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ABSTRACT Ultra-dense small cell deployment in future 5G networks is a promising solution to the ever
increasing demand of capacity and coverage. However, this deployment can lead to severe interference and
high number of handovers, which in turn cause increased signaling overhead. In order to ensure service
continuity for mobile users, minimize the number of unnecessary handovers and reduce the signaling
overhead in heterogeneous networks, it is important to model adequately the handover decision problem.
In this paper, we model the handover decision based on the multiple attribute decision making method,
namely Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The base stations are
considered as alternatives, and the handover metrics are considered as attributes to selecting the proper
base station for handover. In this paper, we propose two modified TOPSIS methods for the purpose of
handover management in the heterogeneous network. The first method incorporates the entropy weighting
technique for handover metrics weighting. The second proposed method uses a standard deviation weighting
technique to score the importance of each handover metric. Simulation results reveal that the proposed
methods outperformed the existing methods by reducing the number of frequent handovers and radio link
failures, in addition to enhancing the achieved mean user throughput.

INDEX TERMS Heterogeneous networks, handover, small cells, interference, MADM, weight, TOPSIS.

I. INTRODUCTION
The rapid growth of the number of smart mobile devices
connected to the wireless network has led to the high data
traffic demand. The capacity demand of the cellular network
is estimated to be 1000 times higher by year 2020 [1]. The
already deployed traditional macrocell (MC) base stations
are incapable of coping with this demand because it is very
costly to deploy MCs any time anywhere. The concept of
small cells (SCs), which are economic small base stations
with lower transmit power and radius coverage compared
to the MCs, has been introduced to deal with the high
capacity demand. The networks consisting of both MCs and
SCs are known as heterogeneous networks (HetNets) [2].
The SCs have a great benefits in enhancing the network
performance especially for the users at MC edges. Despite
their huge benefits, the dense deployment of SCs has led
to the problems of interference, and frequent unnecessary
handovers. The number of handovers is very high in dense
HetNets compared to the homogeneous MC-only networks.
This can also lead to high probability of radio link failure.

As a consequence, the quality of service (QoS) delivered
to the end user is degraded [3]. Therefore, it is necessary
to solve these problems when dense SCs are deployed to
maximize their benefits. There have been many researches
dealing with the problem of handover (HO) in the literature.
Xu et al. [4] used received signal strength (RSS) and path loss
as metric for HO. Window function has been applied to the
RSS of both the SC and MC to compensate for the uneven
transmit power of both cells. However, the large variation of
the path loss may lead to high number of ping-pong HOs.
Singoria et al. [5] propose a call admission control to reduce
the unnecessary HO in SC networks. User velocity, RSS and
the time required to maintain the minimum RSS for service
continuity are used as HO metrics. Only low speed user are
allowed to perform HO to SC. While medium speed users
are only permitted to HO to SC when their traffic type is
real time traffic such as ongoing phone conversation. In [6],
we proposed a method to minimize the number of target SCs
and reduce the unnecessary HOs in HetNet. A SC target list is
formed by using the distance between the user and the SC in
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addition to the user’s angle of movement. High speed users
are prevented from performing the HO to SCs. The results
show a good performance in terms of SC list minimization,
unnecessary HO reduction, and network throughput improve-
ment. Alhabo et al. [7] proposed a method to reduce both of
the unnecessary HO and HO failure. A predicted time of stay
(ToS) is used to remove SC, which could lead to unnecessary
HO or HO failure, from the target HO SC list. The user is
handed over to the SC, which provides the sufficient signal to
interference plus noise ratio (SINR) and has enough capacity
to deliver services. Time threshold and the SINR are also used
to find a compromise between the unnecessary HO and HO
failure. Results reveal that both of the unnecessary HO and
HO failure have been minimized. An inbound HO method
for throughput enhancement and load balancing is proposed
in [8]. The impact of interference and estimated ToS is used to
perform offloading from MC to SC. An inbound HO margin
based on serving cell load and interference level is derived
so as to accomplish the traffic offloading. Results show that
this method has reduced the unnecessary HO and outage
probability in addition to enhancing the achieved throughput
for both the user and the network.

The multiple attribute decision making (MADM) deals
with the selection of the best alternatives which are char-
acterised based on multiple attributes. Basically, all of the
MADM methods have the following characteristics:

Alternatives: sometimes called options or candidates. All
of the alternatives are ranked based on certain criteria and the
best one is nominated as candidate.

Attributes: also named metrics or criteria. Multiple
attributes are taken into account when selecting the alterna-
tive.

Decision matrix: the MADM problem is formulated as
a matrix whose rows represent the alternatives and columns
represent the attributes of each alternative.

Weighting of attributes: every attribute must be weighted
to measure the importance of them.

Normalization: because different attributes have different
unit of measurement, hence, the normalization is applied so
that the attributes have same scale.

The HO decision can be taken by considering different
metrics [9]. Therefore, the MADM techniques can be a good
solution to model and solve the HO decision problem. In this
work, the HO decision takes into considerations the time of
stay in the target cell, user angle of movement and the SINR
for the target cell.

The selection of the attributes (HO metrics) is a crucial
factor for making the HO decision, especially in ultra-dense
SCs environment. The advantages of the handover decision
criteria can be explained as follows:

Signal to interference plus noise ratio (SINR): the small
cells are usually deployed in an unplanned manner where
they share the spectrum with macrocell causing a severe
interference and eventually results in poor Quality of Service.
The achievable data rate of a mobile device is a function of
SINR. Therefore, the best performance cannot be achieved if

only the received signal strength (RSS) is used as handover
criterion. Therefore, in this paper, we take the interference in
the network into consideration by using SINR as a selection
criterion.

Time of Stay (ToS): the short association of the user to
the base station can be considered as an unnecessary han-
dover. Therefore, the predicted time of stay which is an
indication of the time that a user may stay in the coverage
area of the target base station will help making a decision
with reduced chance to handover to a base station and stay for
a short time. This will eventually improve the service experi-
enced by the end user and reduce the signalling overhead.

The user angle of movement with respect to the target cell
(θ ): the user can have some neighbour small cells that offer
good communication channel in terms of SINR but these
small cells may locate in an opposite direction of the user’s
movement. Therefore, it is not recommended to perform the
handover to such small cells because this may cause unneces-
sary handover and lead to high signalling overhead. For this
reason, we use the user angle of movement with respect to the
small cell as one of the decision criteria to reduce the number
of target base stations.

Giving fixed weights for the attributes is inefficient strat-
egy because this may lead to improper cell selection and can
result in either unnecessary HO or HO failure which eventu-
ally will reduce the throughput and increase the signalling
overhead. Therefore, we deploy two weighting techniques
that compute the attribute weight based on the actual values
of these attributes and for all alternatives. The three criteria
which take into account the most influential factors are used
in TOPSIS base station selection and weighted using two
techniques, the entropy and standard deviation. When the
moving speed or angles change, the weighting technique
assign different weights for handover criteria. In other words,
if any of the metrics has no significant influence on the
handover decision making, then the weighting techniques
will assign a poor weight for this metric and vice versa. In this
way, the best target base station can always be selected in the
presence of mobility.

In general, the selection of the best alternative among the
available ones is widely adopted in wireless sensor networks
research field through the use of TOPSIS method. However,
in the field of heterogeneous networks (specifically for ultra-
dense small cells), the TOPSIS method is rarely investigated.
Moreover, the few works available are dealing with base
station selection for static users [10] and do not consider
the handover due to the user mobility which is a big chal-
lenge in future 5G networks. To the best of our knowledge,
the exploitation of entropy and standard deviation weight-
ing techniques (for handover metrics weighting), which are
considered as an objective weighting techniques that assign
very small weights to the attributes with small influence on
decision making, in TOPSIS method is also not considered in
the literature.

In this work, a modified weighted TOPSIS methods are
proposed. We deployed the entropy weighting technique for
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attributes weighting. We also adopt the standard deviation
weighting method to weight the importance of HO metrics of
eachMC and SC in the heterogeneous network. The HOmet-
ric with the higher deviation variation, compared to the mean
value, will obtain larger weight value. In other words, this HO
metric will have a higher impact in HO decision making com-
pared to other HOmetrics. To the best of our knowledge, both
of the SD and entropy weighting techniques have not been
applied on HO problem in ultra-dense SCs heterogeneous
networks. Using numerical simulations, the proposed meth-
ods’ performance is compared against other exiting methods
in terms of the number of HOs, radio link failures and user
mean throughput.

We proposed two TOPSIS methods, one of them
uses entropy weighting to weight the attributes (named
PE-TOPSIS) and the second one uses the standard devi-
ation weighting technique (named PSD-TOPSIS). The
PSD-TOPSIS shows better performance but higher compu-
tational complexity. On the other hand, PE-TOPSIS shows
lower complexity but worse performance. As we know,
there are different small cells with different sizes and trans-
mit power, and hence, different capabilities. For example,
the femtocells have small capabilities in terms of size and
transmit power compared to the picocells.We draws a conclu-
sion that when the complexity is not an issue in the applica-
tion, then the PSD-TOPSIS method would be a good solution
i.e., it can be used in picocell base stations. On the other hand,
the PE-TOPSIS method can be used for femtocells.

Upper-case boldface letters are used to represent matrices
and lower-case boldface are used to represent vectors. The
major contribution of this paper can be summarized as fol-
lows:
• The well-known MADM technique, TOPSIS, is used to
model the HO problem. Two methods are proposed and
both of them use the user angle of movement, ToS and
SINR to form the HO decision matrix.

• The first method weights the attributes via entropy
weighting technique, and hence named as (PE-TOPSIS).

• The second proposedmethod uses the standard deviation
weighting technique to assign weights to the attributes
(HO metrics) and hence, named as proposed weighted
technique for order preference by similarity to an ideal
solution (PSD-TOPSIS).

• Results revealed that the proposed methods PE-TOPSIS
and PSD-TOPSIS have outperformed the existing meth-
ods in the literature by reducing the number of HOs and
radio link failure, in addition to enhancing the achieved
mean user throughput.

• Based on the complexity of calculations, we suggest
using the PE-TOPSIS method for low power SCs (e.g.
residential femtocells) and the PSD-TOPSIS method for
other types of SCs (e.g. picocells).

The rest of the paper is organized as follows. Section II
presents the related work. The system model is given in
section III. The proposed methods’ procedures are illustrated
in section IV. Section V gives the proposed weighting tech-

niques. The performance and results analysis are given in
section VI. Finally, the conclusion and future work are drawn
in section VII.

II. RELATED WORKS
MADM techniques are widely adopted recently in making
decisions for multiple criteria problems. One of the most
widely used MADM method is the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS). TOPSIS
method’s principle, in wireless network field, is to select
the target which is closest to the positive ideal solution and
farthest from the negative ideal solution. Positive ideal solu-
tion is based on the best value for the attributes used in
decisionmaking.While negative ideal solution is based on the
worst attributes values [11]. In the field of network selection,
many researches in the literature have been accomplished
by using TOPSIS method to solve the HO decision mak-
ing. Bari and Leung [12] proposed a TOPSIS method taking
into account cost, total bandwidth, network utilization, delay,
and jitter when building the HO decision matrix. Another
research paper in [13], a TOPSIS method is proposed to
rank the available networks. Different parameters are used
when forming the decision matrix, such as the available
bandwidth, cost, and security level. Chen et al. [14] proposed
a TOPSIS based method to reduce the connection failure in
heterogeneous networks. The user performs HO to the target
cell in either two ways. First, when the received power is
very low, even before the time to trigger expires so as to
avoid radio link failure. Second, when the received signal
from the serving cell is high enough but the downlink SINR
drops below a predefined threshold. Results show that this
method reduce the number of HOs, packet loss and increase
user mean throughput. However, the use of predefined value
for weighting the HO metrics could show some deficiency in
HOdecision due to the large variation in signal power because
of user mobility specially for fast moving ones in dense SCs
scenarios.

III. SYSTEM MODEL
In this work, as shown in Fig.1, we consider a two-tier
downlink HetNet scenario consisting of a single MC of 500m
radius and Nsc number of SCs with a radius of 100m
each. Thus, we have a total number of Nbs base stations in
the network. SCs are deployed randomly following uniform
distribution. Both tiers are deployed with the same carrier
frequency. The minimum distance between MC site and SC
sites is set to 75m and the SC to SC site distance is set to
40m [2], which ensures an overlapping between SCs. Users
are distributed uniformly in the MC coverage area and they
move in a random direction with a constant speed. In this
mobility model, the UE moves in straight line with a constant
speed. It goes to a selected direction [0, 2π ] to the boundary.
Upon completing the movement by reaching the boundary,
the UE pauses and decides to move to another direction and
travels to complete a second movement. This process is inde-
pendently repeated until the simulation is finished. Which
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means that the UE has different angle of movement during
the simulation. In this case, the UE angle of movement is
measured with regards to the coordinates of the base stations
at each period of time, so it is not constant. This movement
direction, i.e., angle θ , is used to compute the time of stay and
it is different with respect to different base stations.

FIGURE 1. HetNet system model.

For the sake of clarity, we define a list of abbreviations as
depicted in table 1.

TABLE 1. List of abbreviations.

A. CHANNEL MODEL
A large scale channel is considered using the path loss model
and shadowing effects. The path loss between theMC and the
user is defined as in [15] by

δm→uek = 128.1+ 37.6 log10(dm→uek ), (1)

where dm→uek is the distance between the user and the MC
base station in kilometres. The path loss between the SC and

the user is defined as in [16] by

δsci→uek = 38+ 30 log10(dsci→uek ), (2)

where dsci→uek is the distance between the user and SC i in
metres.

The SINR from SC i and MC received at user k can
respectively be expressed as

γ rsci→uek =
Prsci→uek∑Nbs

j=1,j 6=i P
r
bsj→uek + σ

2
, (3)

γ rm→uek =
Prm→uek∑Nbs

j=1,j 6=m P
r
bsj→uek + σ

2
, (4)

where Prsci→uek and Prm→uek are respectively the reference
signal received power (RSRP) received from SC i and MC,
Prbsj→uek is the RSRP from the interfering MC/SCs, γ rm→uek
is the SINR received fromMC at user k , γ rsci→uek is the SINR
received from SC i at user k , σ 2 is the noise power, and Nbs
is the total number of MC and SCs in the network.

B. TIME OF STAY MEASUREMENT
As depicted in Fig.2, the real ToS, ToSrealuek , can be measured
as

ToSrealuek =
|
−−−−→
AinAout |
Vk

=
2Ri cos(α)

Vk
, (5)

where Ain, and Aout are respectively the entry and the exit
points of the UE to and from base station i, Ri is the base
station radius, and Vk is the velocity of user k .

FIGURE 2. Time of stay measurement.

We can get the following from Fig.2

| A1A0 |
sin(180− α)

=
Ri

sin(θ )
, (6)

where A0, and A1 are respectively the location of base station
i, and the previous location of the UE.
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Equation (6) can be rewritten as

sin(α) =
| A1A0 | sin(θ )

Ri
(7)

Therefore

cos(α) =

√√√√1−

(
| A1A0 | sin(θ )

)2
R2i

(8)

The angle between the UE trajectory and the base station i, θ ,
can also be calculated as

θ = arccos
( −−→

A1A0 ·
−−→
A1A2

|
−−→
A1A0 | × |

−−→
A1A2 |

)
, (9)

where A2 is the current location of the UE.
Finally, we substitute (8) and (9) in (5) to get the real time

of stay as

ToSrealuek =

2Ri

√√√√√
1−

(
|
−−→
A1A0|· sin

(
arccos

( −−−→
A1A0·

−−−→
A1A2

|
−−−→
A1A0|×|

−−−→
A1A2|

)))2

R2i

Vk
.

(10)

IV. PROPOSED WEIGHTED TECHNIQUES FOR ORDER
PREFERENCE BY SIMILARITY TO AN IDEAL SOLUTION
The proposed methods adopt one of the well known MADM
techniques, Technique for Order Preference by Similarity to
an Ideal Solution (TOPSIS), to select the proper target cell
for HO by ranking the available neighbouring candidate cells.
The attributes (i.e. HO metrics) used to rank the target cells
are: the time of stay (ToSrealuek ), the user angle of movement (θ )
and the SINR of the target cell.

The HO decision is based on choosing a proper alternative
(i.e. base station) among the available set of alternatives. The
proposed methods grant that the selected HO target cell is
suboptimal solution i.e. near the positive ideal solution and
far from the negative ideal solution. Henceforth the base
station(s) will be called alternative(s) and the HO decision
metric(s) will be called attribute(s). The user has a set of Nbs
target alternativesm = {1, 2, · · · ,Nbs}with a set of attributes
n = {1, 2, 3} and attributes weighting vector w. We can
present our proposed methods’ procedures as follows:
Procedure 1: The decision matrix, D, is formed by map-

ping the alternatives against the attributes as shown

D =


a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
...

...
...

...

am1 am2 · · · amn

, (11)

where the each row represents one alternative, and the
columns represent their correspondent attributes, n =

1, · · · , 3, m = 1, 2, · · · ,Nbs, aij represents the value of the
jth attribute (HO metric) for the ith alternative (base station).
In this paper, ai1 = θ , ai2 = ToS, and ai3 = SINR.

Procedure 2: The decision matrix is then normalized using
a Square root normalization method as described in (12)

anormij =
aij√∑m
i=1 a

2
ij

, anormij ∈ [0, 1], (12)

where anormij is the jth normalized attribute of the ith alterna-
tive. Which means that each element in the decision matrix
D is divided by its correspondent column squared-elements
sum. Thus, we can write the normalized decision matrix, Dn,
as

Dn
=



a11√∑m
i=1 a

2
i1

a12√∑m
i=1 a

2
i2

a13√∑m
i=1 a

2
i3

a21√∑m
i=1 a

2
i1

a22√∑m
i=1 a

2
i2

a23√∑m
i=1 a

2
i3

a31√∑m
i=1 a

2
i1

a32√∑m
i=1 a

2
i2

a33√∑m
i=1 a

2
i3

...
...

...
am1√∑m
i=1 a

2
i1

am2√∑m
i=1 a

2
i2

am3√∑m
i=1 a

2
i3


. (13)

Procedure 3: The normalized matrix is weighted in this
step so as to take into account the importance of each
attribute. The detailed weighting calculations are presented
in sections V-B and V-A. Thus, the weighted normalized
decision matrix can be expressed as

Dn,w
=



anorm11 · w1 anorm12 · w2 anorm13 · w3

anorm21 · w1 anorm22 · w2 anorm23 · w3

anorm31 · w1 anorm32 · w2 anorm33 · w3
...

...
...

anormm1 · w1 anormm2 · w2 anormm3 · w3



=


d11 d12 d13
d21 d22 d23
d31 d32 d33
...

...
...

dm1 dm2 dm3

 (14)

subject to
∑
j∈n

wj = 1, (15)

where dij is the jth weighted normalized attribute of the ith

alternative i.e., d11 = anorm11 · w1, d12 = anorm12 · w2 and so on.
Procedure 4: The weighted normalized decision matrix

is used to find the ideal positive solution (best alternative
which has the best attribute values, denoted as a+) and the
ideal negative solution (worst alternative which has the worst
attribute values, denoted as a−) by

a+ =
{
(max
i∈m

Dn,wij | j ∈ j+), (min
i∈m

Dn,wij | j ∈ j−)
}

=

{
d+1 , d

+

2 , d
+

3

}
, (16)
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a− =
{
(min
i∈m

Dn,wij | j ∈ j+), (max
i∈m

Dn,wij | j ∈ j−)
}

=

{
d−1 , d

−

2 , d
−

3

}
, (17)

where j+ is the set with the attributes having positive
impact (i.e., the higher value the better) such as SINR and
ToS, and j− is the set with the attributes having negative
impact (i.e., the lower value the better) such as θ . The best
alternative value for the attributes θ , ToS and SINR are
respectively min(θ ), max(ToS) and max(SINR). On the other
hand, the worst alternative for the attributes are respectively
max(θ ), min(ToS) and min(SINR). Hence, θ is considered as
a cost attribute and both ToS and SINR are considered as
benefit attributes.
Procedure 5: Compute the Euclidean distance between

each alternative and both the positive and negative ideal
solutions as shown below

dist+ =

√√√√ n∑
j=1

(Dn,wij − d
+

j )
2, ∀i = 1, · · · ,m (18)

dist− =

√√√√ n∑
j=1

(Dn,wij − d
−

j )
2, ∀i = 1, · · · ,m (19)

Procedure 6: In this step, the ranking network vector,
r, is obtained so as to measure the relative closeness of each
candidate alternative to the ideal solution, as shown

r =
dist−

dist+ + dist−
, ∀i = 1, · · · ,m. (20)

According to [17], it has been shown that in some situations
the above equation in (20) cannot ensure that the optimal
alternative is having the shortest distance from the positive
ideal solution and the farthest distance from the negative ideal
solution at the same time. Therefore, the formula in (20)
can be replaced by the revised closeness as in (21), which
computes the extent to which the optimal alternative closes
to the positive ideal solution and far from the negative ideal
solution, that is

r =
dist−

max(dist−)
−

dist+

min(dist+)
, ∀i = 1, · · · ,m. (21)

Indeed, ∀i = 1, · · · ,m, r(i) ≤ 0, bigger r means the better
alternative. When an existing alternative satisfies both of
the conditions

(
max(dist−) = dist−

)
and

(
min(dist+) =

dist+
)
, this means that this alternative is the best one which

is close to the positive ideal solution and far away from the
negative ideal solution.
Procedure 7: The resulted vector from the previous step

is then ranked in descending order and the best alternative
(with the highest rank) from r vector is selected as a target
(i.e., the HO target base station)

HOtarget = argmax r(i). (22)

V. ATTRIBUTE WEIGHTING MEASUREMENTS
Attributes weighting represents a very significant role in
HO decision making. Thus, the way of determining the
weights is a crucial factor for the proposedmethods. Different
techniques have been proposed to deal with the weights.
We present two weighting techniques in this section, namely
the entropy and standard deviation weighting techniques.
We also validate and compare the differences between the two
techniques using a numerical example in the subsection V-C.

A. ENTROPY ATTRIBUTES WEIGHTING
The entropy weighting technique measures the uncertainty in
the data by using the probability theory. This means that if the
data distribution is broad then the uncertainty is higher. On the
other hand, if the data distribution is sharply peaked then
the uncertainty is lower. The entropy weighting technique
precisely calculates the amount of decision information that
each attribute has in the decision matrix [18]. The entropy
technique is a type of objective weighting techniques which
measures the attribute weight based on the relative difference
between them. The resulted weight of the attribute is then
normalized to obtain the entropy weight of that attribute [19].
The jth entropy coefficients divergence degree, denoted ej,
can be measured using the normalized decision matrix

ej = 1− cj, (23)

where cj =
[

1
ln(n)

n∑
i=1

anormij ln(anormij )
]
, (24)

and the term 1
ln(n) is a constant which ensures that value of

coefficient cj ∈ [0,1] i.e., 0 ≤ cj ≤ 1.
The entropy coefficient divergence degree ej represents the

inherent contrast intensity of the attributes (i.e., HO met-
rics). The more divergent the values of anormij for attribute j,
the higher its corresponding entropy coefficient divergence
degree ej, and the more important the attribute j for HO
decision. In other words, this means that if the alternatives
have similar performance ratings for a certain attribute, then
this attribute has less influence in HO decision making.
On the other hand, if an attribute j for all alternatives in the
decision matrix is identical, then this attribute is not useful
in HO decision making because it has absolutely no useful
information for the decision maker [20]. For example, for a
given attribute j, when all elements anormij are the same, then
the coefficient cj ≈ 1 which means that ej ≈ 0 and hence,
the weight of this attribute becomes zero as well. This means
that this attribute has no effect on the HO decision.

Finally, the entropy weighting of the jth attribute is
expressed as

wej =
ej∑n
j=1 ej

, (25)

where wej is the final weight of the jth attribute using the
entropy weighting technique. The entropy weighting tech-
nique is not affected by the range of different attributes values
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because it uses the normalized attributes (i.e., anormij ) for
weight calculation [21].

B. STANDARD DEVIATION ATTRIBUTES WEIGHTING
The proposed method also deploys the standard deviation
(SD) weighting technique [22] so as to rate the importance of
the attributes for each cell in the network. The SD weighting
technique measures the weights of each attribute in terms of
the standard deviation.

The SD weighting technique gives a small weight for an
attribute if the value of this attribute is identical for all avail-
able alternatives. For example, if an attribute has an equal
values on all available alternatives, then it has no significant
impact on HO decision making and hence, its weight is null.
In other words, attributes with small standard deviation are
given smaller weights and vice versa.

The weighting vector w represents the importance of the
attribute (HOmetrics). Thus, w1, w2, and w3 are respectively
the weights of θ , ToS, and SINR. The weights can be calcu-
lated using SD technique as

wsdj =
σj∑3
k=1 σk

, (26)

σj =

√√√√ 1
m

m∑
i=1

(anormij − µj)2, (27)

µj =
1
m

m∑
i=1

anormij , (28)

where σj and µj are respectively the standard deviation and
the mean value of the jth normalized attribute.

C. NUMERICAL EXAMPLE
To validate and compare the differences between the weight-
ing techniques, we examine a numerical example, whose
decision matrix is given as

D =


θ ToS SINR

A1 80 100 −109
A2 45 20 −106
A3 20 50 −81
A4 5 90 −45


where Ai is the ith alternative ∀i = 1, · · · , 4.
First, the decision matrix is normalized by Square root

normalization method as

Dn
=


θ ToS SINR

A1 0.8504 0.6901 0.6149
A2 0.4783 0.1380 0.5937
A3 0.2126 0.3450 0.4537
A4 0.0531 0.6211 0.2521


Then, we can obtain the weighting vector for the entropy and
SD techniques respectively as

we
=
[
0.0189 0.0144 0.9667

]
,

wsd
=
[
0.4522 0.3310 0.2168

]
,

It is clear that the entropy and SD techniques evaluate the
three attributes with different ranking, i.e., w3 > w1 > w2
for entropy and w1 > w2 > w3 for SD, where w1, w2 and w3
are respectively the weights of θ , ToS and SINR.
The entropy technique gives very high weight for the

SINR, about 97%, and fewer weights for θ and ToS,
about 1.8% and 1.4% respectively. Unlike the entropy tech-
nique, the SD technique assigns more moderate and accurate
weights for the attributes 45%, 33% and 21% for θ , ToS and
SINR respectively.

The entropy technique nearly gives thewholeweight to one
attribute (i.e., SINR) which is undesirable because the ToS
and θ attributes are also significant factors for HO decision.
The user may receive high SINR from a certain cell but its
ToS is very short and its moving direction is away from the
cell (i.e., θ is very large) and hence, assigning a higher weight
for only SINR is considered as a drawback of this technique
which will result in an increase in the number of unnecessary
HOs and leads to throughput reduciton. These problems have
been avoided by the SD technique by distributing the weights
more positively among attributes.

Thus, we now have two proposed methods. The first
method utilizes the entropy weighting technique to find the
weighting vector w and is named as PE-TOPSIS. The sec-
ond one uses the SD weighting technique for measuring
the weighting vector w and is named as PSD-TOPSIS. The
procedures of the proposed methods PE-TOPSIS and PSD-
TOPSIS are illustrated in Fig.3. The procedures begin by
first obtaining the cells that have a downlink RSRP greater
than or equal to the threshold (RSRPth). This step is essential
to reduce the number of alternatives in the decision matrix
and hence, reducing the computational complexity. For each
of the obtained cells, the parameters θ , ToS, and SINR are
measured to build the decision matrix. Then, the normaliza-
tion of the decisionmatrix is applied. After that, theweighting
vector w is calculated using the entropy weighting technique
for PE-TOPSIS method and standard deviation weighting
technique for PSD-TOPSIS method. The resulted cells from
the previous steps are combined in vector r. Finally, the HO
target is the cell with highest order in vector r.

VI. PERFORMANCE AND RESULTS ANALYSIS
The performance of the PE-TOPSIS and PSD-TOPSIS meth-
ods is evaluated in terms of number of handovers, radio
link failure and user mean throughput and compared against
other three methods, the conventional method, the network
controlled HO method (NCH) in [23] and the method in [14]
denoted as TOPSIS, which uses a predefined weighting vec-
tor with fixed values. Simulations parameters are listed in
table 2 [24].

According to [25], the density of the number of nodes (here
SCs) in a given coverage area can be obtained by using the
definition of the density metric, Dsc, as

Dsc =
| Nsc | πR2sc

πR2m
, (29)
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FIGURE 3. Procedures of PE-TOPSIS and PSD-TOPSIS.

TABLE 2. Simulation parameters.

where Rsc and Rm are respectively the SC andMC radius. The
denominator represents the area of the umbrella base station
i.e., the MC coverage area. Thus, if the SC density metricDsc
is equal to 1, this means that the deployment of the SCs covers
the whole area of the MC coverage area. While a higher than
1 value means that the SCs are covering the whole area ofMC
and an overlapping is ensured among the SCs. We set up the
number of SCs to 50, which means that Dsc ≈ 2 and hence,
the dense SCs scenario is achieved.

FIGURE 4. Number of handovers.

First, we only compare the PE-TOPSIS with the conven-
tional, NCH and TOPSIS methods.

A. NUMBER OF HANDOVERS
Fig.4 depicts the total number of HOs per second. Two dif-
ferent scenarios are shown, when the density of the users are
1 and 5 per one MC. For all methods, the lower the density
of the users the lower the number of HOs for all velocities.
It is clear that the conventional andNCHmethods have higher
number of HOs compared to TOPSIS and PE-TOPSIS. This
is because that both methods do not predict the target cell for
HOs and they respectively perform the HO when the down-
link received power from the neighbour cell is offset greater
than that of the serving cell for TTT period of time and if the
SINR is below the SINR threshold for NCH method. On the
other hand, the TOPSIS and PE-TOPSIS have less number
of HOs compared to the other two methods. The PE-TOPSIS
has also outperformed the TOPSIS method by reducing the
number of HOs due to the modified entropy weighting calcu-
lations which leads to proper assigning of importance to the
HO metrics θ , ToS and SINR. Unlike the TOPSIS method
which assigns a fixed weights for the HO metrics. Unlike
the high speed users, the low speed users will not cause a
short time of stay phenomena, therefore, the number of HOs
is lower for low speed users which clarify the advantage
of incorporating the ToS criterion. Additionally, the angle
criterion omits the base stations that are not in the user’s
movement direction resulting in a fewer number of target
base stations, and hence, reduce the number of unnecessary
handovers compared to the competitive methods.

The percentage of each type of HO compared to the total
number of HOs is presented in Fig.5. These percentage have
been taken for three types of user velocity, low at 20km/h,
medium at 60km/h and high at 100km/h. For the case of
outbound HO (i.e., SC to MC HO), both the conventional
and NCH methods have the higher percentages of HO and
these percentages grow as the user velocity increases. On the
other hand, TOPSIS and PE-TOPSIS methods have lower
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percentages of HOs with the PE-TOPSIS having less percent-
age than that of the TOPSIS. It is obvious from Fig.5 that the
PE-TOPSIS has eliminated the outbound HO for low speed
user, hence, low speed users are preferred to stay connected
to SC rather than performing HO to MC. For the case of
inbound HO (i.e., MC to SC HO), all of the four methods
have an instantaneous increase in the HO percentage with the
increase in user velocity with the PE-TOPSIS method having
a slight drop at high speed due to the HO target prediction
which reduces the unnecessary HO to SC for high speed
users. For the case of inter-SC HO (i.e., SC to SC HO),
all methods also show an instantaneous increase in the HO
percentage as the velocity increases due to the high density
of SCs. It is clear that PE-TOPSIS has lower HO percentage
than that of the TOPSIS at high speed because the proper
HO target prediction of PE-TOPSIS let the high speed users
occasionally perform HO to SC (when the SINR of MC is not
sufficient) so as to reduce the radio link failure which may
lead to HO failure.

FIGURE 5. The percentage of handover frequency.

B. RADIO LINK FAILURE
A radio link failure is declared if the HO is initiated to the
target cell from vector r but the SINR of that cell drops below
the threshold γth for a period of time window T310, which is
1 second, as defined in [26]. The radio link failure is depicted
in Fig.6. The higher the speed the higher the radio link failure
for all methods. The conventional method yields higher fail-
ure due to the frequent HOs as the velocity increases, hence,
the HOwill be initiated but interrupted before completion due
to the sudden drop in the target cell received power at the user
side. The NCH method has lower failure compared to the
conventional method because it performs the HO when the
SINR of the serving cell drops below a predefined threshold.
Both the TOPSIS and PE-TOPSIS methods have the lowest
radio link failure with the PE-TOPSIS outperforming spe-
cially at high speeds due to the early HO to the correctly
predicted HO target cell. The low radio link failure in the
PE-TOPSIS method emphasizes the accuracy of weighting
assignment to the HO metrics which leads to an accurate

cell selection compared to the other methods. Additionally,
the low link failure in PE-TOPSIS method comes from the
positive influence of utilizing the angle criterion where the
users will avoid initiating the HO to the base station that
are located away from it is movement direction, and hence,
the failure will be reduced.

FIGURE 6. Radio link failure.

FIGURE 7. User mean throughput.

C. USER MEAN THROUGHPUT
Fig.7 shows the user mean throughput for the four methods.
All methods have dropped in the mean user throughput as the
velocity increase. The conventional and NCH methods have
the lowest throughput compared to the other two methods
because of their higher number of unnecessary HOs which
results in producing a lower throughput for the user (since the
high speed users will result in radio link failure which leads to
poor throughput gain). The TOPSIS and PE-TOPSISmethods
produce higher throughput because they perform the HO
upon the proper target predictionwith the PE-TOPSIS outper-
forming the TOPSIS method. Higher throughout especially
for low speed users reflects the receiving of high SINR at the
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FIGURE 8. Number of handovers.

FIGURE 9. Radio link failure.

user side. Therefore, the incorporation of SINR criterion has
the advantage of improving the throughput at all velocities.

D. COMPARING PE-TOPSIS AND PSD-TOPSIS
In this subsection we compare the performance of
PE-TOPSIS with that of the PSD-TOPSIS methods in terms
of the number of HOs, radio link failure, user mean through-
put and complexity of calculations.

Fig.8 shows that the number of HOs has been reduced
in PSD-TOPSIS method compared to PE-TOPSIS. For all
velocities, the PSD-TOPSIS method produces less number
of HOs. The SD weighting technique provides more stable
weights to the attributes which in turn leads to an efficient
alternative selection among the available options.

The radio link failure is depicted in Fig.9. The
PSD-TOPSIS method reduces the radio link failure, which
may cause HO failure. The level of increase in the link failure
increases with the increase in user velocity according to the
common sense because the fast moving users may leave the
coverage area of the cell before completing the HO process,
hence the failure increases.

FIGURE 10. User mean throughput.

In Fig.10, the mean user throughput is illustrated.
As expected the PSD-TOPSIS method produces higher
achieved throughput for the user.

For the sake of clarity, we did not compare the proposed
PSD-TOPSIS method with the conventional, NCH or TOP-
SIS because those methods have already been outperformed
by our proposed method PE-TOPSIS.

To further conclude the impact of the weighting techniques
on the proposed methods, we compare the performance in a
form of tables. Tables 3, 4 and 5 give the numerical results of
the PE-TOPSIS and PSD-TOPSISmethods when the velocity
is 20km/h, 40km/h and 80km/h respectively.

TABLE 3. Performance analysis at 20 km/h.

TABLE 4. Performance analysis at 40 km/h.

TABLE 5. Performance analysis at 80 km/h.

We can see from the tables that the PSD-TOPSIS method
has outperformed PE-TOPSIS at all velocities. For instance,
when the velocity is 20km/h, the number of HOs is reduced by
9%. Furthermore, the radio link failure is reduced by 30.7%
in the same case. At a velocity of 80km/h, the number of
HOs is reduced by approximately 5.2% for PSD-TOPSIS
compared to PE-TOPSIS. Furthermore, the radio link failure
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is minimized by 8% in the same case and the user mean
throughput is enhanced by 78.8%.

When using the entropy weighting technique the overall
performance is getting worse (but still better than that of the
TOPSIS, NCH and the conventional methods) compared to
that when using SD weighting technique. This proves the
advantage of the SD over the entropy weighting technique
in distributing the weights between the attributes and hence,
gives a better performance in terms of reducing the number of
HOs and radio link failures in addition to enhancing the user
mean throughput.

FIGURE 11. Complexity analysis.

To further analyze the benefits of the proposed methods,
PE-TOPSIS and PSD-TOPSIS, we evaluate the complexity of
both methods. Fig.11 depicts the computational complexity
of the proposed methods. This is done by evaluating the
two methods in terms of the total number of floating point
operations (flops) with different sizes of the decision matrix
(i.e., different densities of SCs). We used the Matlab function
defined in [27] which scans and parses each line of the
simulation code and counts the number of flops. As can be
noticed from Fig.11, the computational complexity increases
linearly with the increase in the size of the decision matrix for
both methods. The PSD-TOPSIS method has slightly higher
complexity operations compared to the PE-TOPSIS. In fact,
as the size of the decision matrix increases the difference
between the two methods in terms of complexity increases.
We conclude that, when the complexity is not an issue in the
application, then the PSD-TOPSIS method would be a good
solution. Otherwise, the PE-TOPSIS method is an alternative
at the expense of less accuracy on attributes weight assign-
ment, and hence, higher HO and link failure levels in addition
to less achieved throughput.

Furthermore, higher complexity means higher energy con-
sumption. Therefore, deploying PE-TOPSIS or PSD-TOPSIS
also depends on the capability of the SCs. For example,
when residential SCs are deployed (e.g. femtocells), then the
PE-TOPSIS is more preferred due to the limited calculation
capabilities of the femtocell. On the other hand, when other

SC types are used (e.g. picocell), then the PSD-TOPSIS could
be the best option.

VII. CONCLUSION AND FUTURE WORK
In this paper, modified weighted MADM TOPSIS methods
have been presented. The proposed methods exploit the TOP-
SIS principle of ranking the HO candidate cells based on
their attributes and the weights of each attribute. The final
HO destination cell is selected when it is close to positive
ideal solution and far from the negative ideal solution. In the
first method, PE-TOPSIS, we deploy the entropy weighting
technique to weight the attributes. This method shows a
good performance in reducing the number of HOs and radio
link failures and enhancing the achieved user throughput
compared to the NCH, TOPSIS and conventional methods.
The second proposed method, PSD-TOPSIS, deploys the
standard deviation weighting technique to scale the impor-
tance of each attribute for all HO candidate cells. As the
results show, our proposed PSD-TOPSIS method reached
low number of HOs and low radio link failure, while higher
mean user throughput is achieved compared to the existing
methods. This method shows even better results in enhancing
the network performance by reducing the number of HOs
and radio link failure, in addition to increasing the mean user
throughput owing to the accurate weight distribution between
the attributes. Furthermore, we compare the performance of
PE-TOPSIS and PSD-TOPSIS in terms of complexity and
suggest to choose the method based on the size and capability
of calculations of the SCs. For smaller size SCs, the PE-
TOPSIS is more suitable, otherwise, the PSD-TOPSIS is an
alternative solution.

As a future work, we intend to investigate the influence
of different normalization techniques on the network perfor-
mance, in addition to studying the phenomena of what so
called network ranking abnormality in MADM methods.
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