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Abstract—The exploration of the relationships between behav-
ior and cognitive psychology of game players has gained impetus
in recent years because such links provides an opportunity for
improving user experiences and optimizing products in the games
industry. At the same time, the volume and global scope of
digital game telemetry data has opened up new experimental
opportunities for studying human behavior at large scales. Prior
research has demonstrated that a relation exists between learning
rates and performance. Although many factors might contribute
to this correlation at least one may be the presence of innate
cognitive resources, as demonstrated in recent work relating
IQ and performance in a Multi-player Online Battle Arena
game. Here, we extend this work by examining the relationship
between early learning rate and long term performance using
a 400,000 player longitudinal dataset generated by new players
of the widely-played MOBA League of Legends. We observed
that the learning rate of new players in a competitive season
explains a significant amount of variance in the performance at
the end of the year. This analysis was then extended by training
two multivariate classifiers (Logistic Regression, Random Forest)
for predicting players who by the end of the season would be
considered masters (top 0.05%), based on their performance in
the first 10 matches of the same season. Both classifiers performed
similarly (ROC AUC 0.888 for Logistic Regression, 0.878 for
Random Forest), extending the time frame for skill prediction
in games based on a relatively sparse sample of early data. We
discuss the implications for these findings based on preexisting
psychological studies of learning and intelligence, and close with
challenges and direction for future research.

Index Terms—skill learning, MOBA, prediction

I. INTRODUCTION

Digital games generate considerable amounts of behavioral

telemetry data [1]. However, despite the ability to track player

behavior in detail within games, build detailed behavioral

profiles [2] and even predict player behavior [3], behavioral an-

alytics continue to struggle with explaining observed behaviors

[4], [5]. Similarly, while work focusing on player psychology

has existed for some time [6], purely psychological studies

based on large-scale telemetry data are rare, in part due to dif-

ficulties in acquiring and parsing high quality, well-controlled

data. In the domain of games research, there has been work

exploring the correlations between player behavioral data and

motivations for play [7], [8], albeit at smaller scales. Our

work primarily follows recent research on skill learning and

cognition in games, [9], [10], [11], [12], [13] using larger-scale

data (thousands of players and upwards).

The relationship between player behavior and psychology

is an ongoing research topic, with uses including designing

games that are adaptive to player responses and better informa-

tion modelling for AI agents [14]. Psychological research also

benefits from the large datasets provided by game telemetry

which increase statistical power and provide the ability to

follow skill learning in individual subjects over long periods

of time [9].

A growing body of evidence exists for common cognitive

factors underlying early skill learning and late-stage perfor-

mance, and significant achievements have been made with



prediction modelling based on smaller or larger scale video

game data [9], [10], [11], [12]. Here the focus is on the

application of this knowledge to inform classification models

predicting future performance, based on data of the span of a

whole season.

II. CONTRIBUTION

The work presented here contributes to the understanding of

the relationship between player performance and skill learning,

extending previous research on this topic. Previous research

has established a correlation between skill learning and game-

play behavior[10] as well as various cognitive and motivational

factors [15], [12]. However, these results have typically been

obtained for games designed specifically for the purpose of

education or research. In this paper we explore the relationship

between early learning rates and player performance after one

year by analyzing datasets from more than 400,000 players

of the popular commercial game League of Legends players

during the 2016 season. All player-registered-accounts were

new to the game, and were sampled randomly from a total

player base of more than 100 million monthly active players as

of 2016 [16]. Using this dataset, we find a strong relationship

between early skill learning rates and final performance in

a large-scale commercial online multiplayer game and we

also present results of preliminary prediction model building.

Based on previous work, we consider the possibility that this

relationship is mediated by common cognitive factors [13],

and propose future work to test this theory.

III. RELATED WORK

The relationship between cognitive skills and digital game-

play has been partially explored in previous work, but most

research has focused on snapshot data, examining correlations

between psychological factors and performance at a single

point in time [17]. In case of longitudinal studies, the focus is

often on retrieving behavior in purpose-built non-commercial

games over a limited period of time. An interesting question is

therefore whether cognitive resources influence skill learning

and gaming performance in commercial games where the

player has full control on the frequency and duration of

gameplay. Recent work [15], [10], has circumvented this

problem making use of behavioral telemetries directly obtained

from game servers, thus overcoming the common issue of

needing to reconstruct the acquisition process of early skill

learning.

Some psychological research in skill learning has provided

preliminary evidence of a correlation between player cognition

and game performance, similar to other domains [13], [10],

[15] (see [15] for a recent review).

In general, digital games might be an exceptional tool for

studying skill learning because players can be followed and

assessed from their first contact with the game. A notable

example is provided by Stafford et al. [9], who analyzed data

from 854,064 players, from an online game and established a

relationship between practice volume, spacing, variability and

outcome performance. However, this work was not designed

as a long-term longitudinal study and made use of a relatively

simple game designed specifically for the controlled purposes

of that experiment. Following up on this work, a second

study examined the time-series data of 20,000 players from

the commercial online game Destiny, investigating factors that

contribute to skill acquisition and learning rate [10]. Games

have also been used for similar purposes by Thompson et al.

[11], [12]. In related work, Kokkinakis et al. [13] provided

evidence for a correlation between player performance and IQ.

This work was snapshot based, i.e. based on a specific instant

in time. Given the assumption that these correlations operate

across any point in the learning curve of a player, the work

of Kokkinakis et al. [13] and others, e.g. Bonny et al.[15] are

the basis for investigating cognitive factors underlying skill

learning at large scales in online games.

Related to the work investigating skill learning in games

is the attempt in esports analytics focusing on predicting

the outcome of player performance, either within or between

matches [18], [19], [20], [21], [22]. The majority of this work

is focused on match prediction, i.e. predicting the outcome

of specific matches. An example is provided by [22], who

developed match win prediction models for professional-level

matches in the Multi-Player Online Battle Arena (MOBA)

game DOTA 2, comparing mixed-rank and professional-only

rank data in terms of their applicability to a professional-level

real-time prediction system. The classifier used was a hyper-

parameters-tuned Random Forest model which employed a

variety of in-game behavioral features as well as higher level

metadata such as hero character combinations. This type of

telemetry has also been used to investigate patterns of fights

that occur across professional DotA 2 games [23]. Random

Forest is a commonly applied model in this body of work,

similar to prediction modeling work in general game analytics

e.g. [24], [25].

The only current work focusing on longer-term player

performance prediction in esports is an unpublished report [26]

focusing on League Of Legends, presenting a skill prediction

model for the game. However, the work is preliminary, based

on 500 matches which limits the generalizability of the results.

Furthermore, the work does not address the challenge of

predicting the peak skill of players based on very early

performance. Work such as Bonny et al. [15] and Kokkinakis

et al. [13] explore longitudinal relationships between skill and

behavior (or training), but do not attempt to provide prediction

models.

In summary, previous work has established the foundation

for behavioral prediction in games across a growing number

of types and genres (e.g. [1], [21], [27], [23]), including in the

MOBA genre of League of Legends, which is the case study

used here, and similar esports titles. Work such as Stafford

et al. [9], [10] and Thompson et al. [11], [12] has provided

a tentative basis for exploring skill development in digital

games, establishing correlations between skill learning and

behavior, as well as cognition (e.g. IQ) and skill. Here we

expand on this foundation.



IV. LEAGUE OF LEGENDS

League of Legends is a Multi-player Online Battle Arena

game (MOBA) developed by Riot Games, published in 2009.

It is the most popular esports game in the world [16], [28].

The game is supported financially by microtransactions [3],

[25], [24].

The game is set in an arena environment where ten players

(’summoners’) control ’champions’, or characters forming two

teams of five players. These teams compete against one an-

other to eliminate the opposing team’s home base in the arena.

Each match lasts approximately half an hour - although much

shorter and longer matches are possible. Champions can gain

more abilities during the game - primarily by accumulating

’experience points’ (XP) or ’Gold’ which can be used to buy

performance-enhancing items. The change in Gold and XP

as a function of time are two of the most commonly used

performance metrics in League of Legends. Other important

metrics in include the number of opponents that a player has

killed, the number of deaths that a player has experienced

(champions are ’re-animated’ after a time-out increasing in

accordance to the champion’s XP) and the number of ’assists’

that one player has provided to another shortly before an

enemy’s death. Jointly, these metrics vary not only as a

function of the player’s skill and the overall skill of the two

teams, but also depend on the specific champion played and

the combat strategy employed. In general, League of Legends,

similar to other MOBAs such as DOTA 2 or Heroes of the

Storm is conceptually simple but hard to master due to the

complexity of the underlying gameplay [28].

A. Skill and ranking in League of Legends

Performance in League of Legends is calculated using an

ELO-based relative skill rating system originally devised for

chess. It is similar to other multi-player online games such as

Destiny [10], using a generalization of ELO called TrueSkill,

a Bayesian skill rating system developed by Microsoft [29].

The system is based on wins and losses and serves the function

of matchmaking, provides information to players about their

rank compared to others, and can be used as a qualification

for tournaments. The ELO system used by Riot is specifically

adapted for the 5v5 format used in League of Legends.

Players are divided into different ranks depending on their

overall skill in League of Legends. There are seven tiers, with

the top tier being limited to 200 players. The Master rank is

limited to about 0.05% of the population.

Performance is formally recorded as a hidden value Match

Making Rating or Ratio (MMR). The MMR of a player is not

the same thing as the rank of the player which is determined

by a bin and can be influenced by additional external factors

such as long periods of inactivity.

V. DATA SET

A. Sample

The dataset was provided by Riot Games, the developer

and publisher of League of Legends. The dataset contains

behavioral telemetry data derived from the 2016 season of the

game (ranked play in League of Legends is organized in game

seasons of roughly one year). From the global player base, a

random sample was drawn, covering 413,341 users (players)

and approximately 140 million rows.

Each row in the dataset contained records for a single match

in relation to a particular player account. The earliest match

entry was recorded on 21 January 2016 and the final match

played in the data was logged on 6 November 2016. This

period of time falls under the 2016 Competitive Season of the

game. All accounts had been created at the start of the season

and played a minimum of 150 competitive ladder games during

the season. 150 matches was set as a lower bounds to remove

any largely inactive players. All matches in the data were

restricted to the default 5 versus 5 ranked ”Solo/Duo Queue”

ranked mode. All player MMRs were initialized to the same

starting value by default. After every match, this rating was

then updated based on a system that takes into account the

average rating of a player’s team, an average rating of the

enemy team, whether the player’s team won or lost. Winning

a match resulted in an increased rating, and a loss results in

a decreased rating.

B. Telemetry

Data from League of Legends are publicly available via a

data API service provided by Riot. The dataset provided here

was similar in to the data that might be acquired from these

public sources but had the advantage of being randomly drawn

from the population, and, critically, contained Rating (MMR)

scores for each player, which are not publicly available. 16

features were provided for this analysis (Table I).

TABLE I
RAW IN-GAME DATA, ON A PER MATCH BASIS

Field Description

Account ID Unique Identifier of a player account

Platform ID The server the game was played on

Game ID Unique identifier of the match

Neutral Creep Number of neutral AI enemies killed

Enemy Creep Number of AI enemies killed

Win Boolean indicating a win or loss

Timestamp When the match was logged

Date Date of match played

Hour Hour of match played

Gold Earned Total gold earned in the match

Damage Dealt Total dealt to other players

Time Dead Total seconds spent dead

Time Played Total seconds played in the match

Kills Total Kills

Deaths Total Deaths

Assists Total Assists

Rating The rating of the player before the match

Position The role the player was assigned

The raw data forms the basis for feature engineering (see also Table II).

VI. METHODS

Data were preprocessed and analyzed in a Python 3.6

environment using Pandas [30], Numpy and SciPy [31] for

data handling and statistical analysis. Scikit-learn [32] was

the reference framework for machine learning.



Fig. 1. Distributions of players by MMR during calibration games (left) and after the season end (right). Due to the confidential nature of the MMR values,
the axes have been standardized.

Fig. 2. Trajectories of MMRs over matches from a subsample of players.
All the trajectories stem from the same starting point and spread in the initial
stages mirroring a power law curve. Due to the confidential nature of the
MMR values, the axes have been standardized.

A. Data Preprocessing

The data provided by Riot were drawn directly from the

telemetry servers of League of Legends. In addition to impos-

ing a 150 game minimum requirement, and season time bin

we performed some additional pre-processing steps to ensure

data quality.

We first eliminated players playing more than 3,000 matches

in total, as we were cautious of excessive playtimes indicating

possible contamination from shared accounts or automated

systems. Following this, we also filtered players whose first

MMR entry differed from the pre-defined starting value. This

was determined to be an artifact caused by players migrating

between different servers during the season, displaying only

records of their play on their latest server in our data. We then

eliminated player who abandoned (went ’away from keyboard’

early in the game) during the first 10 games they played

because scores during this period were a critical component

of our analysis. To eliminate these players we filtered users

that recorded Time Played durations of less than 900 seconds.

Despite a legitimate match in LoL might be shorter, these

extremely rare cases hold very little information about the

player performance and are indistinguishable from those where

the player decided to leave the game. We also discarded users

who recorded simultaneous Kills, Deaths and Creep Kill scores

of 0 for the same reason. Finally we also excluded users having

their nominally unique id duplicated on multiple servers.

From the original data of 413,341 players, 313,184 were re-

tained after preprocessing. Standardized distributions of MMR

for this sample can be observed in figure 1, and the trajectories

of MMRs over the season can be observed in figure 2.

B. Regression Analysis

For each region we evaluated whether the rate of change

in the MMR of the first 10 matches predicted the mean

MMR of the last 10 matches. For comparison, we generated

a synthetic null data set by computing 100,000 random walks

with length and MMR transition probabilities drawn at random

from distributions matching the existing data.

C. Feature Engineering

Since the aim of this work was to evaluate the impact

of early season performance on final season outcome we

computed a set of features based on the original Key Per-

formance Indices (KPIs) over the first 10 matches of each

user (again see Table 1 for further details). Two approaches

were adopted: a brute force one where we retrieved various

statistical descriptors of the original KPIs and an informed one

where we used knowledge derived from our regression analysis

and previous work [10], [27], [24], [25], [12] for retrieving

possible useful features.

In first instance a series of temporal KPIs were created

based on the in-game time alive (i.e. Time Played - Time

Dead): Neutral Creep per Minute, Enemy Creep per Minute,

Gold per Minute, Damage per Minute, Kills per Minute,

Deaths per Minute and Assists per Minute. For each of the



original and temporal KPIs we retrieved mean, median and

standard deviation over the first 10 matches in accordance to

the methodology found in [33]. Following the intuition of [10]

we computed a series of progression metrics retrieving the

first derivative obtained by regressing a particular KPI over

the ordered number of matches (i.e. range from 1 to 10). We

calculated the first derivative for: Gold, Damage Dealt, Time

Alive, Time Dead, Kills, Deaths, Assists, Gold per Minute,

Deaths per Minute, Assists per Minute and MMR over the

first 10 games.

To avoid problems of instability when calculating ratios with

a denominator close to zero we computed the percentage for

the following sets: {Time Alive, Time Dead}, {Deaths, Kills,

Assists}, {Win, Loss}, {Morning Session, Afternoon Sessions,

Evening Sessions, Night Sessions}, and {Position Utility, Posi-

tion Middle, Position Bottom, Position Top, Position Jungle}.

We also calculated a series of miscellaneous features like

Mean Temporal Distance between matches, number of Con-

secutive Wins, number of Consecutive Losses and variability

in the role assumed by the player as measured by the Gini

Index. These were added because previous work has utilized

these metrics e.g. for prediction modeling in games or to

explore skill learning (e.g. [10], [27], [24], [25], [12]

As target variables for our regression analysis and multi-

variate classification task we retrieved for each user the mean

MMR over the last 10 matches and the difference between

the mean MMR of first and last 10 matches. A summary of

features generated can be observed in Table II.

TABLE II
SUMMARY OF THE FEATURES ENGINEERED FROM ORIGINAL RAW DATA.

Feature Type Description Example

Statistics Common statisti-
cal descriptors

Mean kills
Median kills
Standard deviation Kills

Progression Rate of change
over matches

First derivative of kills
over first 10 matches

Percentages Percentages over
particular sets of
raw data

Percentage of Kills
Percentage of Deaths
Percentage of Assists

Miscellaneous Features covering
specific aspects of
the game

Role variability
Mean temporal distance
between matches

Targets Metric employed
for regression and
classification

Mean MMR over the last
10 matches
(Mean MMR last 10
matches) - (Mean MMR
first 10 matches)

D. Predictive Skill Modeling

Despite an interesting goal would have been forecasting the

players’ performance in continuous fashion (i.e. regression),

we decided to focus on an early detection of extremely

proficient players (i.e. classification)[34]. This solution al-

lowed us both to maximize the prediction power and to

provide a starting point for addressing issues relevant for

the competitive games industry (i.e. player scouting). For our

purpose we used two common machine learning algorithms,

Logistic Regression (LogReg) and Random Forest (RanFor)

[35], able to capture both linear and non linear interactions

between the features. We chose these algorithms because de-

spite their simplicity, they can often achieve good result while

still providing useful insights (i.e. visualization of features

importance). Furthermore, these are models heavily used in

game analytics research for prediction tasks (see e.g. [27],

[18], [24]).

In first instance we created a labeling system for differentiat-

ing the best performing users from the rest of our sample. The

metric employed for this labeling system was the difference

between the mean MMR of the first 10 matches and the mean

MMR of the last 10 matches, this has been done for avoiding

that informations contained in the input features (derived from

the first 10 matches’ KPIs) leaked in the metric employed

for creating the labels consequently biasing the classification

model. Nevertheless, for transparency reasons, we also con-

ducted the same classification task employing labels derived

from the mean MMR of the last 10 matches but due to space

constrains the relative results are reported exclusively in table

IV. The labeling system employed a percentile based encoding

where all the players below the 99.95 percentile were encoded

as negative samples while all the others as positive. We then

divided the original data-frame in validation (n = 209,834) and

test set (n = 103,350) via Stratified Shuffle Split [32]. This was

essential given the extreme imbalance in the label distribution.

We used the validation set for searching for optimal hyper-

parameters and the test set for performing the final prediction.

For each model the best combination of hyper-parameters was

found by using a Grid Search 10 Fold Stratified Shuffle Cross

Validation and selecting the best model based on the average

ROC AUC score. Since the labels distribution was extremely

imbalanced for avoiding under or over-sampling our dataset

we applied a weight to each label inversely proportional to its

frequency in the input data [32].

To improve the performance of the Logistic Regression and

allowing the interpretation of the coefficients associated to

each feature, when using this model we rescaled the features

using a method that is robust to outliers (i.e. removing the

median and rescaling the data accordingly to the quantile

range). After tuning the hyper-parameters to discover the

best model we retrieved the top 20 features contributing

the most to the classification performance, although this can

provide insights, given the high inter-correlation between our

features caution has to be posed in the interpretation of their

importance.

VII. RESULTS

A. Regression Analysis

The learning rate computed from the first 10 games was

correlated significantly with the final average performance

level (fig. 3). This correlation achieved significance across all

servers with p values less than .0001 in all case. Effect sizes

(r2) ranged from .25 to .37. Performance improved with the

number of initial games chosen with an approximately linear



dependence up to 40 games. As expected, our randomized con-

trol dataset using a large set of simulated players (n=100,000)

also exhibited a statistically significant relationship between

slope and final score (p<.0001) reflecting the fact that a slight

positive slope in the initial stages of a random walk will tend,

on average, to result in a slightly positive final value. However,

in this case the effect size was very small (r2 = .008). Similar

results were observed in each server independently (Table III).

Fig. 3. Regression plots for total sample learning rate and final MMR (top),
and random walk synthetic set (bottom). Due to the confidential nature of the
MMR values, the axes have been standardized.

TABLE III
REGRESSION RESULTS

Set r2 p value

North Europe 0.308 <.0001

West Europe 0.378 <.0001

Brazil 0.297 <.0001

Latin America 1 0.257 <.0001

Latin America 2 0.307 <.0001

Oceania 0.353 <.0001

North America 0.374 <.0001

Japan 0.315 <.0001

Total sample 0.345 <.0001

Random Walk 0.008 <.0001

B. Predictive Skill Modelling

The best hyper-parameters found by the grid search for the

Logistic Regression were L1 penalty with inverse regulariza-

tion equal to 0.01 while those for the Random Forest included

entropy as a split evaluation metric, maximum depth of the tree

equal to 10, maximum number of features employed by each

tree equal to the square root of the total number of features,

maximum number of leaf nodes equal to 15 and number

of trees populating the forest equal to 60. As mentioned

before, we only took into account the results derived from the

adoption of the difference based labeling system, however, for

visibility purposes, in table IV we also reported the results

from the alternative labeling system. The fields in Table IV

specify the model employed, the metric on which the labeling

system is based, the weighted f1 score (i.e. accounting for

imbalance in the labels distribution), the ROC AUC score,

the number of true positive, true negative, false positives

and false negatives. For a better overview of the models’

performances we computed and plotted normalized confusion

matrices showing the percentages of correct and incorrect

classifications (fig. 4) as well as bar charts showing the top

20 features contributing the most in the classification task (fig.

5).

TABLE IV
RESULTS OF PREDICTIVE ANALYSES

Model Metric f1 AUC TN FN TP FP

LogReg Diff 0.940 0.888 92,077 61 456 10,757

RanFor Diff 0.938 0.878 91,780 70 447 11,054

LogReg Final 0.953 0.923 94,534 37 480 8,300

RanFor Final 0.952 0.923 94,309 36 481 8,525

Results of Logistic Regression and Random Forest for prediction using
either end of season MMR (Final) or MMR change (Diff). AUC: area under

ROC, TN: true negative, FN: false negative, TP: true positive, FP: false
positive

VIII. DISCUSSION

We find that the initial rate of MMR change is strongly

related to the final end-of-season MMR in League of Legends.

This suggests that a common factor which we identify as

cognitive performance underlies learning and performance in

this game - and almost certainly in other similar MOBAs.

Our results build on the finding of by Dewar and Stafford

[9], extending them in several ways. Dewar and Stafford’s

data were obtained from users playing a non-commercial on-

line game specifically designed for educational and research

purposes. In this respect their findings mirror those of Quiroga

et al. [36] who used custom-made game-like tests to probe

IQ. In comparison, the game we analyze here is a commercial

product with an active user-base that numbers in the hundreds

of millions. The statistical findings we present are therefore

extremely robust due to the sample size used, and of general

interest because of their ecological relevance. We also pre-

sented promising results from a multivariate classification task

showing that end of season exceptional performance can be

identified employing metrics derived from the early matches.



Fig. 4. Normalized Confusion Matrices for logistic regression difference based labeling system (top) and random forest difference based labeling system
(bottom).

Fig. 5. Feature importance: 20 most important features for logistic regression (left) and random forest classifier (right). The two models identify different sets
of features as the most important predictors. However, the top five features for both models all deal with player deaths, gold gain and player kills and damage
dealt. Logistic regression adds in the percentage of time spent playing utility roles also. Looking at the top 20 predictors, there is some difference between
the two models but both include similar feature sets: kills, deaths, damage and gold. Notably, win and loss conditions feature relatively low on the features
ranking (”consecutive wins” placed 13th for both models). This indicates that the win/loss features are perhaps too aggregate (i.e. encapsulating performance
of both teams in the game) to be highly significant predictors of individual skill/performance.



Our results support a growing body of work indicating that

cognitive performance ([13], [10], [15] and possibly other

psychological factors [7], [8]) are exposed by on-line game

telemetry. This observation can be used in at least two ways: 1)

it has significant interest to the psychology community because

it provides a way of evaluating cognition at the population

level in real-time and at a global scale. In previous work [13],

we have raised the possibility of large-scale video game data

being used to perform ’cognitive epidemiology’ - a population-

level assessment of cognitive health which might provide

an early indicator of environmental changes (for example,

disease, pollution or social factors) that affect cognition. 2)

It is of interest to the e-sports analytics community because it

provides a theoretical basis for performing longitudinal game

analytics - allowing analysts to predict, for instance, churn rate,

future performance levels and, potentially, complex player-

player interactions.

Our future work is focused on exploring the link between

video game data and psychological factors still further. While

cognitive performance is important, it is just one of a wide

range of psychological factors that can be extracted from these

rich datasets. We expect that these factors will, like the one

studied here, provide important insights into psychology at

a global level while also providing the games industry with

theoretically validated tools to improve their products and user

experience.

IX. LIMITATIONS AND FUTURE WORKS

We acknowledge that focusing our work on a single MOBA

title might pose limitations to the generalizability of the

results. These types of analysis are complicated by the require-

ment to gain access to raw ELO scores for these game. This

often requires licencing agreements with the companies that

are not straightforward to obtain. Nevertheless, one possible

direction for future work would be to attempt to replicate the

results presented here employing data from different games.
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