty intersections over finite subsets. For the same reason, if v(a−b) ≥ α,
then Bα(a) = Bα(b). The same works when we restrict v to a subring R of K,
except that then the values of the elements in R just form a linearly ordered
subset of vK.

Example 3. We take a prime p and denote by Fp the finite field with p elements.
Then Fp consists of the elements i = i+pZ, 0 ≤ i < p. We consider the Laurent
series ring

R := Fp[[t]] =

⎧
⎨

⎩

∞∑

j=0

ij tj | ij ∈ Fp

⎫
⎬

⎭ .

The t-adic valuation vt on Fp[[t]] is defined by

vt

∞∑

j=0

ij tj = min{j | j ≥ 0 such that ij 
= 0}. (1)
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For 0 ≤ i ≤ p − 1, we define a function fi by

fi

⎛

⎝
∞∑

j=0

ij tj

⎞

⎠ := i +
∞∑

j=1

ij−1 tj = i + t

∞∑

j=0

ij tj ,

where i is understood to be an element of Fp. Then

fi(R) = i + tR (2)

and therefore, the iterated function system F = [f0, . . . , fp−1] satisfies F (R) =⋃
0≤i<p i + tR = R. Each ultrametric ball in R (with respect to the t-adic

valuation of Fp[[t]]) is of the form

Bm

⎛

⎝
m−1∑

j=0

ij tj

⎞

⎠ =

⎧
⎨

⎩b ∈ R | tm divides b −
m−1∑

j=0

ij tj

⎫
⎬

⎭

for some integer m ≥ 0, which we call the radius of the ball. (The empty
sum is understood to be 0). Given any finite open covering of R consisting of
ultrametric balls, we take m to be the maximum of the radii of all balls in the
covering. Then the covering can be refined to a covering of the form

⎧
⎨

⎩Bm

⎛

⎝
m−1∑

j=0

ij tj

⎞

⎠

∣∣∣∣∣∣
i0, . . . , im−1 ∈ {0, . . . , p − 1}

⎫
⎬

⎭ .

Choose any m ≥ 1 and i0, . . . , im−1 ∈ {0, . . . , p − 1}. By induction on m we
derive from (2):

fi0 ◦ · · · ◦ fim−1(R) = i0 + i1 t + · · · + im−1 tm−1 + tmR = Bm

⎛

⎝
m−1∑

j=0

ij tj

⎞

⎠ .

Since the functions fi are continuous in the topology induced by the ultra-
metric (an argument will be given below in the more general case of discrete
valuation rings), we see that Fp[[t]] with its ultrametric balls is fractal, in the
sense of Definition 2. �

Here is an obvious generalization of the previous example.

Example 4. We work in the same situation as in the last example, but now fix
an integer μ ≥ 0 and for every i∗ = (i∗(0), . . . , i∗(μ)) ∈ {0, . . . , p − 1}μ+1 we
set

fi∗

⎛

⎝
∞∑

j=0

ij tj

⎞

⎠ :=
μ∑

j=0

i∗(j) tj + tμ+1
∞∑

j=0

ij tj .

Then

fi∗(R) =
μ∑

j=0

i∗(j) tj + tμ+1R (3)
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and therefore, the iterated function system F = [fi∗ | i∗ ∈ {0, . . . , p − 1}μ+1]
satisfies

F (R) =
μ∑

j=0

Fpt
j + tμ+1R = R.

Choose any m ≥ 1 and i∗0, . . . , i
∗
m−1 ∈ {0, . . . , p − 1}μ+1. By induction on m

we derive from (3):

fi∗
0

◦ · · · ◦ fi∗
m−1

(R) =
μ∑

j=0

i∗0(j) tj + tμ+1

μ∑

j=0

i∗1(j) tj + · · ·

+ (tμ+1)m−1

μ∑

j=0

i∗m−1(j) tj + (tμ+1)mR

= Bm(μ+1)

⎛

⎝
m−1∑

k=0

tk(μ+1)

μ∑

j=0

i∗k(j) tj

⎞

⎠ .

�

We generalize our observations to discrete valuation rings (which in general
cannot be presented in power series form, in particular not in mixed charac-
teristic).

We take a discrete valuation ring R with maximal ideal M and choose
a uniformizing parameter t ∈ R, i.e., the value of t is the smallest positive
element in the value set of R. Further, we choose a system of representatives
S ⊂ R for the residue field R/M . Then for every s ∈ S we define a function
fs by:

fs(a) := s + ta (4)

for a ∈ R. Then
fs(R) = s + tR (5)

and therefore,
⋃

s∈S

fs(R) =
⋃

s∈S

s + tR = R.

Choose any m ≥ 1 and s0, . . . , sm−1 ∈ S. By induction on m we derive from
(5):

fs0 ◦ · · · ◦ fsm−1(R) = s0 + s1 t + · · · + sm−1 tm−1 + tmR = Bm

⎛

⎝
m−1∑

j=0

sj tj

⎞

⎠ .

If a, b ∈ R with a − b ∈ Bm(0) = tmR, then

fs(a) − fs(b) = s + ta − (s + tb) = t(a − b) ∈ tm+1R = Bm+1(0).

This shows that each fs is contracting and hence continuous in the topology
induced by the ultrametric.

If R/M is finite, then we have finitely many functions and obtain:
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Proposition 5. Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric is fractal (under both definitions given above).

Note that for any topological space X, the existence of a continuous IFS
F = [f1, . . . , fn] satisfying conditions (SC) and X =

⋃
i fi[X] from Definition 2

implies that X is quasi-compact. By the following example, it can be seen that
these conditions do not imply that X is Hausdorff (so Definition 2 could be
also considered for non-Hausdorff quasicompact spaces):

Example 6. Let X = [0, 1] be equipped with the topology in which the open
sets are ∅ and the cofinite sets. Define f1, f2 : X → X by f1(x) = x/2,
f2(x) = 1/2 + x/2. Then the system (f1, f2) consists of continuous functions,
and satisfies conditions (SC) and X =

⋃
i fi[X]. �

The following definition seems to be the weakest reasonable generalization
of Definition 2 to possibly infinite function systems.

Definition 7. Let X be a topological space, and {fi : i ∈ I} any set of continu-
ous mappings X → X satisfying (SC), i.e., for any finite open covering U of X
there is a natural number l such that for any g1, . . . , gl ∈ {fi : i ∈ I}, the image
g1 ◦ · · · ◦ gl[X] is contained in some U ∈ U . We will say that X is a topological
attractor for {fi : i ∈ I} if X = cl(

⋃
i∈I fi[X]). For any cardinal number κ, we

will say that X is a topological κ-IFS-attractor if X is an attractor for some
set of continuous functions satisfying (SC) of cardinality at most κ.

This definition generalizes Definition 2 in the sense that being a topological
IFS-attractor is the same as being a compact n-IFS-attractor for some n ∈ ω
(because when X is compact and I is finite, then we have cl(

⋃
i∈I fi[X]) =⋃

i∈I fi[X]).
The reader may note that our notion of a topological attractor is not the

same as the one used in papers [5,7], where a nonempty compact set is defined
to be a topological attractor if it is homeomorphic to an attractor.

For normal spaces, the property of being a κ-IFS-attractor implies a bound
on the weight (i.e., the minimal cardinality of a basis of the topology):

Proposition 8. Suppose X is a normal space which is a κ-IFS-attractor. Then
w(X) ≤ 2κ + ℵ0.

Proof. Choose a system of functions F = {fi : i ∈ I} of cardinality at most κ
satisfying (SC) such that X is an attractor for F , i.e., X = cl(

⋃
i∈I fi[X]). �

Claim 1. For any natural number l, we have that

X = cl

⎛

⎝
⋃

g1,...,gl∈F

g1 ◦ · · · ◦ gl[X]

⎞

⎠ . (6)



292 J. Dobrowolski and F.-V. Kuhlmann Arch. Math.

Proof of the claim. We proceed by induction on l. Suppose that (6) holds.
Then for every i ∈ I, we get by the continuity of fi that

fi[X] ⊂ cl

⎛

⎝fi

⎡

⎣
⋃

g1,...,gl∈F

g1 ◦ · · · ◦ gl[X]

⎤

⎦

⎞

⎠

= cl

⎛

⎝
⋃

g1,...,gl∈F

fi ◦ g1 ◦ · · · ◦ gl[X]

⎞

⎠

⊂ cl

⎛

⎝
⋃

g1,...,gl+1∈F

g1 ◦ · · · ◦ gl+1[X]

⎞

⎠ .

Thus, we obtain that X = cl(
⋃

i∈I fi[X]) ⊂ cl(
⋃

g1,...,gl+1∈F g1 ◦ · · · ◦ gl+1[X]).
This completes the proof of the claim. �

Define

B =

⎧
⎨

⎩X\cl

⎛

⎝
⋃

(g1,...,gl)∈I

g1 ◦ · · · ◦ gl[X]

⎞

⎠

∣∣∣∣∣∣
l < ω, I ⊂ F l

⎫
⎬

⎭ .

Clearly, |B| ≤ ∑
l<ω |P (F l)| = 2κℵ0 = 2κ + ℵ0. We will show that B is a basis

of X. So take any open subset U of X and x ∈ U . Since X is normal, we can
choose open sets V1, V2 such that

x ∈ V1 ⊂ cl(V1) ⊂ V2 ⊂ cl(V2) ⊂ U.

Let l be as in the condition (SC) for F and the covering {V2,X\cl(V1)} of
X. Define J = {(g1, . . . , gl) ∈ F l : g1 ◦ · · · ◦ gl[X] ⊂ X\cl(V1)} and W =
X\cl(

⋃
(g1,...,gl)∈J g1◦· · ·◦gl[X]) ∈ B. Since V1 is disjoint from

⋃
(g1,...,gl)∈J g1◦

· · · ◦ gl[X], we get that x ∈ W . It remains to check that W ⊂ U . Take any
y ∈ X\U . We will show that y ∈ cl(

⋃
(g1,...,gl)∈J g1 ◦ · · · ◦ gl[X]). Take any

open neighbourhood Z of y. By the claim, g1 ◦ · · · ◦gl[X] meets Z ∩ (X\cl(V2))
for some h1, . . . , hl ∈ F . Then the image g1 ◦ · · · ◦ gl[X] is not contained in
V2, so it is contained in X\cl(V1) and (h1, . . . , hl) ∈ J . Therefore, Z meets⋃

(g1,...,gl)∈J g1 ◦ · · · ◦ gl[X], and we are done. �
The above proposition applies in particular to compact spaces (which are

known to be normal). In particular, we obtain that every topological IFS-
attractor has a countable basis. Thus, by the Urysohn metrization theorem,
we get:

Corollary 9. Every topological IFS-attractor is metrizable.

Condition (SC) is not satisfied in some natural examples where the metric
shrinking condition is satisfied (i.e., liml supi1,...,il

diam(fi1 ◦ · · · ◦ fil [X]) = 0):

Example 10. Let X = ωω be the Baire space (which is homeomorphic to k((t))
considered with the valuation topology, where k is any field of cardinality ℵ0).
For any i < ω, define fi : X → X as follows: fi(x)(0) = i and fi(x)(n) =
x(n − 1) for n > 0. Then (SC) is not satisfied for fi, i < ω, which is witnessed
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by the covering {U,X\U}, where U =
⋃

n<ω{x ∈ X : x(0) = n, x(1) = · · · =
x(n) = 0}. �

Thus, we want to consider another topological shrinking condition, in which
we are allowed to choose a basis from which the covering sets are taken. How-
ever, to make it possible to cover in this way the whole space (which is not
assumed to be compact), we allow one of the covering sets to be not in the
fixed basis. This leads to the following definition:

Definition 11. A family of functions (fi)i∈I on a topological space X satisfies
(SC∗) if there is a basis B of X such that for every finite open covering C of
X containing at most one set which is not in B, there is some k ∈ N such that,
for every sequence (i1, . . . , ik) ∈ Ik, there is U ∈ C with

fi1 ◦ · · · ◦ fik(X) ⊂ U.

Every space is an attractor for the set of all constant functions from X to X
(i.e., is covered by their images). We will say that X is a weak ∗-IFS attractor
if it is an attractor for a set of functions satisfying (SC∗) of a cardinality
smaller than |X|. We will say that X is a ∗-IFS attractor if it is an attractor
for a finite set of functions satisfying (SC∗).

Clearly, we have:

Remark 12. If X is a compact space, then it is a ∗-IFS attractor if and only
if it is a topological IFS attractor.

By the following example, it can be seen that being a ∗-IFS attractor does
not imply compactness:

Example 13. Let X = ω be considered with the discrete topology. Define
f0, f1 : X → X by f0(n) = 0 and f1(n) = n + 1. Then X is a ∗-IFS attractor
for {f0, f1}, so X is a ∗-IFS attractor.

Proof. We choose a basis B consisting of all singletons. Consider any cov-
ering of X of a form {U, {n1}, . . . , {nl}}. Then it is sufficient to take k =
max(n1, . . . , nl) + 1. �
Example 14. Let X = ωω, and let fi : X → X, i < ω be as in Example 10.
Then, (fi)i<ω satisfies (SC∗), so X is a weak ∗-IFS attractor. More generally,
for any cardinal number κ, the space κω is an attractor for a set of functions of
cardinality κ, so it is a weak ∗-IFS attractor if κ < κω (this holds for example
for all cardinals with countable cofinality, so for unboundedly many cardinals).

Proof. For any α ∈ κ, define fα : κω → κω by fα(x)(0) = α and fα(x)(n) =
x(n − 1) for n > 0. We choose the standard basis of κω, i.e.,

B = {Ax : x ∈ κk, k < ω},

where Ax = {y ∈ κω : x ⊂ y}. Write |x| = k if x ∈ κk. Choose any open
covering of κω of the form {U,Ax1 , . . . , Axn

}. Put k = max(|x1|, . . . , |xn|). For
any sequence (α0, . . . , αk−1) ∈ κk we have that fα0 ◦ · · · ◦ fαk−1 [κ

ω] = Ay,
where y(i) = αi for all i < k, so this image is either contained in one of the
sets Ax1 , . . . , Axn

or disjoint from all of them and thus contained in U . �
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Proposition 15. Suppose A is a densely ordered abelian group and | · | : A →
{a ∈ A | a ≥ 0} is the associated absolute value. Consider a collection of
functions fi : A → A, i ∈ I. Suppose that there is a sequence (ai)i<ω of positive
elements of A which converges to 0, and that for every k and any sequence
(i1, . . . , ik) ∈ Ik we have diam(fi1 ◦ · · · ◦ fik [A]) < ai. Then fi : A → A, i ∈ I
satisfies SC∗ (where we consider A with the order topology).

Proof. We choose a basis B of the order topology on A consisting of all open
intervals. We consider any covering of A of the form {U, (a1, b1), . . . , (an, bn)}.
For any i there is ci > 0 such that each of the intervals (ai − ci, ai + ci),
(bi −ci, bi +ci) is contained in one of the sets from the covering. Now, choose k
such that for every sequence (i1, . . . , ik) ∈ Ik we have diam(fi1 ◦ · · · ◦fik [A]) <
c := 1/2min(c1, . . . , cn, b1 − a1, . . . , bn − an). Then for a ∈ A, [a − c, a + c] is a
subset of some of the sets from the covering: otherwise, by the choice of ci’s, a
would be at distance > c from all ai’s and bi’s, and hence a could not belong to
any of the intervals (ai, bi) (as in that case we would have [a−c, a+c] ⊂ (ai, bi)).
But that would mean that [a − c, a + c] ⊂ U .

By the above, any set of diameter smaller than c is contained in one of the
sets from the covering, so we are done. �

Corollary 16. R is a weak ∗-IFS attractor.

Proof. Take a continuous bijection f0 : R → (−1, 1) which is Lipschitz with
constant 1/2. Define fn(x) = n + f0(x) for any integer n. Then, clearly, the
family {fn : n ∈ Z} satisfies the assumptions of Proposition 15, so we obtain
that it satisfies SC∗. Of course, R is an attractor for that family (and has a
bigger cardinality). �

A fractal space is compact. If we have a space that is only locally compact,
one can ask whether it is “locally fractal”, that is, whether every element is
contained in a fractal subspace.

Example 17. We consider the Laurent series field

K := Fp((t)) =

⎧
⎨

⎩

∞∑

j=�

ij tj | � ∈ Z, ij ∈ Fp

⎫
⎬

⎭ .

The t-adic valuation vt on Fp((t)) is defined by

vt

∞∑

j=�

ij tj = � if i� 
= 0.

For every k ∈ Z, the function tkFp((t)) � c �→ t�−kc ∈ t�Fp((t)) is a
homeomorphism w.r.t. the topology induced by the t-adic valuation. On the
other hand, K =

⋃
k∈Z

tkFp((t)). So we see that Fp((t)) is the union over an
increasing chain of mutually homeomorphic fractal spaces. �

However, we wish to show that Fp((t)) is locally fractal in a stronger
sense. The idea is to write Fp((t)) as a union over a collection of mutually
homeomorphic fractal subspaces and extend the functions we have used for
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B0(0) = Fp[[t]] in a suitable way so that they work simultaneously for all
of these subspaces. To this end, we observe that for any two a, b ∈ K, the
function B0(a) � c �→ c − a + b ∈ B0(b) is a homeomorphism. Note that for
each � < 0 there are only finitely many elements in B�(0) = t�Fp[[t]] that are
non-equivalent modulo B0(0), so we can write B�(0) as a finite union of the
form

⋃
j B0(aj).

Example 18. We extend the functions fi we used for R = Fp[[t]] by setting:

fi

⎛

⎝
∞∑

j=�

ij tj

⎞

⎠ :=
−1∑

j=�

ij tj + i +
∞∑

j=1

ij−1 tj =
−1∑

j=�

ij tj + i + t

∞∑

j=0

ij tj .

For every a =
∑∞

j=� sj tj ∈ Fp((t)) with sj ∈ Fp, we have that

B0(a) = a + R =
−1∑

j=�

sj tj + R.

Hence,

fi(B0(a)) = fi

⎛

⎝
−1∑

j=�

sj tj + R

⎞

⎠ =
−1∑

j=�

sj tj + i + tR, (7)

and therefore,
p−1⋃

i=0

fi(B0(a)) =
−1∑

j=�

sj tj +
p−1⋃

i=0

(i + tR) =
−1∑

j=�

sj tj + R = B0(a).

Choose any m ≥ 1 and i0, . . . , im−1 ∈ {0, . . . , p − 1}. By induction on m we
derive from (7):

fi0 ◦ · · · ◦ fim−1(B0(a)) =
−1∑

j=�

sj tj + i0 + i1 t + · · · + im−1 tm−1 + tmR

= Bm

⎛

⎝
−1∑

j=�

sj tj +
m−1∑

j=0

ij tj

⎞

⎠ ⊂ B0(a).

�

For arbitrary discretely valued fields (K, v) with valuation ring R and valu-
ation ideal M , we can proceed as follows. As before, we choose a uniformizing
parameter t ∈ K and a system of representatives S ⊂ R for the residue field
Kv. We set

K− :=

⎧
⎨

⎩

−1∑

j=�

sj tj

∣∣∣∣∣∣
0 ≥ � ∈ Z and s�, . . . , s−1 ∈ S

⎫
⎬

⎭ .

Then for every a ∈ R there is a unique element a− ∈ K− such that a−a− ∈ R.
For every s ∈ S we define a function fs : K → K by

fs(a) := a− + s + t(a − a−).
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For every a ∈ K we obtain that

fs(B0(a)) = a− + s + tR (8)

and therefore,
⋃

s∈S

fs(B0(a)) = a− +
⋃

s∈S

(s + tR) = a− + R = B0(a).

Choose any m ≥ 1 and s0, . . . , sm−1 ∈ S. By induction on m we derive from
(8):

fs0 ◦ · · · ◦ fsm−1(B0(a)) =
−1∑

j=�

aj tj + s0 + s1 t + · · · + sm−1 tm−1 + tmR

= Bm

⎛

⎝a− +
m−1∑

j=0

sj tj

⎞

⎠ ⊂ B0(a).

Take b, c ∈ B0(a). Then b − c ∈ B0(0), and if b − c ∈ Bm(0) with m ≥ 0,
then b− = c− and

fs(b) − fs(c) = b− + s + t(b − b−) − (c− + s + t(c − c−)) = t(b − c) ∈ Bm+1(0).

This shows that each fs is contracting and hence continuous in the topology
induced by the ultrametric.

We define:

Definition 19. A locally compact metric space (X, d) is locally fractal if it is
the union over a collection of mutually homeomorphic subspaces Xj , j ∈ J ,
and there is a system F = [f1, . . . , fn] of functions fi : X → X such that for
every j ∈ J , Xj is fractal w.r.t. the restrictions of the functions fi to Xj .

Definition 20. A locally compact topological space X is locally fractal if it is
the union over a collection of mutually homeomorphic subspaces Xj , j ∈ J ,
and there is a system F = [f1, . . . , fn] of functions fi : X → X such that for
every j ∈ J , Xj is (topologically) fractal w.r.t. the restrictions of the functions
fi to Xj .

Note that we do not require the functions fi to be continuous or contracting
or to satisfy (SC) on all of X. Indeed, the functions we constructed above have
the property that if (a − b)− 
= 0, then (fi(a) − fi(b))− = (a − b)−.

We have proved:

Proposition 21. Every discretely valued field with finite residue field is locally
fractal under both definitions.
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[8] Ribenboim, P.: Théorie des valuations, 2nd edn. Les Presses de l’Université de
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