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Abstract Long memory has been observed for time
series across a multitude of fields and the accurate es-

timation of such dependence, e.g. via the Hurst ex-

ponent, is crucial for the modelling and prediction of

many dynamic systems of interest. Many physical pro-

cesses (such as wind data), are more naturally expressed
as a complex-valued time series to represent magni-

tude and phase information (wind speed and direction).

With data collection ubiquitously unreliable, irregular

sampling or missingness is also commonplace and can
cause bias in a range of analysis tasks, including Hurst

estimation. This article proposes a new Hurst expo-

nent estimation technique for complex-valued persis-

tent data sampled with potential irregularity. Our ap-

proach is justified through establishing attractive theo-
retical properties of a new complex-valued wavelet lift-

ing transform, also introduced in this paper. We demon-

strate the accuracy of the proposed estimation method

through simulations across a range of sampling scenar-
ios and complex- and real-valued persistent processes.

For wind data, our method highlights that inclusion of

the intrinsic correlations between the real and imag-

inary data, inherent in our complex-valued approach,

can produce different persistence estimates than when
using real-valued analysis. Such analysis could then sup-

port alternative modelling or policy decisions compared

with conclusions based on real-valued estimation.
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1 Introduction

Complex-valued time series arise in many scientific fields
of interest, for example digital communication and sig-

nal processing (Curtis, 1985; Martin, 2004), environ-

mental series (Gonella, 1972; Lilly and Gascard, 2006;

Adali et al, 2011) and physiology (Rowe, 2005). Mod-

elling and analysis of such series in the complex do-
main is not only natural, but also convenient. In addi-

tion, complex-valued time series models are often able

to represent more realistic behaviour in observed physi-

cal processes, see e.g. Mandic and Goh (2009); Sykulski
et al (2017). A particular modelling aspect which has

received recent attention is the property of impropriety

or noncircularity, describing series whose statistics are

not rotationally invariant in the complex plane (for a

precise definition, the reader is directed to Sykulski and
Percival (2016)). Such models of improper processes

have seen growing interest in the statistics community,

see e.g. Schreier and Scharf (2003); Rubin-Delanchy and

Walden (2008); Mohammadi and Plataniotis (2015).
Furthermore, complex-valued analysis of real-valued data

has been shown to be beneficial in a number of set-

tings, see e.g. Olhede andWalden (2005); Hamilton et al

(2017). For a comprehensive introduction to complex-

valued signals, we refer the reader to Schreier and Scharf
(2010); see Adali et al (2011) and Walden (2013) for re-

cent advances in modelling complex-valued signals.

Recently, there has been an increased interest in

models for complex-valued stochastic processes exhibit-

ing long-range dependence (i.e. persistent) behaviour,
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which has seen extensions of real-valued process mod-

elling frameworks for the complex-valued fractional

Brownian motion (fBM) and Matérn processes, see re-

spectively Coeurjolly and Porcu (2017b) and Lilly et al

(2017), as well as for (improper) fractional Gaussian
noise (Sykulski and Percival, 2016). For these construc-

tions, just as for real-valued processes (Hurst, 1951;

Mandelbrot and Van Ness, 1968), the degree of memory

can still be quantified by means of a single parameter,
the Hurst exponent parameter (Amblard et al, 2012;

Sykulski and Percival, 2016). Accurate estimation of

the Hurst parameter offers valuable insight into a mul-

titude of modelling and analysis tasks, such as model

calibration and prediction (Beran et al, 2013; Rehman
and Siddiqi, 2009; Knight et al, 2017).

Complex-valued processes, both proper (circular)

and improper (noncircular), are relevant across fields

such as oceanography and geophysics (Adali et al, 2011;
Sykulski et al, 2017), where data are typically diffi-

cult to acquire and will frequently suffer from omis-

sions/ missingness or be irregularly sampled (see e.g.

Figure 1). In the next section, we describe datasets aris-

ing in environmental science that feature missing obser-
vations, which can be examined for long memory with a

complex-valued representation. However, we note here

that data from other scientific areas may benefit from

analysis with our proposed methodology, see Section 6
for further discussion.

1.1 Persistence in wind series

Our motivating data example in this article arises from
climatology. More specifically, wind series have been

analysed extensively in the literature for modelling lo-

cal weather patterns and spread of pollutants, as well as

global climate dynamics. Long memory in wind series

has been established by a number of authors, see e.g.
Haslett and Raftery (1989); Chang et al (2012); Piac-

quadio and de la Barra (2014) and references therein.

Specifically, Hurst exponent estimates for wind speed

series on a range of sampling resolutions, including the
five minute scale considered here, have been shown to be

in the range 0.7− 0.9, indicating strong long-range de-

pendence, see e.g. Fortuna et al (2014). Accurate Hurst

exponent estimation is used for accurate forecasting of

wind speed, for example to assess future power yields
(Haslett and Raftery, 1989; Bakker and van den Hurk,

2012).

Wind speed analysis in the literature is predomi-

nantly performed using real-valued data, such as (mag-
nitude) wind speed series. However, more recently a

number of authors have advocated modelling wind mea-

surements as complex-valued, developing analysis tools

which exploit both speed and directional information

of wind time series, see e.g. Goh et al (2006); Tanaka

and Mandic (2007). These complex-valued modelling

approaches have resulted in methodology for improved

prediction for series such as those considered in this
article (Mandic et al, 2009; Dowell et al, 2014). To our

knowledge, long memory estimation for stationary time

series is exclusively performed using real-valued time se-

ries. In this article, we analyse the degree of persistence
(long memory intensity) exhibited by complex-valued

wind measurements, i.e. series which have both wind

speed and direction, using new complex-valued Hurst

estimation methodology we propose here.

The wind series we consider in this article consists
of two datasets measured at a five minute resolution

from the Iowa Department of Transport’s Automated

Weather Observing System (AWOS). The (speed and

angular) measurements for both datasets are available
at http://mesonet.agron.iastate.edu/AWOS/. We

firstly analyse data obtained from the Atlantic Munic-

ipal Airport (AIO) monitoring site over a period from

15th April 2017 until 30th April 2017. Whilst the sam-

pling interval for the measurements is reported as five
minutes, due to a number of reasons, for example faulty

recording devices, the data in fact feature missingness

which results in a mix of sampling intervals – our first

dataset has intervals ranging from 5 to 15 minutes.

Since we have both speed and directional informa-

tion for the dataset, we shall view the series using a

complex-valued representation. The real and imaginary

components of the series are shown in Figure 1(a) and

Figure 1(b), together with the locations of the missing
data (depicted by triangles). The length of the first se-

ries is n = 3131 with an overall rate of missingness of

12%. Similar datasets from the Iowa monitoring sys-

tem have been previously studied in the literature for
the non-missing case but not in the context of Hurst

estimation, see e.g. Tanaka and Mandic (2007); Adali

et al (2011).

To explore the potential persistence in wind series,

we examine the autocorrelation in the real and imagi-
nary parts of the series, shown in Figure 2(a) and Fig-

ure 2(b) for the Wind A series. For these data, both com-

ponents show highly significant autocorrelation over a

range of lags, indicating long memory.

To further illustrate potential benefits of a more

considered analysis approach for such data, we also in-

vestigate a dataset from the same monitoring site but

for a different time period, specifically, 30th April 2017
until 14th May 2017. For this dataset, the majority of

the data are observed at a spacing of 5 minutes, but

a significant amount have intra-measurement sampling
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Fig. 1: (a) Real component of the Wind A data series; (b) Imaginary component of the Wind A data series; (c) Real

component of the Wind B data series; (d) Imaginary component of the Wind B data series. Red triangles indicate
missing data locations.

between 10 and 20 minutes resulting from a missingness

proportion of 20%; the series is of length n = 2942. We

have specifically chosen to examine this second time

period due to its high degree of missingness. The two

components of the complex-valued series can be seen in
Figure 1(c) and Figure 1(d) (triangles indicate missing

series values).

Similar observations about potential long memory

characteristics can be made for the second complex-

valued wind series. In particular, both real and imagi-

nary components of the series show considerable auto-
correlation over a large range of lags (Figure 2(c) and

Figure 2(d)).

In addition, plotting the series in the complex plane,

we see that both datasets exhibit a rotational behaviour,

due to the angular component of the series (Figure 3).

The series are not symmetric, exhibiting clear noncircu-

larity, suggesting a model which allows for impropriety

is appropriate for analysis (for an in-depth discussion of

these properties the reader is directed to e.g. Sykulski

and Percival (2016)). This reflects similar observations
on impropriety shown for other Iowa AWOS data in

Adali et al (2011), as well as other wind series (Mandic

and Goh, 2009).

1.2 Aim and structure of the paper

A feature of many geophysical series, such as described

in Section 1.1, is that there is a need to jointly anal-
yse both components of a bivariate signal in order to

reveal a common behaviour. Due to the natural repre-

sentation in the complex plane, one mathematical so-
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Fig. 2: (a) Autocorrelation for (a) the real component of the Wind A series from Figure 1; (b) the imaginary

component of the Wind A series; (c) the real component of the Wind B series from Figure 1; (d) the imaginary
component of the Wind B series (all treated as regularly spaced). Both components of the two datasets show

autocorrelation at large lags, indicating persistent behaviour.

lution is to combine the two pieces of information into

a single, complex-valued series and analyse its proper-

ties (Mandic and Goh, 2009). Adopting this approach

thus calls for analysis techniques capable of dealing with
complex-valued data. Additionally, for many applica-

tions the process sampling structure is inherently ir-

regular, as the two components may be measured at

irregular times, or the data may be blighted by miss-
ingness due to measurement device failures. In the real-

valued case, the common practice of preprocessing the

data to mitigate against irregular or missing observa-

tions, results in inaccuracies in long memory estimation

by traditional methods. More specifically, there is now
well-documented evidence that preprocessing by impu-

tation or interpolation, as well as data aggregation leads

to overestimation of persistence, see for example, Beran

et al (2013), Zhang et al (2014) or Knight et al (2017).

In practice, to the authors’ best knowledge, the only

technique that permits Hurst exponent estimation for

complex-valued processes is that of Coeurjolly and Porcu

(2017b) which tackles the setting of regularly sampled
(proper) complex-valued fractional Brownian motion.

Motivated by the serious implications of inaccurate es-

timation in the real-valued setting, in this work we pro-

pose the first methodological approach that answers the
timely challenge of accurate assessment of long mem-

ory persistence for complex-valued processes featuring

regular or irregular sampling (including missingness).

At the heart of our methodology is a second genera-

tion wavelet-based approach. The reasoning behind this
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Fig. 3: Scatter plot of real and imaginary series values for (a) the Wind A data and (b) the Wind B series shown in

Figure 1. Both series exhibit noncircular (improper) characteristics.

choice is two-fold: (i) (classical) wavelets have proved to

be very successful in the context of regularly sampled

(real-valued) time series with long memory and are con-

sidered the ‘right domain’ of analysis (Flandrin, 1998);
and (ii) for irregularly sampled (real-valued) processes,

or those featuring missingness, the wavelet lifting algo-

rithm of Knight et al (2017) has provided a first long

memory estimation solution and was shown to yield
competitive results even for regularly sampled data.

The main contributions of the work in this paper

are as follows. We propose (1) a novel lifting algorithm

designed to work on complex-valued data with a po-
tentially irregular sampling structure and (2) a Hurst

parameter estimator for complex-valued processes sam-

pled with a regular or irregular structure. Our method

will be shown to improve on real-valued Hurst estima-
tion results, including for regularly spaced data.

The remainder of this article is organised as fol-

lows. We begin, in Section 2, by reviewing (complex-

valued) long memory processes and giving an overview
of wavelet lifting transforms. Section 3 introduces our

novel complex-valued lifting transform, establishes its

iterative bases construction and theoretical results on

its decorrelation properties. Section 4 demonstrates how

these properties can be exploited to design our proposed
lifting-based Hurst exponent estimation procedure for

complex-valued data sampled with irregularity/ miss-

ingness. Section 5.1 contains a simulation study eval-

uating the performance of our new method using syn-
thetic data. In Section 5.2, we consider the application

of our approach to the wind series datasets introduced

in Section 1.1, discussing the potential consequences of

our analysis. Finally, Section 6 outlines some avenues of

future work and discusses other potential applications.

2 Review of complex-valued processes,

long-range dependence and wavelet lifting

2.1 Complex-valued processes

Let us denote a (complex-valued) second-order station-

ary time series by {Xt} and its autocovariance func-

tion as γX(ti − tj) = E(XtiXtj ), under the assumption
that E(Xt) = 0 and denoting by · complex conjugation.

As the autocovariance function γX does not completely

characterise a complex-valued time series, we also make

use of its complementary or pseudo-covariance, rX(ti−
tj) = E(XtiXtj ), again assuming E(Xt) = 0. In general,
both autocovariances are complex-valued and have the

properties of Hermitian symmetry and symmetry, re-

spectively (see e.g. Sykulski and Percival (2016)).

In many applications, such as radar and communica-
tions, processes are assumed to have the property that

rX(· ) = 0 (Neeser and Massey, 1993; Picinbono, 1994;

Adali et al, 2011); such processes are known as proper or

circularly-symmetric and are completely determined by

their autocovariance γX . In contrast, applications such
as those described in Schreier and Scharf (2010); Adali

et al (2011); Chandna and Walden (2017) deal with

improper processes, whereby there exists a lag τ such

that rX(τ) 6= 0. Another often encountered property
is that of time-reversibility; for complex-valued pro-

cesses Didier and Pipiras (2011) have shown that time-

reversibility results in complex-valued processes with
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real-valued autocovariances, which is precisely the set-

ting under which Sykulski and Percival (2016) develop

their exact simulation method for improper stationary

Gaussian processes.

2.2 Long memory and its estimation

Classical literature for long-range behaviour of real-

valued processes shows that persistence is often charac-
terized by a parameter, such as the Hurst exponent, H ,

introduced to the literature by Hurst (1951) in hydrol-

ogy and its estimation is treated across a large body of

established literature, e.g. Beran et al (2013). Mandel-

brot and Van Ness (1968) introduced self-similar and
related processes with long memory, along with the as-

sociated statistical inference. Extensions of fractional

Brownian motion to the complex-valued case, defined

as a self-similar Gaussian process with stationary in-
crements, are dealt with in e.g. Coeurjolly and Porcu

(2017b); Lilly et al (2017). Put simply, the property of

self-similarity amounts to the preservation of the pro-

cess’ statistical properties in the face of rescaling, thus

naturally fostering the definition of the Hurst exponent.
Just as in the real-valued case, a complex-valued

self-similar process {Xt} with parameter H satisfies

X(at)
d
= aHX(t) for a > 0, H ∈ (0, 1) and where

d
= means equal in distribution (Coeurjolly and Porcu,
2017b). Note that the self-similarity definition implies

that both the real and imaginary strands of the complex-

valued process {Xt} evolve according to the same ex-

ponent H . The property of self-similarity results into

the fBM spectrum to behave as fX(ω) = A2|ω|−2δ

for frequencies ω, a constant A and δ ∈ (1/2, 3/2).

The spectral slope parameter δ is linked to the aspect

ratio of process rescaling for self-similar behaviour as

H = δ − 1/2 ∈ (0, 1) and also determines the degree
of persistence in the differenced version of the process,

the fractional Gaussian noise (Lilly et al, 2017). An

example of such a process is the improper fractional

Gaussian noise with the pseudo-covariance proportional

to the autocovariance (both real-valued), both propor-
tional to τ2δ−3 (Sykulski and Percival, 2016; Lilly et al,

2017).

Definition 1 (Lilly et al (2017)) A stationary (fi-
nite variance) complex-valued process {Xt} with real-

valued autocovariance γX is said to have long memory

if γX(τ) ∼ cγ |τ |−β as |τ | → ∞ and β ∈ (0, 1), where ∼
means asymptotic equality. In other words, the process

autocovariance displays long term decay.

Equivalently, the autocovariance Fourier pair, namely

the spectral density, has the property that fX(ω) ∼

cf |ω|−α for frequencies ω → 0 and α ∈ (0, 1) with

α = 1 − β = 2H − 1. In general, if 0.5 < H < 1 the

process exhibits long memory, with higher H values in-

dicating stronger dependence, whilst if 0 < H < 0.5

the process has short memory. An improper fractional
Gaussian noise constructed as outlined above (Sykul-

ski and Percival, 2016) with 1 < δ < 3/2 thus has

long memory (−β = 2δ − 3 = 2H − 2 ∈ (−1, 0) hence

1/2 < H < 1).
For real-valued time series, estimation of the Hurst

exponent H traditionally takes place in the time do-

main (Mandelbrot and Taqqu, 1979; Bhattacharya et al,

1983; Taqqu et al, 1995; Giraitis et al, 1999; Higuchi,

1990; Peng et al, 1994) and/ or in the frequency domain
by means of connections to Fourier or wavelet spectrum

decay e.g. Lobato and Robinson (1996), McCoy and

Walden (1996), Whitcher and Jensen (2000) and Abry

et al (2013). Recent works that deal with long mem-
ory estimation in various settings are Vidakovic et al

(2000), Shi et al (2005), Hsu (2006), Jung et al (2010),

Coeurjolly et al (2014). Some authors have recently con-

sidered Hurst estimation using complex-valued wavelets

in the regularly spaced real-valued image context, see
Nelson and Kingsbury (2010); Jeon et al (2014); Nafor-

nita et al (2014). Reviews comparing several techniques

for Hurst exponent estimation (for real-valued series)

can be found in e.g. Taqqu et al (1995). Even when
only considering real-valued data, Knight et al (2017)

show that methods designed for regularly spaced data

often fail to deliver a robust estimate if the time se-

ries is subject to missing observations or has been sam-

pled irregularly, and in this context they propose a
lifting-based approach for Hurst estimation. While this

approach serves well when the process is real-valued,

it cannot cope with complex-valued processes. Coeur-

jolly and Porcu (2017b) propose a method of estimation
in the setting of (circular) complex-valued fractional

Brownian motion assuming a regular sampling struc-

ture, but cannot readily cope with sampling irregularity

or measurement dropout/ missingness.

2.3 Wavelet lifting paradigm for irregularly sampled

real-valued data

The lifting algorithm, first introduced by Sweldens (1995),

constructs ‘second-generation’ wavelets adapted for non-
standard data settings, such as intervals, surfaces, as

well as irregularly spaced data. Lifting has since been

used successfully for a variety of statistical problems

dealing with real-valued signals, including nonparamet-
ric regression, spectral estimation and long memory es-

timation see e.g. Trappe and Liu (2000); Nunes et al

(2006); Knight et al (2012, 2017); Hamilton et al (2017).
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For a recent review of lifting, the reader is directed to

Jansen and Oonincx (2005).

As our proposed lifting transform and subsequent

long memory estimation method both make use of a

recently developed lifting transform, the lifting one co-
efficient at a time (LOCAAT) transform of Jansen et al

(2001, 2009), we shall briefly introduce it next.

Suppose a real-valued function f(· ) is observed at

a set of n, possibly irregular, locations or time points,

x = (x1, . . . , xn) and is represented by {(xi, f(xi) =
fi)}ni=1. The lifting algorithm of Jansen et al (2001) be-

gins with the f = (f1, . . . , fn) values, known as scaling

function values, together with an interval associated to

each location, xi, which represents the ‘span’ of that

point. By performing LOCAAT, we aim to transform
the initial f into a set of, say, L coarser scaling coeffi-

cients and (n−L) wavelet or detail coefficients, where L

is a desired ‘primary resolution’ scale. This is achieved

by repeating three steps: split, predict and update. In
the algorithm of Jansen et al (2001), the split step is

performed by choosing a point to be removed (‘lifted’),

jn, say. We denote this point by (xjn , fjn), and identify

its set of neighbouring observations, In. The predict

step estimates fjn by using regression over the neigh-
bouring locations In. The prediction error (the differ-

ence between the true and predicted function values),

djn or detail coefficient, is then computed by

djn = fjn −
∑

i∈In

ani fi, (1)

where (ani )i∈In
are the weights resulting from the re-

gression procedure. For points with only one neighbour,

the prediction is simply djn = fjn − fi. This predic-

tion via regression can of course be carried out using a

variety of weights. Notably, Hamilton et al (2017) pro-
posed to use two (rather than just one) prediction filters

and encompassed the detail information into complex-

valued wavelet coefficients. As more information was

extracted from the signal, this approach was shown to
improve results for nonparametric regression and spec-

tral/ coherence estimation settings, but nevertheless is

limited to real-valued signals. The update step consists

of updating the f -values of the neighbours of jn used

in the predict step using a weighted proportion of the
detail coefficient:

f
(updated)
i := fi + bni djn , i ∈ In, (2)

where the weights (bni )i∈In
are subject to the constraint

that the algorithm preserves the signal mean value (Jansen
et al, 2001, 2009). The interval lengths associated with

the neighbouring points are also updated to account for

the effect of the removal of jn. In effect, this attributes a

portion of the interval associated to the removed point

to each neighbour.

These split, predict and update steps are then re-

peated on the updated signal, and after each iteration

a new wavelet coefficient is produced. Hence, after say

(n− L) removals, the original data is transformed into
L scaling and (n− L) wavelet coefficients. This is sim-

ilar in spirit to the classical discrete wavelet transform

(DWT) step which takes a signal vector of length 2ℓ

and through filtering operations produces 2ℓ−1 scaling

and 2ℓ−1 wavelet coefficients.

An attractive feature of lifting schemes, including
the LOCAAT algorithm, is that the transform can be

inverted easily by reversing the split, predict and up-

date steps.

The current scarcity of Hurst estimation techniques

for complex-valued processes, both in a uniform, but

even more so in a non-uniform sampling setting, as well
as the effectiveness of the lifting transform in represent-

ing irregularly sampled information, jointly motivate

our proposed approach to tackle this analysis prob-

lem: firstly we propose a novel lifting transform able
to cope with irregularly sampled complex-valued pro-

cesses, and secondly we construct a long memory esti-

mator using the corresponding complex-valued lifting

coefficients. Notably, the proposed method is suitable

for regularly or irregularly sampled processes, both real-
and complex-valued; in particular, Hurst estimation is

addressed for improper complex-valued processes that

have real-valued covariances, as introduced in Sykul-

ski and Percival (2016), as well as for proper complex-
valued series, as described in Coeurjolly and Porcu (2017b).

3 A new lifting algorithm for complex-valued
signals and its properties

In this section, we introduce our proposed lifting algo-

rithm for a complex-valued function and establish its
decorrelation properties.

3.1 Proposed C2-LOCAAT algorithm for
complex-valued signals

Suppose now a complex-valued function f(· ) is observed
at a set of n, possibly irregular, locations or time points,
x = (x1, . . . , xn) and is represented by {(xi, f(xi) =

fi)}ni=1. Our proposed algorithm builds a redundant

transform that starts with the complex-valued signal

f = (f1, . . . , fn) ∈ Cn and transforms it into a set of,
say, R coarse (complex-valued) scaling coefficients and

2× (n−R) (complex-valued) detail coefficients, where

R is the desired primary resolution scale. As is usual in
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lifting, our algorithm re-iterates the three steps—split,

predict and update—in a modified version, as described

below.

At the first stage (n) of the algorithm, denote the

smooth coefficients as cn,k = fk, the set of indices of

smooth coefficients by Sn = {1, . . . , n} and the set of
indices of detail coefficients by Dn = ∅. The sampling

structure is accounted for using the distance between

neighbouring observations, and at stage n we define the

span of xk as sn,k =
xk+1−xk−1

2 .

At the next stage (n − 1), the proposed algorithm

proceeds as follows:

Split: Choose a point to be removed and denote its in-

dex by jn. Typically, points from the densest sampled

regions are removed first, but other predefined removal
choices are also possible, as we shall discuss below. We

shall often refer to the removal order as a trajectory,

following Knight and Nason (2009).

Predict: The set of neighbours (Jn) of the point jn are

identified. Note that the set of neighbours is indexed

by n as the choice will depend on the removal stage

(via the points remaining at that stage). The predict

step estimates cn,jn = fjn by using regression over the
neighbouring locations Jn and two prediction schemes,

a strategy first suggested by Hamilton et al (2017) for

real-valued signals. Each prediction scheme is defined

by its respective filter, L and M, orthogonal on each
other. The filter L corresponds to the (possibly) linear

regression choice as is usual in LOCAAT. The filter M

is linked to L through a specific set of properties, dis-

cussed in detail in Hamilton et al (2017) and described

in step 2 of Algorithm 1. Both filters are constructed
such that the corresponding wavelet coefficients of any

constant polynomial are 0 (known in the wavelet liter-

ature, as possessing (at least) one vanishing moment).

The prediction residuals following the use of each

filter are given by

λjn = lnjncn,jn −
∑

i∈Jn

lni cn,i, (3)

µjn = mn
jn
cn,jn −

∑

i∈Jn

mn
i cn,i, (4)

where {lni }i∈Jn∪{jn} and {mn
i }i∈Jn∪{jn} are the predic-

tion weights associated with filters L and M; as is typ-
ical in LOCAAT, we take lnjn = 1.

Our proposal is to obtain two complex-valued detail

(wavelet) coefficients by combining the two prediction

residuals as follows

d
(1)
jn

= λjn + iµjn , (5)

d
(2)
jn

= λjn − iµjn . (6)

Note that if the original signal is real-valued, then d(2) =

d
(1)

and all we need is d(1). However, when the process

is complex-valued as is the case here, d(2) 6= d
(1)

and we

need both d(1) and d(2). This is in contrast to Hamilton
et al (2017), where the information from the two pre-

diction schemes is corroborated into just one complex-

valued wavelet coefficient, and although its naive im-

plementation on the real and imaginary process strands

would yield two sets of complex-valued wavelet coeffi-
cients, it would not be obvious how to best combine

their information.

Update: In the update step, both the (complex-valued)

smooth coefficients {cn,i} and (real-valued) spans of the

neighbours {sn,i} are updated according to filter L:

cn−1,i = cn,i + bni λjn ,

sn−1,i = sn,i + lni sn,jn ∀i ∈ Jn, (7)

where bni = (sn,jnsn−1,i)/(
∑

i∈Jn
s2n−1,i) are the update

weights, again computed so that the mean of the signal
is preserved (Jansen et al, 2009). Updating the neigh-

bours’ spans accounts for the modification to the sam-

pling grid induced by removing one of the observations,

and using just one filter for update (akin to the ap-

proach of Hamilton et al (2017)) ensures the use of a
common scale across both d(1) and d(2).

The observation jn is then removed from the set
of smooth coefficients, hence after the first algorithm

iteration, the index set of smooth coefficients is Sn−1 =

{1, ..., n}\{jn} and the index set of detail coefficients is

Dn−1 = {jn}. The algorithm is then reiterated until the
desired primary resolution level R has been achieved. In

practice, the choice of the primary level R in LOCAAT

lifting schemes is not crucial provided it is sufficiently

low (Jansen et al, 2009), with R = 2 recommended by

Nunes et al (2006).

The three steps are then repeated on the updated
signal, and each repetition yields two new wavelet co-

efficients. After points jn, jn−1, . . . , jR+1 have been re-

moved, the function can be represented as a set of 2×
(n−R) detail coefficients, {d

(1)
jk

}k∈Dn−R
and {d

(2)
jk

}k∈Dn−R
,

and R smooth coefficients, {cr−1,i}i∈Sn−R
, thus result-

ing in a redundant transform. An algorithmic descrip-

tion of C2-LOCAAT appears in Algorithm 1.

The proposed algorithm can then be easily inverted

by recursively ‘undoing’ the update, predict and split

steps described above for the first filter (L). More specif-

ically, the inverse transform can be performed by the
steps

Undo Update: cn,i = cn−1,i − bni λjn , ∀i ∈ Jn
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Proposed C2-LOCAAT using two symmetrical neighbours:

Choose a removal order (trajectory), either dictated by the
sampling sequence or following a random permutation.

1. Split: Choose the first/next point to be removed from the
set of smooth coefficients Sn = {1, ..., n} and denote its
index by jn.

2. Predict:
(a) Determine the set of neighbours Jn (one each side of

jn) and use linear regression over the neighbourhood
in order obtain a prediction at jn.
Calculate the prediction residual, λjn

, as the differ-
ence between the observed and predicted values at jn
(see equation (3)). This coupled with the requirement
of achieving at least one vanishing moment amounts
to obtaining a filter L = (l1, 1, l3) with l1 + l3 = 1.

(b) Construct a new filter M = (Am, (1 +A)m,m) with

A = l1−2
l1+1

and m = l1+1√
3
. By construction, M is

orthogonal on L, has at least one vanishing moment
and ‖L‖ = ‖M‖. Using M, obtain a new prediction
residual, µjn

(see equation (4)).
(c) The complex-valued wavelet (detail) coefficients at jn

are d
(1)
jn

= λjn
+ iµjn

and d
(2)
jn

= λjn
− iµjn

.
3. Update: the smooth coefficients and their associated

scales using the filter L (see equations (7)).
Update the index sets of smooth and detail coefficients as
Sn−1 = Sn\{jn} and Dn−1 = {jn} respectively.

4. Iterate steps 1–3 for jn−1, . . . , jR+1 with a typical pri-
mary resolution level R = 2, hence obtain a set of
complex-valued wavelet coefficients indexed by DR =
{jn, ..., jR+1}.

Alg. 1: The complex-valued lifting scheme (C2-

LOCAAT) on a complex-valued signal.

Undo Predict:

cn,jn =
λjn −

∑

i∈Jn
lni cn,i

lnjn
or (8)

cn,jn =
µjn −

∑

i∈Jn
mn

i cn,i

mn
jn

. (9)

Undoing either predict (8) or (9) step is sufficient for

inversion.

A few remarks on our proposed C2-LOCAAT lifting

algorithm are now in order.

Transform matrix representation. As with any linear

transform, the algorithm that determines one set of de-

tail coefficients, say d(1), can also be represented using a

matrix transform, i.e. d(1) =W (c)f , whereW (c) is a n×
n matrix with complex-valued entries. When expressed

as a matrix transform, our proposed C2-LOCAAT algo-

rithm for a complex-valued process (f) can be expressed

as

d =

(

W (c)

W
(c)

)

f (10)

=

(

d(1)

d(2)

)

, (11)

with d(1) =W (c)f and d(2) =W
(c)
f .

Wavelet lifting scales and artificial levels. The (log2)
span associated with an observation at the last stage

before its removal, say log2(sk,jk) for the detail coeffi-

cient djk obtained at stage k, is used as a (continuous)

measure of scale – this indirectly stems from the fact the

wavelets are not dyadically scaled versions of a single
mother wavelet. As the notion of scale of lifting wavelets

is continuous, Jansen et al (2009) group wavelet func-

tions of similar (continuous) scales into ‘artificial’ lev-

els, to mimic the dyadic levels of classical wavelets (see
Jansen et al (2001, 2009) for more details). We also

adopt this strategy to group the complex-valued wavelet

coefficients produced using our C2-LOCAAT algorithm.

An alternative is to group the coefficients via their inter-

val lengths into ranges (2j−1α0, 2
jα0], where j ≥ 1 and

α0 is the minimum scale. This construction more closely

resembles classical wavelet dyadic scales, but both pro-

duce similar results. Note that by construction, the C2-

LOCAAT transform crucially uses a common scale for
both real and imaginary parts, and it is this feature

that ensures that information is obtained on the same

scale at every step.

Choice of removal order. The lifting algorithms in Sec-

tion 2.3 and Section 3.1 are inherently dependent on the

order in which points are removed as the algorithm pro-

gresses. Jansen et al (2009) remove points in order from
the finest continuous scale to the coarsest, to mimic the

DWT, which produces coefficients at the finest scale

first, then at progressively coarser scales. However, in

our proposed C2-LOCAAT scheme, we can choose to
remove points according to a predefined path (or tra-

jectory) T = (xo1 , . . . , xon), where (o1, o2, . . . , on) is a

permutation of the set {1, . . . , n}. Knight and Nason

(2009) introduced the nondecimated lifting transform,

which proposes examining data using P bootstrapped
paths from the space of n! possible trajectories. Aggre-

gating the information obtained via this approach typ-

ically improves estimator variance and accuracy, not

only in the long memory estimation context (Knight
et al, 2017), but also for e.g. nonparametric regression

(Knight and Nason, 2009). This strategy will be em-

bedded in our proposed methodology in Section 4.
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3.2 Refinement equations for the scaling and wavelet

functions under C2-LOCAAT

Although not explicitly apparent, the wavelet lifting

construction induces a biorthogonal (second generation)

wavelet basis construction, see e.g. Sweldens (1995). In

the real-valued lifting one coefficient at a time paradigm,
as the algorithm progresses, scaling and wavelet func-

tions decomposing the frequency content of the signal

are built recursively according to the predict and up-

date equations (1) and (2) (Jansen et al, 2009). Also,
the (dual) scaling functions are defined recursively as

linear combinations of (dual) scaling functions at the

previous stage.

Let us now investigate the basis decomposition af-

forded by our proposed C2-LOCAAT transform, as a
result of performing the split, predict and update steps.

As our construction involves two prediction filters, we

decompose f on two biorthogonal bases. Our construc-

tion is reminiscent of the dual tree complex wavelet
transform (CWT) (Kingsbury, 2001; Selesnick et al,

2005) which employs two separate classical wavelet trans-

forms, but fundamentally differs through the construc-

tion of linked orthogonal filters.

In our proposed construction, let us denote the two
scaling function and wavelet biorthogonal bases by
{

ϕ(1), ϕ̃(1), ψ(1), ψ̃
(1)
}

and
{

ϕ(2), ϕ̃(2), ψ(2), ψ̃
(2)
}

respec-

tively. We now explore their relationships and recursive

construction.

At stage r, the complex-valued signal f can be de-
composed on each basis as

f(x) =
∑

ℓ∈Dr

d
(i)
ℓ ψ

(i)
ℓ (x) +

∑

k∈Sr

c
(i)
r,kϕ

(i)
r,k(x), i = 1, 2,

(12)

with d
(i)
ℓ =< f, ψ̃

(i)
ℓ > and c

(i)
r,k =< f, ϕ̃

(i)
r,k > for both

bases i = 1, 2, where the inner product is as usual de-

fined on L2(C). As the update step is the same for

both bases, it follows that c
(1)
r,k = c

(2)
r,k. Hence denote

cr,k =< f, ϕ̃
(1)
r,k >=< f, ϕ̃

(2)
r,k >, for all r, k and thus

the dual scaling functions coincide under both bases.

In what follows we shall denote these by ϕ̃r,k.

Proposition 1 Suppose we are at stage r − 1 of the
C2-LOCAAT algorithm. The recursive construction of

the primal scaling and wavelet functions corresponding

to the coefficients d(1), in terms of the functions at the

previous stage r, is given by

ϕ
(1)
r−1,j(x) = ϕ

(1)
r,j (x) + ãrjϕ

(1)
r,jr

(x), if j ∈ Jr, (13)

ϕ
(1)
r−1,j(x) = ϕ

(1)
r,j (x), if j /∈ Jr, (14)

ψ
(1)
jr

(x) =
arjr

|arjr |
2
ϕ
(1)
r,jr

(x) −
∑

j∈Jr

brjϕ
(1)
r−1,j(x), (15)

where arj = ℓrj + imr
j and ãrj =

ar
jr

ar
j

|ar
jr

|2 .

Similarly, the recursive construction for the primal
scaling and wavelet functions corresponding to the co-

efficients d(2), in terms of the functions at the previous

stage r, is given by

ϕ
(2)
r−1,j(x) = ϕ

(2)
r,j (x) + ã

r

jϕ
(2)
r,jr

(x), if j ∈ Jr, (16)

ϕ
(2)
r−1,j(x) = ϕ

(2)
r,j (x), if j /∈ Jr, (17)

ψ
(2)
jr

(x) =
arjr
|arjr |

2
ϕ
(2)
r,jr

(x)−
∑

j∈Jr

brjϕ
(2)
r−1,j(x). (18)

For the corresponding dual bases the recursive con-

structions are given by

ϕ̃r−1,j(x) = ϕ̃r,j(x) + brj ψ̃
L
jr
(x), ∀j ∈ Jr, (19)

ϕ̃r−1,j(x) = ϕ̃r,j(x), ∀j /∈ Jr, (20)

ψ̃
(1)
jr

(x) = arjr ϕ̃r,jr (x)−
∑

j∈Jr

arj ϕ̃r,j(x), (21)

ψ̃
(2)
jr

(x) = arjr ϕ̃r,jr (x)−
∑

j∈Jr

arj ϕ̃r,j(x), (22)

where ψ̃L denotes the dual wavelet function correspond-

ing to the L-filter only.

The proof can be found in Appendix A, Section A.1.
Summarizing, the two bases can be represented as

{ϕ(1), ϕ̃, ψ(1), ψ̃
(1)

} and {ϕ(1), ϕ̃, ψ
(1)
, ψ̃

(2)
} and their

recursive construction established above will be used

in obtaining the formal properties required to justify

our proposed long memory estimation approach.

3.3 Decorrelation properties of the C2-LOCAAT

algorithm

Wavelet transforms are known to possess good decor-

relation properties, see in the context of long memory
processes e.g. Abry et al (2000); Jensen (1999); Craig-

mile et al (2001) for classical wavelets, and Knight et al

(2017) for lifting wavelets constructed by means of LO-

CAAT. The decorrelation property amounts to the con-
sequent removal of the long memory in the wavelet do-

main, and thus estimation of the Hurst exponent can

be carried out in this simplified context. Therefore, we

next provide mathematical evidence for the decorrela-

tion properties of the C2-LOCAAT algorithm and these
will subsequently benefit our proposed long memory es-

timation procedure (see Section 4). The statement of

Proposition 2 (next) aims to establish decorrelation re-

sults similar to earlier ones concerning regular wavelets
(see e.g. Abry et al (2000, p.51) for fractional Gaus-

sian noise, Jensen (1999, Theorem 2) for fractionally

integrated processes or Theorem 5.1 of Craigmile and
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Percival (2005) for fractionally differenced processes)

and lifting wavelets (see Proposition 1 in Knight et al

(2017)). In what follows, we establish the decorrela-

tion properties for the proposed complex-valued lift-

ing transform C2-LOCAAT in a more general data set-
ting than previously considered for lifting wavelets, in-

volving complex-valued stationary processes with real-

valued autocovariances, that may be proper or improper

in nature.

Proposition 2 Let X = {Xti}
N−1
i=0 denote a (zero-

mean) stationary long memory complex-valued time se-

ries with Lipschitz continuous spectral density fX. As-

sume the process is observed at irregularly spaced times

{ti}
N−1
i=0 and let {{cR,i}i∈{0,...,N−1}\{jN−1,...,jR−1},

{djr}
N−1
r=R−1} be the C2-LOCAAT transform of X, where

djr =
(

d
(1)
jr

d
(2)
jr

)T

. Then both sets of detail coeffi-

cients {d
(1)
jr

}r and {d
(2)
jr

}r have autocorrelation and
pseudo-autocorrelation whose magnitudes decay at a

faster rate than for the original process.

The proof can be found in Appendix A, Section A.2

and uses similar arguments to the proof of Proposition

1 in Knight et al (2017), adapted for the C2-LOCAAT

algorithm and complex-valued setting we address here.
Just as for LOCAAT (Knight et al, 2017), Proposition 2

above assumes no specific lifting wavelet and we conjec-

ture that if smoother lifting wavelets were employed, it

might be possible to obtain even better rates of decay.

4 Long memory parameter estimation using

complex wavelet lifting (CLoMPE)

As the newly constructed wavelet domain through C2-

LOCAAT displays small magnitude autocorrelations,
we now focus on the wavelet coefficient variance and

show that the log2-variance of each of the complex-

valued lifting coefficients d(1) and d(2) is linearly re-

lated to their corresponding artificial scale level, a result
paralleling classical and real-valued lifting wavelet re-

sults. This result suggests a Hurst parameter estimation

method for potentially irregularly sampled long mem-

ory processes that take values in the complex (C) do-

main.
Proposition 3 next establishes a result similar to

that in Proposition 2 of Knight et al (2017) by taking

into account the specific C2-LOCAAT construction and

thus extends the scope of Hurst estimation methodol-
ogy to irregularly sampled complex-valued processes.

Proposition 3 Let X = {Xti}
N−1
i=0 denote a (zero-

mean) complex-valued long memory stationary time se-

ries with finite variance and spectral density fX(ω) ∼

cf |ω|−α as ω → 0, for some α ∈ (0, 1). Assume the

series is observed at irregularly spaced times {ti}
N−1
i=0

and transform the observed data X into a collection of

lifting coefficients, {d
(1)
jr

}r and {d
(2)
jr

}r, via application

of C2-LOCAAT from Section 3.1.

Let r denote the stage of C2-LOCAAT at which we
obtain the wavelet coefficients d

(ℓ)
jr

(with ℓ = 1, 2) and

let its corresponding artificial level be j⋆. Then, denot-

ing by |· | the C-modulus, we have for some constant

K

(σ
(ℓ)
j⋆ )

2 = E(|d
(ℓ)
jr

|2) ∼ 2j
⋆(α−1) ×K. (23)

The proof can be found in Appendix A, Section A.3.

This result suggests a long memory parameter estima-

tion method for an irregularly sampled, complex-valued

time series, described in Algorithm 2 below, which we
shall refer to as CLoMPE (Complex-valued Long Mem-

ory Parameter Estimation Algorithm). Section 5.1, next,

will show that our proposed CLoMPE methodology be-

low not only adds a new much needed tool in the estima-

tion of long memory for complex-valued processes, but
also improves Hurst exponent estimation for real-valued

processes, sampled both regularly and irregularly.

5 Simulated performance of CLoMPE and real

data analysis

5.1 Simulated performance of CLoMPE

In what follows we investigate the performance of our

Hurst parameter estimation technique for complex-valued

series. We simulated realisations of two types of long

memory processes, namely circularly symmetric com-
plex fractional Brownian motion, as introduced in Coeur-

jolly and Porcu (2017a), and improper complex frac-

tional Gaussian noise (with real-valued covariances) as

described in Sykulski and Percival (2016)1, investigat-

ing series of lengths of 256, 512 and 1024. These lengths
were chosen to reflect realistic data collection scenarios

– long enough for the Hurst parameter (a low-frequency

asymptotic quantity) to be reasonably estimated, whilst

reflecting lengths of datasets encountered in practice.

To investigate the effect of sampling irregularity on
the performance of our method, we simulated datasets

with different levels of randommissingness (5% to 20%),

which are representative of degrees of missingness re-

ported in many application areas, for example in paleo-

climatology and environmental series (Broersen, 2007;
Junger and Ponce de Leon, 2015).

1 We would like to thank Adam Sykulski for supplying
the Matlab code to simulate the improper complex fractional
Gaussian noise processes.
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Complex-valued Long Memory Parameter Estimation

Algorithm (CLoMPE):

Assume that {Xti}
N−1
i=0 is as in Proposition 3. We estimate

α as follows.

1. Apply C2-LOCAAT to the complex-valued observed pro-
cess {Xti}

N−1
i=0 using a particular lifting trajectory to ob-

tain the coefficients {djr
=

(

d
(1)
jr

d
(2)
jr

)T
}r, see equation

(10).
2. Normalize both sets of (complex-valued) detail coeffi-

cients by their corresponding C-modulus: divide each
squared (C) modulus by the corresponding diagonal entry

of W (c)W
(c),T

, where W (c) is the complex-valued lifting
transform matrix corresponding to d(1).

3. Group the coefficients into a set of artificial scales as de-
scribed in Section 2.3. Estimate the wavelet energy within
the artificial level j⋆ by

(

σ̂
(ℓ)
j⋆

)2
:= (nj⋆−1)−1

nj⋆
∑

r=1

|d
(ℓ)
jr

|2, for each ℓ = 1, 2, (24)

where nj⋆ is the number of observations in artificial level
j⋆. Note that the C2-LOCAAT construction, by its use
of an unique update step, ensures that the number of
observations in each j⋆ artificial level coincide for both
ℓ = 1 and ℓ = 2.

4. Fit a weighted linear regression to all points log2

(

σ̂
(ℓ)
j⋆

)2

with ℓ = 1, 2 versus j⋆; use its slope to estimate α as sug-
gested by the results in Proposition 3. Note that equation
(23) allows us to pull the information across both d(1) and
d(2).

5. Iterate steps A-1 to A-4 for P bootstrapped trajectories,
obtaining an estimate α̂p for each trajectory p ∈ 1, P .
The final estimator is α̂ = P−1

∑

P
p=1 α̂p, from which an

appropriate estimate for H can be obtained.

Alg. 2: The long memory parameter estimation

procedure (CLoMPE) for a complex-valued process

{Xti}
N−1
i=0 , sampled at potentially irregularly spaced

times.

We compared results across the range of Hurst pa-

rameters H = 0.6, . . . , 0.9. Each set of results is taken

over K = 100 realizations and P = 50 lifting trajec-

tories. Our CLoMPE technique was implemented us-

ing modifications to the code from the liftLRD pack-
age (Knight and Nunes, 2016) and CNLTreg package

(Nunes and Knight, 2017) for the R statistical program-

ming language (R Core Team, 2013), both available on

CRAN. The measure we use to assess the performance
of the methods is the mean squared error (MSE) defined

by

MSE = K−1
K
∑

k=1

(H − Ĥk)2. (25)

In the case of regularly spaced circularly symmet-

ric fractional Brownian motion (i.e. 0% missingness),

we compare our CLoMPE estimation technique with

the recent estimation method in Coeurjolly and Porcu

(2017b) (denoted “CP”)2.

Table 1 reports the mean squared error for our

CLoMPE estimator on the complex-valued fractional

Brownian motion series for different degrees of missing-

ness (0% up to 20%). In the case of regularly spaced se-
ries, our estimation method works well when compared

to the “CP” method. This is pleasing since the “CP”

method is designed for regularly spaced series, whereas

CLoMPE is specifically designed for irregularly spaced

series. The tables also show that the CLoMPE tech-
nique is robust to the presence of missingness, attaining

good performance even for high degrees of missingness

(20%).

For the complex-valued fractional Gaussian noise,
Table 2 demonstrates that our CLoMPE estimation

technique performs well for regular and irregular set-

tings, with only a slight degradation in performance for

increasing missingness.

We also studied the empirical bias of our estima-
tor for both types of long memory process. For rea-

sons of brevity we do not report these results here, but

these can be found in Appendix B in the supplemen-

tary material. As for the mean squared error results
above, there is a small drop in performance with in-

creasing missingness, and our estimator performs only

slightly worse in terms of bias when compared to the

“CP” method.

Real-valued processes. To assess whether our complex-
valued approach achieves performance gains for real-

valued processes, we repeated the simulation study from

Knight et al (2017) for a number of long memory pro-

cesses. In particular, we studied the performance of our
estimator for real-valued fractional Brownian motion,

fractional Gaussian noise and fractionally integrated se-

ries, for a range of Hurst parameters and levels of miss-

ingness. The processes were simulated via the fArma

add-on package (Wuertz et al, 2013). We compare our
method with the real-valued lifting technique of Knight

et al (2017), shown to perform well in a number of set-

tings. Again, for brevity, we do not report these bias

results here, but they can be found in Appendix B
in the supplementary material. The results show that

our method is competitive with the real-valued esti-

mation method in Knight et al (2017), achieving bet-

2 The authors would like to thank Jean-François Coeurjolly
for providing the R code for simulating the circular fractional
Brownian motion series, as well as for the implementation of
the estimation technique of Coeurjolly and Porcu (2017b).
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Table 1: Mean squared error (×103) for fractional Brownian motion series featuring different degrees of missing

observations for a range of Hurst parameters for the CLoMPE estimation procedure. Boxed numbers indicate best

result for the regularly spaced setting. Numbers in brackets are the estimation errors’ standard deviation.

n = 256 n = 512 n = 1024
Missingness proportion, p Missingness proportion, p Missingness proportion, p

CP CLoMPE CP CLoMPE CP CLoMPE
H 0% 0% 5% 10% 20% 0% 0% 5% 10% 20% 0% 0% 5% 10% 20%

0.6 2 (3) 1 (2) 1 (2) 1 (1) 2 (3) 1 (2) 1 (1) 0 (0) 0 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

0.7 2 (3) 1 (2) 1 (1) 1 (2) 2 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (1) 2 (1) 1 (1) 1 (1) 0 (0)

0.8 3 (3) 2 (2) 2 (2) 1 (2) 2 (2) 1 (2) 2 (2) 1 (2) 1 (2) 1 (2) 1 (1) 3 (2) 2 (2) 2 (1) 1 (1)

0.9 2 (3) 3 (4) 2 (3) 2 (3) 2 (2) 1 (2) 2 (2) 2 (3) 2 (2) 2 (2) 2 (2) 2 (2) 3 (2) 3 (2) 2 (2)

Table 2: Mean squared error (×103) for fractional Gaussian noise featuring different degrees of missing observations

for a range of Hurst parameters for the CLoMPE estimation procedure. Numbers in brackets are the estimation

errors’ standard deviation.

n = 256 n = 512 n = 1024
Missingness proportion, p Missingness proportion, p Missingness proportion, p

H 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%
0.6 1 (2) 1 (2) 1 (2) 2 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
0.7 1 (2) 2 (2) 2 (2) 2 (3) 1 (1) 2 (2) 2 (2) 3 (2) 2 (1) 2 (1) 2 (1) 3 (2)
0.8 2 (2) 2 (3) 2 (3) 3 (5) 2 (2) 3 (3) 3 (3) 4 (4) 2 (2) 3 (2) 3 (2) 5 (3)
0.9 3 (4) 3 (3) 3 (3) 3 (5) 2 (2) 2 (3) 3 (3) 3 (3) 2 (2) 3 (2) 3 (2) 4 (3)

ter results (in terms of MSE and bias) in the majority

of cases for fractional Gaussian noise and fractionally

integrated series. For fractional Brownian motion, we
observe that our method achieves gains in mean square

error, albeit at a cost of a decrease in bias performance.

These results agree with other studies using complex-

valued wavelet methodology, which is shown to out-
perform its real-valued counterpart in a variety of ap-

plications, from denoising (Barber and Nason, 2004)

to Hurst estimation in the (real-valued) image context

(Nelson and Kingsbury, 2010; Jeon et al, 2014; Nafor-

nita et al, 2014). This is due to the use of two rather
than just one filter, thus eliciting more information from

the signal under analysis.

5.2 Analysis of complex-valued wind series with

CLoMPE

In this section we provide a more detailed long memory

analysis of the complex-valued wind series described in

Section 1.1. More specifically, we applied our CLoMPE

Hurst estimation method to the (detrended) irregularly
sampled wind series to assess its persistence properties.

The estimated Hurst parameter was ĤC = 0.86 for the

Wind A series and ĤC = 0.8 for the Wind B series, based

on P = 50 lifting trajectories. Both of these estimates
indicate moderate long memory.

To highlight potential differences with other

approaches, we also performed the LoMPE technique

of Knight et al (2017) to each of the real and imaginary

components of the two series. In addition, we also esti-

mated the Hurst exponent using the Knight et al (2017)
method for the two magnitude series, since such se-

ries (i.e. data without directional information) are most

commonly analysed in the literature. The Hurst expo-

nent estimates are denoted ĤR and ĤI for the real and
imaginary component series, and ĤMod for the magni-

tude series. The estimates are summarized in Table 3.

Table 3: Hurst parameter estimates for the Wind A

and Wind B data from complex-valued series using
CLoMPE and from real-valued component and mag-

nitude series using LoMPE.

Dataset R I Mod C

Wind A 0.90 0.82 0.80 0.86
Wind B 0.85 0.75 0.80 0.80

For the Wind A dataset, our CLoMPE technique es-

timates the persistence as between those of the real

and imaginary components, and higher than that of the
magnitude series. In contrast, for the Wind B dataset,

the estimate from our complex-valued approach coin-

cides with the result for the series derived from the

C-modulus. This analysis highlights that ignoring the
dependence structure between the real and imaginary

components of the series may result in misestimation.

Hence we recommend an approach that uses the complex-
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Fig. 4: (a) Autocorrelation for the magnitude wind series for the Wind A series from Figure 1 (treated as regularly

spaced); (b) autocorrelation for the magnitude Wind B dataset from Figure 1 (treated as regularly spaced). The

dependence structure is markedly different to that shown for the real and imaginary series components shown in

Figure 2.

valued structure of the data, thus accounting for its in-

trinsic rotary structure and dependence, not visible by
only using the traditional magnitude series or individ-

ual real and imaginary strands.

It could also be argued that these differences in esti-

mates are unsurprising, since the dependence structure

for the magnitude series, shown in Figure 4, is visibly

different to that of the real and imaginary component

series shown in Figure 2. We argue that our estima-
tion of the long memory parameter for this series is

more reliable than that in the current existing litera-

ture, as our proposed algorithm naturally encompasses

both the complex-valued and improper features of wind
series. A complex-valued analysis using our approach

could hence provide more accurate long memory infor-

mation, reducing miscalibration of predictive climate

models. We further suggest that this precision would

provide more certainty when assessing renewable en-
ergy resource potential, as discussed in e.g. Bakker and

van den Hurk (2012).

6 Discussion

Hurst exponent estimation is a recurrent topic in many

scientific applications, with significant implications for

modelling and data analysis. One important aspect of

real-world datasets is that their collection and monitor-
ing are often not straightforward, leading to missing-

ness, or to the use of proxies with naturally irregular

sampling structures. In parallel, in many applications

of interest there is a natural complex-valued represen-

tation of data. To this end, this article has proposed
the first Hurst estimation technique for complex-valued

processes with sampling missingness or irregularity, and

in doing so it has also constructed a novel lifting algo-

rithm able to work on complex-valued data sampled
with irregularity. Until the work in this article, Hurst

estimation methods have not been able to exploit the

wealth of signal information in such data, whilst also

coping with irregular sampling regimes. Our CLoMPE

wavelet lifting methodology was shown to give accurate
Hurst estimation for a variety of complex-valued frac-

tional processes, and is suitable for both proper and im-

proper complex-valued processes. Simulations demon-

strate that the technique is robust to estimation with
significant degrees of missingness, as well as in the non-

missing (regular) setting.

We have demonstrated the use of our CLoMPE tech-

nique in an application arising in environmental sci-
ence. Through our analysis of wind speed data, we have

shown that embedding directional wind information in

the analysis can lead to significantly different Hurst ex-

ponent estimates when compared to only considering

real-valued information, such as magnitude series. This
highlights that not exploiting a complex-valued data

representation in this setting can potentially result in

misleading conclusions being drawn about wind persis-

tence. This in turn has a subsequent impact on param-
eters in climate models and inefficiencies in resource

management decisions.



Long memory estimation for complex-valued time series 15

Whilst the development of our proposed complex-

valued Hurst estimator was motivated by an applica-

tion in climatology, we believe that the work in this

article has sufficient generality to have appeal in other

settings. We thus conclude this article with outlining
some example applications in which our methodology

is potentially beneficial.

Data from neuroimaging studies. Functional mag-

netic resonance imaging (fMRI) data continues to en-
joy popularity in the neuroscience community due to its

non-invasive acquisition and data richness, see e.g. As-

ton and Kirch (2012) for an accessible introduction to

the area from the statistical perspective. In particular,

fMRI studies often measure information on blood flow
in the brain; these voxel-level data are used to investi-

gate neuronal activity of participants during task-based

experiments, and many authors have asserted that such

time courses possess fractional noise structure, see e.g.
Bullmore et al (2003). Evaluation of the Hurst expo-

nent in this context has been shown to be important

in characterising brain activity under a range of condi-

tions, indicating different levels of cognitive effort (Park

et al, 2010; Ciuciu et al, 2012; Churchill et al, 2016).
Despite data collection being performed in a controlled

setup, recent work has highlighted the need for tailored

statistical methodology to cope with both unbalanced

designs, as well as missingness, which can feature in
fMRI data for a number of reasons (Lindquist, 2008;

Ferdowsi and Abolghasemi, 2017). In actuality, fMRI

scanners record both phase and magnitude informa-

tion, though most studies only use the magnitude image

for analysis. As a result, there has been a recent body
of work dedicated to complex-valued analysis of fMRI

data, most notably by Rowe and collaborators (see e.g.

Rowe (2005, 2009); Adrian et al (2017)). Such an ap-

proach has shown improvements over real-valued meth-
ods for a range of analysis tasks, see also the work by

Adali and collaborators (Calhoun et al, 2002; Li et al,

2011; Rodriguez et al, 2012). Thus our methodology has

the potential of taking advantage of the full complex-

valued image information whilst also coping with the
inherent non-uniform sampling.

Ocean surface measurement devices. There is a

long-standing history of studying ocean circulation us-

ing GPS-tracked ocean buoy drifters, see e.g. Osborne
et al (1989). Since these trajectories are measured in

the longitude-latitude plane, they are often converted

to complex-valued vector series, see e.g. Sykulski et al

(2017). It has long been observed that, due to the buf-

feting motion of ocean currents, positional drifter tra-
jectories often exhibit fBM-like behaviour, whilst their

velocity over time resemble fGn characteristics (Sander-

son and Booth, 1991; Summers, 2002; Qu and Addison,

2010; Lilly et al, 2017). In this context, accurate Hurst

exponent estimation is useful in indicating the intensity

of ocean turbulence, giving evidence towards particu-

lar theorized dynamical regimes (Osborne et al, 1989).

These in turn, can provide insight into initial conditions
and origin of ocean circulation. Moreover, the trajec-

tories often display rotary characteristics (Elipot and

Lumpkin, 2008; Elipot et al, 2016). Due to the inter-

rupted nature of satellite coverage and the possibility
of measurements from multiple satellite orbits, the tem-

poral sampling of the trajectories are typically highly

nonuniform. In addition, due to the irregular sampling

structure, the data are often interpolated prior to anal-

ysis (Elipot et al, 2016). One aspect of exploration in
this setting could be to contrast Hurst estimation using

our proposed methodology with/ without data interpo-

lation to investigate its effect, since previous work sub-

stantiates that such processing can produce bias (in the
context of Hurst exponent estimation) for real-valued

series (Knight et al, 2017). It would also be interesting

to investigate modifications to our technique to param-

eter estimation for Matérn processes discussed in Lilly

et al (2017).

Acknowledgements The R package CliftLRD implement-
ing the CLoMPE technique will be released via CRAN in due
course.

A Proofs and theoretical results

This appendix gives the theoretical justification of the results
from Sections 3 and 4, following the notation outlined in the
text.

A.1 Proof of Proposition 1

To obtain the recursive construction for each basis, we start
with the basis indexed by i = 1. At stage n, we have f(x) =
∑

k∈Sn
cn,kϕ

(1)
n,k(x) with ϕ

(1)
n,k(x) = χIn,k

(x) as proposed in

the LOCAAT construction (Jansen et al, 2009).

Let us now suppose f(x) := ϕ
(1)
n−1,j(x), thus ϕ

(1)
n−1,j(x) =

d
(1)
jn
ψ

(1)
jn

(x) +
∑

k∈Sn−1
cn−1,kϕ

(1)
n−1,k(x). Hence d

(1)
jn

= 0,

cn−1,k = 0, ∀k 6= j and cn−1,j = 1. From the update rela-
tionship cn−1,k = cn,k + bnkλjn

from (7), we have cn−1,k =

cn,k,∀k ∈ Jn (as λjn
= 0 from d

(1)
jn

= 0) and also cn−1,k =

cn,k,∀k /∈ Jn.
From equations (5) we have

d
(1)
jn

= λjn
+iµjn

= cn,jn

(

ℓnjn
+ imn

jn

)

+
∑

k∈Jn

cn,k (ℓnk + imn
k ) .

(26)

By denoting ank = ℓnk + imn
k , we obtain d

(1)
jn

= cn,jn
anjn

−
∑

k∈Jn
ank cn,k. Using also the fact that d

(1)
jn

= 0, we have
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cn,jn
=

an
jn

|an
jn

|2
∑

k∈Jn
ankcn,k. If j ∈ Jn then cn,j = 1 and all

others are zero, so cn,jn
=

an
jn

an
j

|an
jn

|2 := ãnj . Thus

ϕ
(1)
n−1,j(x) = ϕ

(1)
n,j(x) + ãnj ϕ

(1)
n,jn

(x), if j ∈ Jn, (27)

ϕ
(1)
n−1,j(x) = ϕ

(1)
n,j(x), if j /∈ Jn. (28)

For the primal wavelet function construction, we can similarly

take f(x) := ψ
(1)
jn

(x), and obtain the corresponding wavelet

decomposition with coefficients d
(1)
jn

= 1 (thus λjn
= 1 and

µjn
= 0) and cn−1,k = 0, ∀k 6= jn. From the update equa-

tions, we have cn,j = −bnj , ∀j ∈ Jn and cn,j = 0,∀j /∈ Jn.

Using d
(1)
jn

= cn,jn
anjn

−
∑

j∈Jn
anj cn,j (as above) and

d
(1)
jn

= 1, we have cn,jn
anjn

= 1 −
∑

j∈Jn
anj b

n
j and cn,jn

=
an

jn

|an
jn

|2
(

1−
∑

j∈Jn
anj b

n
j

)

. Since f(x) := ψ
(1)
jn

(x), we then

have

ψ
(1)
jn

(x) =
anjn

|anjn
|2



1−
∑

j∈Jn

anj b
n
j



ϕ
(1)
n,jn

(x)−
∑

j∈Jn

bnj ϕ
(1)
n,j(x)

=
anjn

|anjn
|2
ϕ
(1)
n,jn

(x) −
∑

j∈Jn

bnj

(

ϕ
(1)
n,j(x) + ãnj ϕ

(1)
n,jn

(x)
)

.

Using the primal scaling function construction in equation
(27), we obtain an expression for the primal wavelet function

ψ
(1)
jn

(x) =
anjn

|anjn
|2
ϕ
(1)
n,jn

(x) −
∑

j∈Jn

bnj ϕ
(1)
n−1,j(x),

which demonstrates the recursive construction from stage n
to n − 1 and concludes the proof for the primal wavelet and
scaling function construction.

For the dual scaling functions, we use the update equa-
tions and the fact that cr,j =< f, ϕ̃r,j > for any r, hence we
have, at stage n,

< f, ϕ̃n−1,j > = < f, ϕ̃n,j > +bnj < f, ψ̃L
n,j >, ∀j ∈ Jn

< f, ϕ̃n−1,j > = < f, ϕ̃n,j > ∀j /∈ Jn,

where ψ̃L denotes the dual wavelet function corresponding to
the L-filter only.

Thus the recursive relations for the dual scaling functions
are

ϕ̃n−1,j(x) = ϕ̃n,j(x) + bnj ψ̃
L
n,j(x), ∀j ∈ Jn

ϕ̃n−1,j(x) = ϕ̃n,j(x), ∀j /∈ Jn.

Similarly, since d
(1)
jn

= cn,jn
anjn

−
∑

j∈Jn
anj cn,j, we have

< f, ψ̃
(1)
jn

>=< f, anjn
ϕ̃n,jn

−
∑

j∈Jn
anj ϕ̃n,j > and we obtain

the dual wavelet construction

ψ̃
(1)
jn

= anjn
ϕ̃n,jn

(x) −
∑

j∈Jn

anj ϕ̃n,j(x).

These steps are subsequently re-iterated, and hence the same
also holds for stage r.

In order to obtain the primal scaling function recursive
construction corresponding to the second basis, we proceed
in the same way as for the first basis and similarly obtain

ϕ
(2)
n−1,j(x) = ϕ

(2)
n,j(x) + ã

n
j ϕ

(2)
n,jn

(x), if j ∈ Jn,

ϕ
(2)
n−1,j(x) = ϕ

(2)
n,j(x), if j /∈ Jn.

We obtain the primal wavelet equations in a similar manner
to the previous development

ψ
(2)
jn

(x) =
anjn

|anjn
|2
ϕ
(2)
n,jn

(x)−
∑

j∈Jn

bnj ϕ
(2)
n−1,j(x).

The above equations show that the primal scaling and wavelet
functions corresponding to the second basis are the conjugates
of the corresponding primal and wavelet functions under the
first basis, respectively.

As already explained, the update step is the same for both

bases and cr,k =< f, ϕ̃
(1)
r,k >=< f, ϕ̃

(2)
r,k >, for all r, k thus

the dual scaling functions coincide under both bases (ϕ̃
(1)
r,k =

ϕ̃
(2)
r,k).

For the dual wavelet function, following the same ap-
proach as above, we obtain

ψ̃
(2)
jn

(x) = anjn
ϕ̃n,jn

(x)−
∑

j∈Jn

anj ϕ̃n,j(x).

This concludes the proof for the second basis. ⊓⊔

A.2 Proof of Proposition 2

Let {Xt} be a zero-mean complex-valued stationary long
memory series with autocovariance γX(τ) ∼ cγ |τ |−β. We
note here that for improper processes of the type considered in
Sykulski and Percival (2016), the pseudo-autocovariance has
the same decay rate as the autocovariance (rX(τ) ∼ cr|τ |−β)
while for proper processes, rX(τ) = 0, ∀τ , hence we shall con-
centrate on the lifting decorrelation properties for improper
processes.

The autocovariance of {Xt} can be written as γX(ti −
tj) = E(XtiXtj ) and rX(ti − tj) = E(XtiXtj ), assuming
E(Xt) = 0, where 0 is to be understood as the complex num-

ber 0 = 0+i 0. Hence, E(d
(ℓ)
j ) = 0 for ℓ = 1, 2. In what follows

we drop the superscript (ℓ) in order to avoid notational clut-
ter.

Using the assumption that E(dj) = 0 it follows that

E(djr
djk

) =

∫

R

ψ̃jr
(t)

{∫

R

ψ̃jk
(s)γX(t− s) ds

}

dt, (29)

where we have used djr
=< X, ψ̃jr

>, and the timepoints
jr and jk are distinct. In what follows, denote the interval
length (i.e. continuous scale) of detail djr

by Ir,jr
.

Since from (15) and (22), regardless of whether we work
with the basis indexed by ℓ = 1 or ℓ = 2, the (dual) wavelet
functions are linear combinations of the (same) dual scaling
functions, hence equation (29) can be re-written as

E(djr
djk

) =

∫

R







ϕ̃r,jr
(t)−

∑

i∈Jr

Ar
i ϕ̃r,i(t)







×

∫

R







ϕ̃k,jk
(s)−

∑

j∈Jk

Ak
j ϕ̃k,j(s)







γX(t− s) ds dt, (30)

where A generically denotes the appropriate coefficient that
corresponds to basis ℓ = 1 or ℓ = 2, but ϕ̃ is the same for
both bases.

As C2-LOCAAT progresses, the (dual) scaling functions
are defined recursively as linear combinations of (dual) scaling
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functions at the previous stage, see e.g. equation (19). Hence
the scaling functions in the above equation can be written
as linear combinations of scaling functions at the first stage
(i.e. r = n). Due to the linearity of the integral operator, (30)
can be written as a linear combination with complex-valued
coefficients of terms like

Bn,i,j :=

∫

R

ϕ̃n,i(t)

{
∫

R

ϕ̃n,j(s)γX(t− s) ds

}

dt

=

∫

R

ϕ̃n,i(t) (ϕ̃n,j ⋆ γX) (t) dt, (31)

where ⋆ is the convolution operator, and i and j refer to
time locations that were involved in obtaining djr

and djk
.

Note that at this stage we do not use complex conjugation as
the (dual) scaling functions are initially defined (at stage r =
n) as scaled characteristic functions of the intervals associated

with the observed times, i.e. ϕ̃n,i(t) = I−1
n,iχIn,i

(t) (thus real-

valued).
Using Parseval’s theorem in equation (31) gives

Bn,i,j = (2π)−1

∫

R

ˆ̃ϕn,i(ω)
(

̂ϕ̃n,j ⋆ γX
)

(ω) dω

= (2π)−1

∫

R

ˆ̃ϕn,i(ω) ˆ̃ϕn,j(ω)fX(ω) dω, (32)

where in general ĝ denotes the Fourier transform of g. As the
Fourier transform of an initial (dual) scaling function (scaled
characteristic function on an interval, (b− a)−1χ[a,b]) is

̂
{

(b− a)−1χ[a,b]

}

(ω) = sinc {ω(b− a)/2} exp {−iω(b+ a)/2} ,

where sinc(x) = x−1 sin(x) for x 6= 0 and sinc(0) = 1 is the
(unnormalized) sinc function, we can write (32) as

∫

R

sinc (ωIn,i/2) sinc (ωIn,j/2) exp {−iωδ(In,i, In,j)} fX(ω)dω,

(33)

where δ(In,i, In,j) is the distance between the midpoints of
intervals In,i and In,j at the initial stage n.

Equation (33) can be interpreted as the Fourier trans-
form of u(x) = fX(x) sinc (xIn,i/2) sinc (xIn,j/2) evaluated
at δ(In,i, In,j).

Since the sinc function is infinitely differentiable and the
spectrum is Lipschitz continuous, results on the decay proper-
ties of Fourier transforms (Shibata and Shimizu, 2001, Theo-
rem 2.2) imply that, for i 6= j, terms of the form Bn,i,j decay
as O

{

δ(In,i, In,j)−1
}

. Hence as in Knight et al (2017), the
further away the time points are, the less autocorrelation is
present in the detail coefficients and as the rate of autocor-
relation decay is of reciprocal order, it is faster than that
of the original process assumed to have long memory (hence
O(|τ |−β) with β ∈ (0, 1)).

A similar argument as above applies for the pseudo-covariance
rX(ti − tj) = E(XtiXtj ), as

E(djr
djk

) =

∫

R

ψ̃jr
(t)

{∫

R

ψ̃jk
(s)rX(t− s) ds

}

dt, (34)

and concludes the proof. ⊓⊔

A.3 Proof of Proposition 3

As Cov(Xti ,Xtj ) = γX(ti − tj) and djr
=< X, ψ̃jr

>, it
follows that djr

has mean zero (as the original process is

zero-mean) and in a similar manner to (29) we have

E(|djr
|2) =

∫

R

ψ̃jr
(t)

{∫

R

ψ̃jr
(s)γX(t− s) ds

}

dt, (35)

where again we have dropped the basis index ℓ = 1, 2 for
notational brevity and we remind the reader that |· | denotes
the C-modulus. As before, we denote the associated interval
length of the detail djr

by Ir,jr
.

Using the recursiveness in the dual wavelet construction
(equations (15) and (22)), it follows that the (dual) wavelet
functions are linear combinations of the (same) scaling func-
tions. For the first basis, equation (35) can be re-written as

E(|d
(1)
jr

|2) =

∫

R







arjr
ϕ̃r,jr

(t)−
∑

j∈Jr

arj ϕ̃r,j(t)







×

∫

R







arjr
ϕ̃r,jr

(s)−
∑

j′∈Jr

arj′ ϕ̃r,j′(s)







γX(t− s) ds dt. (36)

This can be expanded as

E(|d
(1)
jr

|2) =

∫

R

∫

R

arjr
arjr

ϕ̃r,jr
(t)ϕ̃r,jr

(s)γX(t− s) ds dt

−
∑

j∈Jr

∫

R

∫

R

arja
r
jr
ϕ̃r,j(t)ϕ̃r,jr

(s)γX(t− s) ds dt

−
∑

j′∈Jr

∫

R

∫

R

arjr
arj′ ϕ̃r,jr

(t)ϕ̃r,j′(s)γX(t− s) ds dt

+
∑

j∈Jr

∑

j′∈Jr

∫

R

∫

R

arja
r
j′ ϕ̃r,j(t)ϕ̃r,j′(s)γX(t− s) ds dt.

(37)

As in Proposition 1, using Parseval’s theorem we obtain that
the above is a linear combination of terms of the form

Br,i,j =

∫

R

χ̃r,i(t)

{∫

R

χ̃r,j(s)γX(t− s)ds

}

dt =

∫

R

sinc(ωIr,i/2) sinc(ωIr,j/2)e
−iωδ(Ir,i,Ir,j)fX(ω)dω, (38)

where recall that the hat notation denotes the Fourier trans-
form of a function and δ(Ir,i, Ir,j) denotes the distance be-
tween the midpoints of intervals Ir,i and Ir,j .

Due to the artificial level construction, the sequence of
lifting integrals is approximately log-linear in the artificial
level (see Knight et al (2017) for details), i.e. for those points
jr in the j⋆th artificial level, we have log2 (Ir,jr

) = j⋆ +
∆ where ∆ ∈ {−1 + log2(α0), log2(α0)} for some α0, thus
Ir,jr

= R2j
⋆

for some constant R > 0.
Now suppose i = j and both points belong to the j⋆th

artificial level. In equation (38) we make a change of variable
η = ωR2j

⋆

to obtain

Br,i,i =

∫

R

sinc2(η/2)fX(η/R2j
⋆

)
(

R2j
⋆
)−1

dη

∼

∫

R

sinc2(η/2)cf |η|
−α

(

R2j
⋆
)α−1

dη, (j⋆ → ∞)

= 2j
⋆(α−1)

∫

R

cfR
α−1 sinc2(η/2)|η|−αdη

= 2j
⋆(α−1)Rα−14cfΓ (−1 − α) sin(πα/2) (39)

= 2j
⋆(α−1)Rα−1M, (40)
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where α ∈ (0, 1), Γ is the Gamma function andM = 4cfΓ (−1−
α) sin(πα/2).

If i 6= j are points from the same neighbourhood Jr and
both belong to the same artificial level j⋆, then their artificial
scale measure will be the same. Performing the same change
of variable as above, we obtain (as (j⋆ → ∞)

Br,i,j ∼

∫

R

sinc2(η/2)e−i η
(

R2j
⋆
)−1

cf |η|
−α

(

R2j
⋆
)α
dη,

= 2j
⋆(α−1)cfR

α−1

∫

R

sinc2(η/2)e−i η |η|−αdη

= 2j
⋆(α−1)Rα−14cf (2

α − 1) sin(πα/2)Γ (1 − α) (41)

= 2j
⋆(α−1)Rα−1N, (42)

where N = 4cf (2α − 1) sin(πα/2)Γ (1 − α).
All terms in (37) involve points from the same neigh-

bourhood Jr, and thus using (40) and (42) together with the
linearity of the integral operator, we have that

E(|d
(1)
jr

|2) ∼ 2j
⋆(α−1)Rα−1 ×



M2|arjr
|2+N2

∑

j

∑

j′

arja
r
j′−MN

∑

j

arja
r
jr
−MN

∑

j′

arjr
arj′





= 2j
⋆(α−1)Rα−1|M arjr

−N
∑

j∈Jr

arj |
2

= C 2j
⋆(α−1),

where C is a constant depending on cf , R and α.
A similar argument applies to the the second basis and

completes the proof. ⊓⊔
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