
This is a repository copy of Characterization and modelling of electromagnetic interactions
in aircraft.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/132441/

Version: Accepted Version

Article:

Christopoulos, C., Dawson, J. F. orcid.org/0000-0003-4537-9977, Dawson, Linda et al. (7 
more authors) (2010) Characterization and modelling of electromagnetic interactions in 
aircraft. Proceedings of the institution of mechanical engineers part g-Journal of aerospace
engineering. pp. 449-458. ISSN 0954-4100 

https://doi.org/10.1243/09544100JAERO567

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Other licence. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 1 

The final, definitive version of this paper has been published in Proceedings of the Institution of 

Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224/4, April/2010 by SAGE Publications 

Ltd, All rights reserved. ©2010 

 

C. Christopoulos, J. F. Dawson, L. Dawson, I. D. Flintoft, O. Hassan, A. C. Marvin, K. Morgan, P. Sewell, 

C. J. Smartt and Z. Q. Xie, “Characterization and modelling of electromagnetic interactions in aircraft”, 

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering April 1, 

2010 224: 449-458, doi: 10.1243/09544100JAERO567 

 

Keywords: electromagnetic design, electromagnetic compatibility, modelling and simulation, 

electromagnetic properties of materials, multi-scale techniques 

 

URL: http://pig.sagepub.com/content/224/4/449.abstract

http://dx.doi.org/10.1243/09544100JAERO567
http://pig.sagepub.com/content/224/4/449.abstract


 2 

CHARACTERIZATION AND MODELLING OF ELECTROMAGNETIC INTERACTIONS IN AIRCRAFT 

C. Christopoulos¹, J. F. Dawson², L. Dawson², I. D. Flintoft², O. Hassan³, A. C. Marvin², K. Morgan³, P. 

Sewell¹, C. J. Smartt¹, Z. Q. Xie³. 

¹ George Green Institute for Electromagnetics Research, University of Nottingham, Nottingham, NG7 

2RD. 

² Department of Electronics, University of York, Heslington, York, YO10 5DD. 

³Civil and Computational Engineering Centre, School of Engineering, Swansea University, Swansea, SA2 

8PP. 

 

Abstract: This paper describes the development of modelling techniques and simulation tools for the 

electromagnetic analysis of aircraft. It is shown that hybrid solvers and multi-scale techniques can be 

used effectively to analyse the electromagnetic response of aircraft. The importance of supplementing 

models with appropriate measurement and characterization techniques for parameter extraction and 

for validation is also demonstrated. 

Keywords: electromagnetic design, electromagnetic compatibility, modelling and simulation, 

electromagnetic properties of materials, multi-scale techniques  

 

Introduction  

Current developments in aircraft manufacture are driven by several interlinked requirements foremost 

among these being the need to reduce weight and therefore save fuel and ameliorate the 

environmental impact of flying. This means that lighter materials are used based on carbon fibre 

composites (CFCs) which have exceptional mechanical strength and low weight. This development 

causes several problems: 

i. Such materials have low electrical conductivity, may  be anisotropic due to the layered structure 

of CFCs, and in electromagnetic terms they are not as effective as Aluminium in providing 

electromagnetic shielding. Electromagnetic (EM) radiation may escape the confines of the 

aircraft and thus cause interference to other users, or, in the case of military aircraft facilitate its 

detection. 

 

ii. All aircraft and in particular military aircraft fly in all weather conditions and thus are subject to 

lightning strikes. Very steep fronted current pulses (risetimes in the order of micro-seconds) of 

peak amplitudes of several tens of thousands of amps are thus injected at attachment points on 

the skin of the aircraft. An all aluminium skin is a relatively uniform and isotropic medium and 

thus the current flow is relatively easy to predict although many difficulties still exist in current 

flow at joints and rivets. These currents may cause electromagnetic interference (EMI) with 

safety critical electrical systems inside the aircraft (indirect effects), and/or cause local melting, 

ruptures and/or fuel ignition (direct effects). Both of these mechanisms have potentially 

catastrophic effects. CFCs because of their structure and electrical properties make it difficult to 

predict lightning current flow and interactions with other aircraft systems. 

In addition to the innovative new materials being introduced to aircraft manufacture, new 

configurations are being considered to distribute power for actuation and control. The tendency is to 
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increase the proportion of electrical power in commercial aircraft to more than 1MW, which is well 

above its current value, enabling the removal of hydraulic and pneumatic power. It is perceived that this 

will reduce weight, increase flexibility and redundancy in distribution, so that manufacturing costs and 

fuel burn will reduce. The consequences of this are that: 

i. The potential for EMI is now increased as very large electrical loads are supplied throughout the 

aircraft. Power electronics techniques are used to supply variable speed drives. This means that 

power signals are no longer dc or harmonic ac but chopped waveforms with sharp edges  

containing substantial energy in high order harmonics of the power frequency. Similarly, 

switched-mode power supplies, which are used in preference to transformer based supplies, use 

switching frequencies as high as 1MHz, and also  contribute energy at higher harmonics (i.e. as 

high as 30MHz). High frequency signals are capable of coupling more easily to other systems 

through stray capacitances (Cdv/dt), and/or stray mutual inductances (Mdi/dt). We see that the 

strength of coupling depends on the rate-of-change and the frequency. Short pulse transition 

times (i.e. strong coupling) indicates the presence of substantial energy over a wide frequency 

band. 

 

ii. Not withstanding the benefits of electrical power transmission, it has to be recognised that 

electrical power distribution at power levels in the MW range co-exists with the low power level 

signals used for communications, actuation, control, and sensing. The fly-by-wire aircraft is 

already a reality. The co-existence of high- and low-level signals in close proximity has the 

potential to cause electromagnetic compatibility (EMC) problems. 

It is an interesting statistic of modern aircraft technology that the electrical wiring necessary to operate 

a typical wide-body passenger jet is 240km long and 17km is required in a modern military fighter 

aircraft [1]. The weight, the complexity of wiring and its repair and maintenance are significant 

overheads which could be reduced if at least some of the wiring was replaced by wireless connections. 

The issues to be considered here include: 

i. Reduced electrical shielding and high-frequency EMI with this wiring system, and the elimination 

of the risk of EMC failure, means that the interaction with a more hostile EM environment has to 

be understood and designed in from the very beginning, to avoid problems at prototype stage 

when rectification is extremely costly. 

 

ii. If some of the wiring is to be replaced by wireless connections, this must be done in such a way 

that the quality of service, and the reliability of wireless operated systems is extremely high. This 

must certainly be higher than that available to mobile phone or Bluetooth users. It is, therefore, 

necessary to understand and design HF signal propagation inside the complex resonant and 

multipath environment of a modern aircraft. 

The list above, which is not exhaustive, identifies the need for a general EM modelling methodology and 

computer tools that in the hands of a designer, permit an early stage evaluation of the potential  for 

EMC and lightning problems and helps to identify remedies and optimum solutions. Such a set of tools 

will substantially de-risk the EM design of aircraft and substantially enhance survivability in the case of 

failures and interference. It cannot be emphasized enough that the availability of such tools is 

imperative, if the proposed new technologies are to find acceptance, and if the cost and environmental 

benefits they promise can be delivered without compromising the extremely high safety and reliability 

standards rightly expected in the aircraft industry. We also note another potential benefit of such CAD 

EM tools. It is well known that the costs of demonstrating compliance and certification for EMC for 
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aircraft are very high. It is hoped that at least some of these tasks could be performed by simulation 

thus reducing costs and allowing future re-design and the re-fit of new components based on new 

technologies to be undertaken without a full-scale experimental compliance campaign. It is not 

suggested, nor is it desirable or realistic, that simulation will completely replace measurement and 

testing. Rather, it could offer a complementary approach to reduce costs and enhance confidence in the 

design process. With proper CAD tool validation this is a realistic prospect.  

This paper describes results from a research project funded by EPSRC and BAES aimed at making a 

substantial contribution in this area. It involved three Universities (Nottingham, Swansea, and York) and 

lasted three years. One full-time researcher was engaged on this work in each of the three Universities. 

Close collaboration was maintained throughout and substantial interactions took place so that no sharp 

boundaries existed between the work of each of the partners. However, as an indication of the main 

themes pursued by the partners, we mention the work at Swansea on the core solver, at York on 

materials, feature characterization and validation, and at Nottingham on multiscale and materials 

modelling. These themes are described in more detail in the following sections. 

 

Simulation Software Developments  

The simulation software developments were undertaken within the computer code HY3D. This is a 

hybrid time domain volume based method for the solution of Maxwell’s equations.  Although solution 
techniques based upon the use of integral equations are often the best approach for problems that just 

involve wave scattering [2], a volume based method can be viewed as offering many advantages when a 

wider range of electromagnetic applications needs to be considered [3]. The finite difference time 

domain (FDTD) approach [4] is a popular method for solving high frequency electromagnetic problems 

on structured cartesian meshes, because of its accuracy characteristics, low operation count and low 

storage requirements. Unstructured meshes are frequently better suited for practical applications, but 

progress in developing an unstructured mesh equivalent to the FDTD scheme has proved to be slow [5]. 

Low order time domain unstructured mesh based solution algorithms can be implemented in a 

straightforward fashion, but a major computational resource is then required to accurately simulate 

wave propagation over a significant number of wavelengths. To reduce the computational 

requirements, while maintaining geometrical flexibility, hybrid solution procedures have been proposed 

[6, 7], in which the computational domain is represented by an overlapping combination of structured 

and unstructured meshes. HY3D employs a hybrid solution procedure which couples an extension of an 

explicit finite element time domain approach (FETD) [8] with the FDTD method. Any far field boundary 

condition is handled by surrounding a truncated physical domain with an artificial perfectly matched 

layer (PML) [9]. An unstructured tetrahedral mesh is used to represent any materials and the 

immediately adjacent free space region. The remainder of the free space region and the PML are 

represented by a cartesian mesh [10]. In this way, geometric flexibility is maintained, while reducing the 

computational penalty associated with the unstructured mesh approach. Constraints, imposed by 

geometric complexity, may result in the generation of unstructured meshes containing elements of a 

size significantly smaller than would normally be required for accurate wave propagation. Such elements 

place a severe limitation on the size of the time step that can be used with an explicit scheme and this 

results in a corresponding increase in the CPU time. To alleviate this problem, an implicit/explicit version 

of the FETD scheme was introduced, for use in the unstructured mesh region. The implicit scheme is 

used to advance the solution locally in regions containing the small elements, while the original explicit 

scheme is used for the remainder of the unstructured mesh.  
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To enable appropriate transfer of information between the two solution approaches, an overlapping 

mesh technique is employed. The mesh that is designed to accomplish this may be regarded as being 

constructed of three distinct regions. The first region is an assembly of unstructured tetrahedral 

elements in the vicinity of any materials; the second region consists of an assembly of structured 

hexahedral cartesian elements, extending to the far field; the third region consists of a structured 

assembly of hexahedral elements that are each subdivided into six tetrahedral elements. Elements in 

the third region are employed to enable the transfer of information between the FETD algorithm and 

the FDTD algorithm to be accomplished in a convenient manner. The mesh is generated in three stages. 

In the first stage, an unstructured triangulation of any body surface is performed. This is used to 

construct, in a second stage, a staircase shaped surface lying close to the body and completely enclosing 

it. The region between this staircase shaped surface and the far field boundary is then discretised to 

produce the hexahedral cartesian grid and the structured tetrahedral grid. The third stage consists of 

generating the unstructured grid between the surface triangulation of the body and the staircase 

surface. The mesh generation process is completed, in a preprocessing phase, by merging the 

unstructured and structured tetrahedral meshes to form the mesh that is used for the hybrid scheme. 

The process of exchanging information between the unstructured and cartesian meshes is simplified by 

ensuring that the vertices in both meshes coincide exactly in the overlap region. This is achieved by 

adding structured layers to the unstructured mesh, in which each hexahedron in the corresponding 

structured mesh is subdivided into six tetrahedral elements. Five such layers are constructed and three 

of these layers are used to define the overlap region.  The variables in the FDTD scheme are stored at 

staggered locations, while the variables in the FETD scheme are co- located and stored at the vertices. 

This means that, in the region of overlap, the field components of the two schemes are not available at 

the same location. When exchange of information is necessary between the meshes, the electric field 

components for the FETD scheme are evaluated from the corresponding FDTD electric field values by 

cubic interpolation along the surrounding edges. The magnetic field components for the FETD scheme 

are located at the centre of the square formed by points at which four corresponding magnetic field 

components are known in the FDTD scheme. In this case, bi-cubic interpolation is used to transfer the 

FDTD values to the nodes of the FETD algorithm.  

For this solution procedure, accuracy requirements imply that the required mesh size will expand rapidly 

as the electrical length of interest is increased. The resulting simulations will be computationally 

demanding and, in this case, the use of parallel computers becomes desirable. The parallel 

implementation adopted avoids the creation of any global array which can prevent an efficient 

performance of the algorithm. The generated mesh is first partitioned using the ParMetis library [11]. 

This produces high quality partitions in a fast, robust and parallel manner. The partitioning has to take 

into account that a staggered scheme is being parallelised and a synchronisation step exists between the 

different schemes. It is not sufficient to simply sum up the relative times required for each scheme and 

to compute a partitioning based on this sum. This will lead to some processors having too much work, if 

the majority of their mesh belongs to one scheme, while others remain idle. This is avoided by using the 

multi-constraint graph partitioning scheme that minimises edge-cut and ensures that every sub-domain 

has approximately the same amount of each mesh type. In the parallel implementation of the solution 

algorithm, elements are owned by only one domain and are not duplicated, while points are owned by 

one domain and are duplicated. This strategy enables data locality to be achieved during the gather 

process, from points to elements, and the scatter process, from elements to points, and hence there is 

no need to communicate. To avoid communication during the interpolation process, the nodes required 

to perform the interpolation are added to the list of interface nodes and sent to the processor 

containing the interpolated node. This will ensure that synchronization is only required once per time 
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step. Parallelization of the implicit procedure can be achieved by assuming that a given number of 

processors will be used to handle the implicit regions, where the number used is proportional to the 

total number of implicit elements. 

As an example of the performance that can be achieved with HY3D, consider the problem of scattering 

of a plane single frequency wave by a PEC UAV configuration, of electrical length 25λ. The incident wave 

propagates along the main axis of the UAV, with the wave impinging directly onto the nose. A wireframe 

of the UAV and a detail of the discretised surface in the vicinity of the trailing edge is given in Figure 1. 

The complete mesh consisted of approximately 15.8M tetrahedral elements and around 9M finite 

difference free space and PML cells. The geometrical form of the trailing edge imposes severe restriction 

on the size of the elements in that region, which means that 4797 time steps are required to perform a 

complete cycle using the explicit scheme. The corresponding CPU time needed to advance the solution 

for one cycle is $50$ minutes on 128 IBM processors. Using the implicit/explicit version of the scheme 

and imposing the requirement of 200 steps per cycle, 850 points are advanced implicitly and the CPU 

time required to compute one cycle reduces, by a factor of 22, to 2.2 minutes. This means that the time 

required to complete the calculation is reduced from one day to one hour. A view of the computed 

distribution of contours of a component of the electric field on the UAV surface is shown in Figure 2. 

 

Incorporating Sub-scale Features  

Coupling paths for electromagnetic threats into an airframe may be through antennas (front door 

coupling), via apertures such as gaps, slots or joints and we must also consider diffusive penetration 

through materials for low frequency lightning threats (Figure. 3). Once inside the airframe the 

electromagnetic energy is free to couple onto interconnecting cables and hence into aircraft systems 

where it may result in disruption or damage to the onboard systems.  

A common feature of the coupling paths for the electromagnetic energy outlined above is that they 

involve features which are small on the scale of the aircraft as a whole. The modelling of such small 

features on the scale of a full aircraft is very challenging as explicitly meshing the geometry is not 

feasible [12]. An important aspect of the development of HY3D as a practical electromagnetic threat 

prediction tool is therefore the ability to model features which are significantly smaller than the mesh 

dimension. 

Modelling the pickup of the electromagnetic energy on the cables connecting the on-board systems is 

vital in order to assess the threat to the aircraft. The fields around cables cannot be represented using 

the normal linear, continuous finite element shape functions. In the HY3D code we introduce shape 

functions specifically for wires which incorporate the known 1/r dependence of the radial electric field 

and circumferential magnetic field close to a cylindrical wire.  Introducing these additional shape 

functions into the finite element analysis leads, after some manipulation and simplification, to an 

algorithm in which a system of equations describes the propagation of signals on the cables with a 

source term which represents coupling of energy from the external illuminating field onto the wires. An 

additional source term is introduced into the field update which represents the radiation of energy from 

the wire into the field. The resulting approach in which the field update and the wire update are 

separated but coupled through source terms is similar in concept to the Holland and Simpson wire 

model for the FDTD method [13]. The HY3D wire model is readily generalised to multi-conductor cable 

bundles and allows the currents at the cable terminations to be calculated, i.e. those injected into the 

aircraft systems. 
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Unlike the case of wires where the field close to a cylindrical conductor has a known distribution, in 

more geometrically complex situations such as a surface containing apertures, slots or joints the local 

field distribution is not necessarily known. Models of such features for implementation in the HY3D code 

may be constructed from a characterisation of the scattering (S) parameters of the feature, i.e. how 

waves are reflected from and transmitted through the feature. This approach is in common with the 

model for thin material layers described in the next section below. The implementation of the model 

uses an impedance representation which relates the tangential electric and magnetic fields either side 

of the interface containing the feature [14]. This defines a boundary condition which is applied on 

surfaces in the HY3D code. The impedance (Z) parameters are readily calculated from the scattering 

parameters [15]. 

The scattering parameters may be found from an appropriate measurement of a sample containing the 

feature, or alternatively a detailed numerical analysis of the isolated feature can lead to the impedance 

representation directly as illustrated below for the example of an overlap joint (figure 4).  

The joint is illuminated by a pulse plane wave, during the analysis tangential electric and magnetic fields 

either side of the slot are recorded. These time domain fields are then Fourier transformed and used to 

derive an impedance boundary representation of the joint in the frequency domain.  

The parameters of the impedance boundary model for a slot, in common with the models which are 

derived for materials and thin layers, are frequency dependent. In order to incorporate these frequency 

dependent properties into the time domain code HY3D an approach based on digital filters (effectively 

recursive convolution) is utilized [16]. When using this approach it is convenient to express the 

frequency dependence of model parameters as a rational function in complex frequency (equation 1)   
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where the order of the expansion and the coefficients are chosen so as to best fit the function to be 

represented [17]. From this rational function a digital filter coefficients may be derived which are then 

used in the update of the boundary conditions in the finite element update [18]. 

 

Material Measurements and Models  

Should we include something about bulk dielectric material models as well as boundary conditions for 

CFC? (CJS) 

Within the HY3D code a metal surface can be modeled using PEC boundaries while other types of 

material surfaces can be represented using frequency dependent impedance boundaries. The reflection 

coefficient of the material boundaries determines the wall losses on the inside of an airframe and 

therefore impacts on the quality factor of the cavities inside the aircraft. The transmission coefficients 

determine the ingress of energy into the airframe and therefore and contribute to the immunity of the 

aircraft to external EM threats. Accurate knowledge of the frequency dependent characteristics of non-

metallic boundaries is therefore an important requirement for EM analysis. 

Models for the impedance matrix of a material can be derived in a number of ways. Very high-resolution 

FDTD simulations can be used if the structure of the material is known accurately.  Analytical models can 
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also be developed - a multi-layer model for a simplified carbon-fiber composite (CFC) structure was 

recently derived in [19]. The internal structure of modern composite materials is however very complex 

and subject to manufacturing variations so it is currently very difficult to derive accurate impedance 

boundary models from theoretical analysis alone. Incorporation of measurement data into the material 

models is therefore essential for accurate EM analysis.   

If full magnitude and phase information for the transmission and reflection coefficients of a material 

were available then a direct approach to fitting the measurement data using the vector fitting technique 

would be feasible. However, in practice it is usually impossible to achieve this due to the limitations of 

the available measurement techniques. For example, many samples of interest, such as CFC laminates 

and perforated metal plate, have very high reflectivity that is difficult to measure accurately.  Four 

different measurement techniques that can provide partial information on the shielding characteristics 

of materials have been considered and are summarised in Table 1.  Priority has been given the shielding 

measurement techniques since for the simulation of system immunity the transmission through the 

material is the critical factor.  

 

Table 1: Capabilities of material measurement techniques. 

Technique Reflectiion (R) 

and/or 

Transmission (T) 

Phase Polarisation Angle of 

Incidence 

Frequency 

Range 

(GHz) 

Dynamic 

Range 

(dB) 

ASTM D4935 

[20] 

 

R/T Yes Averaged Normal DC-2 100 

NRC              

 [21] 

 

T No Averaged Averaged >1 70 

Anisotropic Cells 

[22] 

T Yes? Yes Normal 0.5-2 80 

Absorber System 

[23] 

T Yes? Yes Normal >1 80 

 

The shielding effectiveness (SE) of a 0.5 mm thick aerospace CFC measured using three different 

techniques is shown in Figure 5.  For this material the agreement between all three techniques is very 

good, though there is some evidence that the ASTM cell is showing a different trend at high frequencies. 

The measured SE is compared to a simple analytical model for the SE of a homogeneous resistive 

material, for which the full impedance matrix can be determined analytically [24], with two different 

sets of parameters. Using the physical thickness of the sample, 0.50mm, the analytical model can be 

fitted to the low frequency SE yielding an effective conductivity of 3.4 kS/m. Alternatively, allowing the 

thickness in the analytical model to be a free parameter a better overall fit the measured data can be 

obtained with a thickness of 1.50 mm and conductivity of 1.1 kS/m.  Neither of these analytic models is 

actually a good fit to the measured data. This indicates the importance of the ability to use measured 

material properties in the EM analysis.  
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In order to include measurement data like Figure 5 in HY3D the magnitude and phase of both 

transmission (SE) and reflection coefficients must be known or inferred. The reflection coefficient, which 

is difficult to measure, can be estimated from the SE using energy conservation while the phase can be 

approximated using, for example, the resistive sheet model. Combining these approaches a physically 

realizable response for the material, incorporating the measured SE, can be generated and fitted to a 

digital filter representation of the material boundary.    

 

Code Validation  

Validation of some features of the code, such as material and thin layer models may be achieved by 

comparison of HY3D predictions with analytic solutions. Spherical geometries are especially useful as the 

fields may be expressed as an expansion in terms of spherical Bessel functions. This enables validation 

for problems with multiple materials, including impedance boundary layers [25]. The implementation of 

the CFC model is tested in this way as shown in Figure 6. The impedance parameters of a physical model 

of the CFC (Figure 6a) are calculated as a function of frequency and a frequency dependent impedance 

boundary model derived (Figure 6b). This impedance boundary is applied to a spherical shell and 

illuminated with a Gaussian pulse. The internal electric field at the centre of the sphere is used as the 

basis for comparison with an analytic solution for this problem and the agreement in Figure 6c is seen to 

be extremely good. 

Fine feature models may be validated against predicted solutions on a very fine grid, in which the 

feature may be meshed explicitly. Figure 7a shows the impedance parameter z11 for the overlap joint 

when illuminated by a wave with the electric field polarised in the plane of the slot (TE). Once the 

impedance matrix for the slot is derived, its properties are then applied on to the enclosure boundary at 

the position of the joint in the computational mesh, so that the behaviour of the slot is incorporated into 

the model. Time domain fields inside a 2 dimensional cavity modelled using the impedance boundary 

approach and a fine grid model in which the slot is explicitly meshed are shown in Figure 7b. Application 

of the impedance boundary model for the joint is found to reduce the number of elements in the mesh 

by a factor of 12 and the runtime is reduced by a factor of 40. 

For more complex geometries including wires, slots, joints and apertures, validation against 

measurement is often the only possibility. If a validation against a measurement is to be attempted then 

the geometry and materials must be well characterised and a non-invasive measurement technique 

should be used. We are interested in the coupling of electromagnetic energy onto wires in a resonant 

environment and the code validation measurements should reflect this. To this end, a resonant box has 

been constructed. The box contains wires which are connected to ports through the walls of the box. 

The ports may be connected to load or to a network analyser. 

For a validation measurement we require a very well controlled and non-invasive measurement i.e. a 

measurement in which the measuring equipment will not unduly influence the result. The coupling 

between the wire ports is used as the basis for comparison in this validation rather than the field inside 

a cavity as the field measurement would require a field probe to be placed inside the box and this probe 

could be expected to influence the results. 

Unloaded cavities have a very high Q factor determined by wall reflection losses. These losses are very 

difficult to quantify and therefore difficult to include in a model. In order to control the Q of the cavity, 

one side of the box is left open. This reduces the Q of the system to a value which is realistic for a loaded 

cavity such as would be found on an aircraft.  
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Inset in figure 8 is a photograph of the validation box with the lid reversed to show a monopole 

connected to one port and a wire loop connecting the other two ports. The measured and predicted 

coupling between the monopole and a wire port are shown in the figure to be very close over the whole 

frequency range of the prediction. This gives confidence in the use of the HY3D code as a prediction tool 

for electromagnetic threat prediction in aircraft.   

[Comparision techniques?]  

 

Conclusion  

The development of a modelling and simulation technique for the electromagnetic design of aircraft has 

been described. It has been shown that hybrid modelling techniques can be used effectively to model 

parts of complex systems in an efficient manner. In addition, multi-scale models are required which 

permit the embedding of electrically small features into numerical models of electrically large objects. 

Examples included in this paper have demonstrated how models for joints, apertures and thin wires may 

be included. Current practice in aircraft manufacture favours the use of composite materials and 

corresponding material models have also been developed and embedded into large scale numerical 

simulations. Experimental techniques for obtaining the parameters for such models were also described. 

Some validation results were provided to demonstrate the accuracy of the models developed. This work 

is ongoing and aims, eventually, to provide a full capability for the computer-aided electromagnetic 

design of complex aircraft systems. 
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Figure Captions: 

 

Figure 1: Scattering of a plane wave by a PEC UAV configuration: (a) wire frame of the UAV surface; (b) 

detail of the surface mesh in the vicinity of the trailing edge. 

 

Figure 2: Scattering of a plane wave by a PEC UAV: contours of a component of the electric field on the 

surface. 

 

Figure 3: Coupling paths for electromagnetic threats to an aircraft, here the Eclipse UAV.  

(Photographs supplied by Cranfield University.) 

 

Figure 4:  

 Figure 4a. Overlap joint in an enclosure. 

 Figure 4b.Enclosure model with impedance boundary. 

 Figure 4c. Frame from a detailed analysis of the scattering from the joint which leads to the 

impedance boundary model. 

 

Figure 5: Shielding effectiveness (inverse transmission coefficient) of a two-layer aerospace CFC 

laminate measured using different techniques. 

Figure 6:  

 Figure 6a Shielding effectiveness (inverse transmission coefficient) of a two-layer aerospace CFC 

laminate measured using different techniques. 

 Figure 6b. Calculated Impedance parameters for the physical model and the fitted 6th order 

impedance boundary model. 

 Figure 6c.HY3D prediction and analytic solution for the field at the centre of the CFC spherical 

shell as a function of time when illuminated by a Gaussian pulse. 

 

Figure 7: 

 Figure 7a. Overlap joint impedance, TE polarisaton. 

 Figure7b. Cavity Field with explicitly meshed slot (red) and impedance boundary representation 

(green). 

 

Figure 8: Coupling between monopole and port on the wire: measurement and HY3D result and the box 

shown inset (with the lid reversed). 
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Figure 3.  
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Figure 5:  
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Figure 6b.  Figure 6c. Figure 6a.  
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Figure 8.  
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