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Lava dome collapses can lead to explosive activity and pyroclastic flow generation which makes them one of the
most deadly consequences of volcanic activity. The mechanisms linked to a collapse are however still poorly un-
derstood and very few numerical models exist that investigate the actual collapse of a lava dome after emplace-
ment. We use a discrete element method implemented in the modelling software Particle Flow Code to
investigate lava dome growth, but also go further to test the stability of the dome under the following conditions:
increased internal pressure; switch in extrusion direction caused by partial cooling of the dome; and extrusion of
lava onto variable underlying topography. We initially show the morphology development of a growing lava
dome, and how the rheological boundary between core and talus evolves throughout the lifetime of a dome
and with varied solidus pressures. Through visualisation of strain accumulation within the lava dome we show
superficial rockfall development due to interaction with topography, whereas large deep-seated failures occur
when the dome is exposed to internal overpressures. We find that a switch in extrusion direction promotes a
transition from endogenous to exogenous dome growth and leads to lava lobe formation. We demonstrate
that lava dome collapse exhibitsmany features similar to common landslides and by investigating strain patterns
within the dome, we can use numerical modelling to understand features that elude field observations.
. This is an op
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Lava domes form when magma extrudes from a vent and piles up
due to its high viscosity. Once unstable, collapse of a lava dome can gen-
erate rockfalls, debris avalanches, and pyroclastic flows. Despite this sig-
nificant hazard, relationships between active dome extrusion and
collapse processes are still not entirely understood (Calder et al., 2002;
Voight, 2000).

The stability of a lava dome is affected by multiple factors including
but not limited to: gravitational collapse due to over-steepening
(Swanson et al., 1987); internal gas overpressures (Elsworth and
Voight, 2001; Sparks, 1997; Voight and Elsworth, 2000); interaction
with intense rainfall (Carn et al., 2004; Elsworth et al., 2004;
Matthews et al., 2002; Taron et al., 2007); a switch in extrusion direction
(Loughlin et al., 2010); topography underlying the dome (for example, a
dome exceeding the size of the crater in which it sits) (Voight et al.,
2002); hydrothermal alteration (Ball et al., 2015); and the fracture
state of the dome, both small-scale due to dynamic and explosive
dome growth (e.g. Darmawan et al., 2018) and large scale from local
tectonic faulting (e.g. Walter et al., 2015).
en access article under
Domemorphology also plays an inevitable role in overall dome sta-
bility. Different types of domes have been classified by various studies
(e.g. Blake, 1990; Watts et al., 2002), ranging from "pancake" domes,
coulées, and lava lobes (generally wide and low in height) to Peleean
or blocky domes, which have amore extensive talus apron and are taller
for a given radius (Blake, 1990). Blocky domes can also generate spines,
whereby stiff, cooled material extrudes near-vertically (Watts et al.,
2002). Blockier/Peleean-style domes are more likely to collapse due to
the larger height to radius ratio, and collapses generally involve more
material than shallow collapses at pancake-style domes (Blake, 1990).
The domes modelled in this paper are analogous to blockier domes,
rather than “pancake” domes or coulées.

Despite recent advances in computational modelling of lava domes
(Hale, 2008; Hale et al., 2007, 2009a; Husain et al., 2014, 2018), current
models focus on understanding initial emplacement dynamics rather
than more hazardous aspects of dome collapse. Here we develop the
idea, first posed by Husain et al. (2014), of using discrete element
method (DEM) modelling to reproduce both the emplacement and in-
stability of a lava dome with intermediate silica composition. Previous
dome emplacement simulations have mostly employed the finite ele-
ment method (FEM) (Bourgouin et al., 2007; Hale, 2008; Hale et al.,
2009a, 2009b; Hale and Wadge, 2008), whereby it is computationally
expensive to introduce additional perturbing factors with the intention
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of initiating collapse. By using a DEMmodel, we are able to start with an
initial dome emplacement and apply, in several model scenarios, differ-
entmechanisms attributed to dome collapse in the literature.We intend
this to be a pilot study to illustrate the potential of themodel in simulat-
ing dome growth, morphology and collapse, and show this model can
be applied in more specific locations with exact scenarios or conditions.

2. Methodology

2.1. Discrete element method

We use Particle Flow Code (PFC), a commercial software developed
by Itasca (2017), to undertake a two-dimensional analysis of dome
growth and collapse. PFC uses the discrete element method (Cundall
and Strack, 1979) to simulate an assembly of individual particles that
behave as rigid bodies carrying a force and moment that are updated
per model time step. The particles interact via contact bonds, defined
by individual contact models, which act as point (“parallel” bonds) or
beam (“flatjoint” bonds) style connections between particles (Fig. 1).
Bond behaviour is primarily governed by the normal stiffness (kn –
incompressibility) and shear stiffness (ks) associated with the contact
interface, although the bonds also have attributed values for cohesion,
tensile strength, and friction. Bond breakage occurs if the tensile or
shear strength of the contact is exceeded, which is used to represent
damage in the model material. PFC calculates an explicit solution to
Newton's laws of motion, thus limiting the need to dictate additional
particle behaviours (Potyondy, 2016). Each particle in this case is not
intended to represent an individual crystal or a block of rock, but rather
a discrete element for the purpose of computation.

DEM is commonly used to study soil and rockmechanics (Wang and
Tonon, 2009; Zhang et al., 2011), civil engineering scenarios (Jenck et al.,
2009; Wang et al., 2003), and more recently the field of volcanology, to
study volcanic processes such as gravitational spreading (Morgan and
McGovern, 2005a, 2005b), caldera collapse (Gudmundsson et al.,
2016; Holohan et al., 2011, 2015), and lava dome growth (Husain et
al., 2014, 2018). This study differs to previous DEM models of lava
dome emplacement (Husain et al., 2014), in that we incorporate new
bonding methods in PFC to better represent dome rock properties and
explicitly test conditions associated with dome collapse.

2.2. Model description

We model a simplified internal dome structure comprising two
main units: (1) a frictionless, ductile core and (2) an outer friction-con-
trolled talus region.We use the term talus to refer to any domematerial
that is behaving as rock anddonot distinguish between talus slopes that
have become detached from the dome and the intact crust of the dome.
It is likely there is a transition zone between the core and talus regions,
often termed the carapace (e.g. Wadge et al., 2009), however for sim-
plicity this is not included here as a separate region. This assumption
is based on studies suggesting an abrupt rheological change when
melt develops a critical crystal content, thus exhibiting material
strength that can be characterised as a solid (Cordonnier et al., 2012).
Fig. 1. (a) A parallel bond in PFC; (b) a flatjoint bo
A thermal imaging study by Hutchison et al. (2013) showed the
outer crust of the dome appears to behave dynamically during dome
growth, rather than acting as a stiff, rigid layer. DEM allows the talus
to deform independently without imposing a rigid boundary upon the
model region, suggesting this method is appropriate for modelling the
evolution of both the fluid and solid portions of lava domes.

We do not implement an explicit mechanism for magma reaching
the surface, and instead the dome grows through a constant supply of
magma into the interior. After initial extrusion conditions are applied
the dome is free to grow “naturally” and this can lead to exogenous
spine generation. As with previous dome emplacement simulations
(e.g. Hale, 2008), we note that our model is best applied to the analysis
of large, whole-dome processes, hence localised flow processes are not
fully considered.

Themodel is initialised by generating a “batch” ofmagma in the con-
duit which is followed by a constant supply of fresh magma. At model
initialization, particles are packedwithin the conduit to ensure that con-
tacts exist at all particle-particle interfaces. Packing is random to avoid
hexagonal particle packing (Potyondy, 2016), as this can lead to unreli-
able model behaviour. This packing introduces a randomness to the
dome geometry in each model run and leads to dome asymmetry.
After magma exits the conduit, its behaviour is governed by: (a) the
driving force due to velocity of conduit material; (b) the downward
force of gravity; and (c) the force and moment transfer from particle-
particle interactions. The magma is driven by an upwards velocity of
2 m/s; this is kept constant in all models as we do not focus on the effect
of extrusion rate on dome growth. Mapping this 2D ascent velocity to a
3D extrusion rate would give faster extrusion rates than those used in
other discrete element models (Hungr et al., 2014; Husain et al.,
2018), however to reduce computation time we simulate a fast end
member of extrusion. We note that our simulations run close to real
time and therefore a modelled dome would take months to extrude at
low ascent velocities, thus we accelerate the extrusion process and do
not explicitly compare modelled timescales to real world observations.

Identifying the transition of ductile corematerial to talus is crucial in
a lava dome emplacement model, as relative core/talus volumes influ-
ence dome morphology and therefore stability (Hale et al., 2009a).
The solidification ofmagma is primarily controlled by twomechanisms:
the cooling of the lava surface which leads to a solid crust and rheolog-
ical stiffening, and volatile exsolution caused by decompression which
increases liquidus temperature and therefore promotes crystallisation.
Lava domes most commonly form in andesitic-dacitic lavas (Ogburn et
al., 2015), where solidification of lava is dominated by degassing-in-
duced crystallisation (Sparks et al., 2000). Cooling can therefore be con-
sidered negligible in the solidification process;we follow the example of
previous dome emplacement models (Hale, 2008; Husain et al., 2014;
Simmons et al., 2005) and employ the solidus pressure tomark the tran-
sition of magma from a liquid to a crystallised solid state:

T liq;sol ¼ aT þ bT ln pð Þ þ cT ln pð Þ2 þ dT ln pð Þ3; ð1Þ

where T gives the liquidus and solidus temperatures (Fig. 2), aT, bT, cT
and dT are constants (Couch et al., 2003; Melnik and Sparks, 2005),
nd in PFC, showing skirted particle geometry.

Image of Fig. 1


Fig. 2. Temperature-pressure curve showing magma solidus using Eq. (1) derived by
Couch et al. (2003) for initial SHV melt composition.

Fig. 3. Velocity vectors during dome growth, where red is core material and grey is talus
material. The relative velocity magnitude is proportional to arrow size, where conduit
material has a velocity of 2 m.
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and p is pressure. Melnik and Sparks (2005) use the initial melt compo-
sition at Soufrière Hills volcano (SHV) (Couch et al., 2003) to experi-
mentally establish the solidus and liquidus temperatures; the best fit
to this experimental data derives the constants aT, bT, cT and dT.

Studies on lava from SHV, a volcano with numerous cycles of dome
growth and collapse (Wadge et al., 2010), suggest variable properties
(e.g. Matthews and Barclay, 2004; Voight et al., 2006) with tempera-
tures ranging from 830 °C to 940 °C. The method from Moore et al.
(1998) establishes thatwater content is negligible for the given temper-
ature range and composition. In ourmodel we assumemelt experiences
perfect volatile loss at the conduit exit and is dry at the time of emplace-
ment, consistent with low (b0.12%) water contents measured in
groundmass from the 1995–1996 Soufrière Hills dome (Villemant et
al., 2008). The solidus pressure is therefore between 0.1 MPa and 5
MPa, dependent on temperature (Hale, 2008). In a dynamically evolving
dome system, it is likely that the solidus pressure evolves too. Formodel
simplicity,we use afixed value (0.4 MPa) in the starting condition for all
collapse models, but we also include a sensitivity analysis of the solidus
pressure on core/talus proportions within the dome (Section 3.1).

The so-called “level set method” (Osher and Sethian, 1988) is a nu-
merical method previously incorporated into FEM simulations to track
the interface between interior core and outer talus regions (Hale et al.,
2007; Hale and Wadge, 2005, 2008). The evolution of this interface,
where important rheological changes occur, is critical to dome stability.
Hale et al. (2007) presented the benefits of using the level setmethod in
FEMmodels of lava domes, as it allows both the core/talus interface and
the flow front to be tracked without remeshing and therefore reduces
computational expense. However when Husain et al. (2014) applied
this method to DEM models, it resulted in an unlikely morphology of
the core/talus boundary. Therefore, instead of using the level set
method we simply calculate the maximum principal stress (σ1)
(Jaeger et al., 2009) on each discrete particle and adapt the particle
properties according towhen each particle reaches the solidus pressure.

σ1 ¼ 1
2

σ xx þ σyy
� �þ σ2

xy þ 1
4

σ xx−σyy
� �2� �1

2

ð2Þ

It is important to note that this transition in properties is unidirec-
tional, so although solidification is considered in the model, re-melting
cannot occur. Determining the equivalent particle properties of the duc-
tile core material is challenging as a calibration procedure cannot be
performed. We therefore use the micro-properties obtained by Husain
et al. (2014) through sensitivity analyses. The study focussed
particularly on determining the effect of cohesion and bond stiffness
on material behaviour. We correlate the parallel bond stiffness of the
core material to magma viscosity by

η ¼ ksΔt y; ð3Þ

where η is viscosity, ks is the shear stiffness of the bond, t is the model
time step, and y is the unit length of thematerial (i.e. particle size). Var-
iation in magma viscosity at SHV can span up to eight orders of magni-
tude (Couch et al., 2003; Melnik and Sparks, 2002; Voight et al., 1999);
to simplify our model we assume a constant viscosity of 108 Pa in all
models and do not vary the micro-properties of the magma material
(for a complete list of model parameters, see Supplementary Material
A).

For the ductile portion of themodelwe use a parallel bonded contact
model, as the point-style contact does not inhibit rotational resistance
and therefore provides the behaviour of a fluid.When an individual par-
ticle reaches the solidus pressure, the bond type is updated to a flatjoint
bond (Potyondy, 2012), where a beam-style contact changes the geom-
etry of the interface so that the particles become “skirted” in shape (Fig.
1). Recent numerical studies have shown that by incorporating this type
of particle bond, the material acts more like a solid rock than the more
conventional contact models in earlier versions of PFC. This is due to
the increased interlocking and maintenance of rotational resistance,
even after a contact is broken (Wu and Xu, 2016). Using the flat jointed
contact model overcomes many problems seen in earlier PFC studies
(Cho et al., 2007; Holohan et al., 2011), and ensures the material is act-
ing like a solid rock in both compression and tension.

We can use analogue models to evaluate the strain field and likely
flow structures within a dome, thereby verifying the modelled geome-
tries. Buisson and Merle (2002) show that flow in the central region of
the dome above the conduit is dominated by material ascent due to
the driving force of injected magma. Flow in the lateral portions of the
dome is primarily horizontal or downward and governed only by grav-
ity. By tracing particle velocities in PFC, we show that our model repli-
cates this well (Fig. 3). We also compare this flow structure to dome
growth identified by Walter et al. (2013) using pixel offsets, where
growth directly above the conduit is dominated by upward and vertical
movement ofmagma, andflow in the lateral portions of the dome is pri-
marily away from the conduit and gravity-controlled.

2.3. Strain modelling

Due to the heterogeneity of displacements in a particle-basedmodel,
it can be challenging to establish a link between individual particle dis-
placements and macro-level strain. To bridge this gap, we perform in-
verse strain modelling (i.e. fitting a strain model to displacement data)
in order to visualise localised strain (Morgan and McGovern, 2005a,
2005b; Holohan et al., 2011). This method (Schöpfer et al., 2006) as-
sumes a continuum and the nearest neighbours of each particle are

Image of Fig. 2
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identified and their positions tracked across a given time step. The aver-
age displacements are used to calculate a displacement gradient tensor,
which can be used to determine the Cauchy-Green deformation tensor.
We use the deformation gradient tensor to compute maximum shear
strain using

γmax ¼ λmax−λmin

2 λmax � λminð Þ12
; ð4Þ

where γmax is the maximum shear strength, and λ represents the max-
imum and minimum eigenvalues of the deformation gradient tensor
(Cardozo and Allmendinger, 2009). We note that we do not consider
particle rotation, instead calculating strain based on absolute displace-
ment of each particle centroid. In many cases particles in the models
have particularly large strains, for example when a particle “rolls”
down the side of the edifice, simulating a small scale rock fall. These
large strains hide smaller strains occurring within the dome, so we
plot a strain cut-off criterion in each of our model figures. Shear strains
are then normalised to emphasise the relative shear strain in each
model. This allows distinction of where material moves along a bound-
ary (e.g. a fault or a shear plane) frommaterial moving as a block and is
particularly relevant in the case of collapse models as calculating finite
strain can allow identification of developing failure planes.

3. Model results

In this section, we first focus on the emplacement of a lava dome,
followed by sensitivity analyses of domemorphology to both solidus
pressure and conduit width. We create a dome emplacement model
and use this as a starting condition, enabling application of external
factors observed to trigger pyroclastic flow generation or dome
collapse. In this initial study, we do not model rainfall-induced
collapse due to varied hypotheses for how addition of rainfall to
the volcanic system leads to collapse (Matthews and Barclay,
2004). We therefore focus on simulating the following triggering
mechanisms: pressurisation of the dome, a switch in extrusion
direction, and topography-controlled collapses.

3.1. Dome emplacement

Running a simple dome emplacement model shows a morphology
with steep sides and a flatter area towards the apex of the dome
(Fig. 4). At the beginning of dome growth (Fig. 4a), only solid material
is extruded as there is no overburden pressure to maintain fluid core
material within the dome. Over time, a fluid core is encapsulated by a
solid outer talus region (Fig. 4b). At the base of the dome there are re-
gions where core material overrides solid talus material (Fig. 4c). Al-
though not investigated further here, presence of a talus substrate
beneath the coremay have significant impacts on overall dome stability.
An area of the domewhere core material spreads over underlying talus
material can beunstable and causemore explosive activity during retro-
gressive collapse (Hale et al., 2009a; Herd et al., 2005).
Fig. 4. Snapshots of growth at (a) 5% of final growth, (b) 15% of final growth and (c) 100% of fin
flat-jointed talus. Solidus pressure = 0.4 MPa. For further information on dynamic growth, see
The solidus pressure influences talus thickness, as higher pressures
result in a smaller core volume fraction. While our primary models
use a solidus pressure of 0.4 MPa, we also show emplaced domes with
solidus pressures of 0.2 MPa and 0.8 MPa to demonstrate the effect of
solidus pressure on domemorphology (Fig. 5), and the potential effects
of this are discussed further in Section 4.4. We observe that higher rela-
tive talus volume (Table 1) also results in steeper dome morphology
(Fig. 5).
3.2. Sensitivity of dome morphology to conduit diameter

Lava domes vary in morphology due to rheological and mechanical
properties (e.g. Blake, 1990; Calder et al., 2015; Watts et al., 2002).
Blake (1990) documented variations in observed dome heights from
8 m to 243 m, and radius variations of 20 m to 1093 m. The models in
this paper are extruded from a conduit with diameter of 20 m, and
reach a height of 70 m and width of 210 m, where the dome height
limit appears to have been reached, and any magma addition results
only in lateral spreading (Supplementary Material B: animation of
dome emplacement). Considering the same rheology, solidus pressure
of 0.4 MPa, extrusion rate, and material properties (Fig. 6), we use a
larger conduit of 50m to test whether the dome geometry is indepen-
dent of magma input. The 50 m conduit results in a dome that is 110
m tall, and 340 m wide; this is again approximately a 1:3 height-to-
width ratio. Hencewe determine that lava domemorphology is insensi-
tive to conduit diameter, and therefore themodelswith a conduit diam-
eter of 20 m are indicative of process andmorphology at varying scales.

There are similar dome morphologies found between the models
with varying conduit diameters. There is also a similar geometry to
the core/talus interface, particularly at the base of the dome where
both models show core material underlain by talus material. The main
difference between the results is the proportion of core to talus. In the
model with a 20 m conduit, we see 43% talus and 57% core, whereas
in themodel with a 50m conduit, we see 23% talus and 77% core mate-
rial. This can be explained by a low solidus pressure (0.4 MPa) resulting
in only a thin shell required to encase the ductilematerial in the interior
of the dome.

Core volume fraction was also estimated by Hale et al. (2009a,
2009b) using FEM simulations, with values of core volume ranging
from 26% to 66%. Estimates were made from ground-based radar mea-
surements at SHV (Wadge et al., 2008) and showed that a surprisingly
low proportion (39%) of the extruded lava remained in the core. We
suggest that our relative overestimates of core proportion arise from
simulating one continuous extrusion period, rather than amore realistic
periodic extrusion. The pauses during periodic extrusion allow further
solidification to occur, increasing talus volume. Estimates of talus thick-
ness are difficult to obtain during active dome extrusion. Dzurisin et al.
(1990) used magnetization to estimate outer layer thickness of the
Mount St. Helens dome as 10–30 m thick. In the 20 m conduit model,
we find a talus thickness of 13–23 m (considering only where talus
overlies core, and not the distal talus aprons), and for the 50m conduit
model, talus thicknesses range from 15 to 20m. This suggests we have
al growth; red particles shows liquid, parallel-bonded core and grey particles shows solid,
video in Supplementary Material B.

Image of Fig. 4


Fig. 5. PFC dome model emplaced with solidus pressures of (a) 0.2 MPa and (b) 0.8 MPa.
Growth state corresponds to 100% of growth in Fig. 4. Red particles show liquid,
parallel-bonded core and grey particles show solid, flat-jointed talus.

Fig. 6. PFC dome model emplaced with a 50m conduit, and solidus pressure of 0.4 MPa,
where red represents core material and grey represents talus material.
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good estimates of talus encasing the core, but could be underestimating
talus apron volume.

Despite differences in relative core/talus volumes, the overall shape
of the rheological boundary is very similar to that suggested in concep-
tual models (Hutchison et al., 2013) and existing FEM models (Hale et
al., 2009a, 2009b). This confirms our lava dome emplacement model is
valid, providing a good starting condition from which to test collapse
mechanisms.

3.3. Gravity and renewed pressurisation of the dome

Dome collapses are frequently followed by explosive eruptions, sug-
gesting that internal pressurisation is likely to play a role in triggering
instabilities in lava domes. Thiswas observed particularly at SHV follow-
ing collapses in September 1996 and June, August and September 1997
(Cole et al., 1998; Voight and Elsworth, 2000). Pyroclastic flow genera-
tion has also been observed in conjunction with gas pressurisation at
Mt. Unzen (Sato et al., 1992). Tilt deformation prior to dome collapse
events also suggests shallow pressurisation and links timing of collapse
to maximum pressurisation (Elsworth and Voight, 2001).

Voight and Elsworth (2000) modelled a hemispherical dome above
a pressurised conduit and calculated gas pressure diffusion across the
dome. They define an isolated block using an inclined arbitrary basal
sliding plane, upon which the uplift pressures act. This allows calcula-
tion of the factor of safety (a measure of stability defined as the ratio
of resisting to disturbing forces) for the isolated andpotentially unstable
block. The model shows a dome can remain stable in the early stages of
pressurisation and not fail until subsequent pulses of pressure are ap-
plied to the dome. The authors explain this by suggesting the pressure
on the critical failure surface must exceed a given threshold, and this
may require several oscillations. Previous studies (Robertson et al.,
Table 1
Relative core/volume fraction, expressed as a percentage of total extruded material, for
solidus pressures of 0.2 MPa, 0.4 MPa and 0.8 MPa. Model parameters for these simula-
tions are listed in Supplementary Material A.

Solidus

100% of growth

Core (%) Talus (%)

0.2 MPa 79.0 21.0
0.4 MPa 37.3 62.7
0.8 MPa 34.8 65.2
1998; Voight et al., 1998) find gas pressurisation magnitudes of ~10
MPa, and Voight and Elsworth (2000) find decompression of a dome
core by 2–5 MPa can lead to explosive activity.

We aim to exploit the advantages of a DEM model by establishing
whether it is possible to create a failure surface, rather than examining
the effect of pressure on a geometrically simplified pre-existing weak-
ness. After stopping extrusion,we apply anupward forcewithin a hemi-
spherical region above the conduit (where the diameter of this region is
equivalent to conduit width), to act as a renewed pressurisation of the
system. We add the force in this region due to observations which sug-
gest that processes controlling the dome pressurisation are shallow-
level, either deep within the dome interior or in the shallow conduit
(Sparks, 1997). We also show a model with no applied force (Fig. 7a)
to isolate the effect of gravity during this process, followed by the appli-
cation of forces corresponding to pressures of 1 MPa, 2 MPa, and 5 MPa
(Fig. 7b–d).

Following pressurisation, strain localises around the pre-existing
weakness of the rheological boundary. In all cases, small scale rockfalls
occur on the flanks of the dome, caused by over-steepening giving a
high slope angle. Strain accumulates much deeper in the dome in all
cases, highlighting development of deep-seated listric shear failure sur-
faces. The models subjected to both no and low (1MPa) pressurisation
effects show strain accumulation primarily localised at the corners of
the core-talus interface, and in isolated regions along the rheological
boundary. Domes subjected to higher pressurisation effects (2 MPa, 5
MPa) havemore focussed bands of high strain, but these remain located
along the boundary.

3.4. Sensitivity of pressurisation models to conduit diameter

The dome emplacedwith a 50 m conduit diameter is shown in Fig. 8,
after application of an equivalent 5 MPa pressure. This shows the same
scenario as Fig. 7d, and displays very similar strain accumulation to the
model with a 20 m conduit. Although the explicit values of strain are
lower in the larger dome (~50% of those in the smaller dome), we still
see that strain accumulates along the core/talus boundary, and then
within the core of the dome. In the larger domemodel, there is strain ac-
cumulation oblique to the listric shear plane, which has been observed
in previous DEM models of rock slope instability (Wang et al., 2003).

3.5. Switch in extrusion direction

A switch in extrusion direction, or a focussed extrusion direction, has
been documented as a precursor to collapse (Ryan et al., 2010; Stinton
et al., 2014; Wadge et al., 2014), particularly at SHV due to the high
quality of observations. There is no consensus on a proposed mecha-
nism however, and switching extrusion direction has not previously
been incorporated into numerical or analoguemodels. A focussed extru-
sion directionwas observed during growth of the 2004–2006 lava dome
complex at Mount St. Helens (Vallance et al., 2008). Due to cooling of
older 2004–2005 dome rock, later spines experienced “thrusting

Image of Fig. 5
Image of Fig. 6


Fig. 7. PFC dome model following application of an upward force corresponding to
pressures of (a) 0 MPa, (b) 1 MPa, (c) 2 MPa, (d) 5 MPa. Plotted using normalised finite
shear strain, where the red dotted line represents the rheological interface between core
and talus. Solidus pressure = 0.4 MPa.
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growth” andwere emplaced on top of earlier spines. Themorphology of
older spines and decoupling of later spines led to extrusion of younger
spines oblique to horizontal, at angles up to 54°.

We implement a change in extrusion direction in themodel by paus-
ing active emplacement and freezingpart of the dome. Displacements in
the “frozen” part of the dome are set to zero to simulate material that
has solidified. Once extrusion is resumed, the new material is forced
Fig. 8. PFC domemodel with a 50m conduit after application of force corresponding to 1
MPa pressure, plotted using normalised shear strain, where the red dotted line represents
the rheological interface between core and talus. Solidus pressure = 0.4 MPa.
to extrude in a particular direction as it is prevented from spreading nat-
urally by the frozen dome portion.

The results (Fig. 9) show firstly a large amount of shear strain local-
ised above the conduit exit. Some of this strain accumulates due to fresh
material moving alongside the frozen, older dome material. There is
however significant strain accumulation in the form of shear bands on
both sides of the conduit exit, a feature previously modelled by Hale
and Wadge (2008). Strain is also localised along the lower rheological
interface (Fig. 9c) between the core and talus on the non-frozen side
of the dome. Strain accumulates towards the top of the dome sub-paral-
lel to the rheological boundary (Fig. 9d), suggesting formation of a lava
lobe that is being pushed out by incoming material; similar processes
were observed in the DEM studies of Husain et al. (2018). This is signif-
icant in understanding future dome growth and morphology as we ob-
serve simulated cooling of one part of the dome to lead to lava lobe
formation. The development of a deep, sub-horizontal shear band
(Fig. 9d) is important for dome stability as it forms a potential failure
surface (discussed further in Section 4.2). In terms of collapse style,
rockfalls are seen to develop progressively throughout time following
the focussed extrusion direction, occurring primarily on the over-steep-
ened flanks of the dome.

3.6. Topographic effects

Topographic confinement of domes has been observed to control
material detachment and pyroclastic flow generation (e.g. Voight et
al., 2002). Previous dome growth models inadequately incorporate
non-horizontal extrusion planes in controlling dome growth and talus
generation, despite field observations of topography's influence (e.g.
stiff crater walls buttressing dome emplacement (Hutchison et al.,
2013)). Collapses occurring at Montserrat 1995–1997 were often due
to dome material over-spilling the previous crater walls (Cole et al.,
1998, 2002). We therefore create three end member topographies to
test howdomemorphology changes in each case. These are:magma ex-
truding onto a slope (Fig. 10a); out of a conduit flanked by outward dip-
ping slopes (Fig. 10b); and into a crater (Fig. 10c).

The dome extruded onto a slope shows strain accumulation on the
downhillflank (Fig. 10a). Interestingly there is little strain accumulation
on the uphill portion of the dome, despite the over-steepened flank,
suggesting movement as a block and absence of rockfalls. Emplacing
the domeat the apex of aflanked topography (Fig. 10b) and into a crater
(Fig. 10c) both show rockfall activity on both slopes. For the crater case,
most strain accumulation is seen in areas where the dome has
overtopped the older crater rim (Fig. 10c), suggesting an abrupt change
in slope leads to the highest strains. Additionallywe see development of
several subvertical fractures in the dome core (Fig. 10c). The develop-
ment of these large scale features is not observed in the other modelled
topographies but could have implicationswhen considering overallma-
terial strength.

Due to randomness introduced by initial material packing, our
modelled domes grow asymmetrically. This is shown particularly in
the crater topography model where the rheological boundary location
differs either side of the dome – core material is underlain by talus on
one side, but is in contact with the crater on the other (Fig. 10c). The
model presented in Fig. 10b also shows dome asymmetry, where the
degree of over-steepening differs on each side.

4. Discussion

4.1. Shear band development

The development of shear bands in a material indicates a concen-
trated region of relatively high displacement. When analysing lava
dome morphology, these regions aid identification of potential failure
surfaces, where deformation accumulates to generate zones of weak-
ness. In the model that simulates a focussed extrusion direction

Image of Fig. 8
Image of Fig. 7


Fig. 9. PFC dome model, plotted using normalised finite shear strain, where the red dotted line represents the rheological interface between core and talus material. Insets (a) to (d)
represent snapshots of increasing model run time. Solidus pressure= 0.4 MPa.
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(Fig. 9), significant strain accumulation occurs around the conduit exit.
In models from previous studies (e.g. Hale and Wadge, 2008), shear
bands occur at the junction between the conduit and base of the
dome, as they nucleate where new lava is emplaced adjacent to older
lava. Shear band generation can be a precursor to a transition from ex-
ogenous to endogenous growth (i.e.magma forces itsway to the surface
to create lobes/spines rather than growth caused by magma intrusion
and dome expansion (Calder et al., 2015; Fink et al., 1990)); this is im-
plied further by propagation of shear bands towards the dome surface
over time (Fig. 9d). Similar processes were seen by Buisson and Merle
(2002), where analogue modelling of dome emplacement revealed
that the zone of maximum strain, velocity, and displacement is ob-
served directly above the conduit exit. Cordonnier et al. (2009) suggest
shearing at the conduit exit can lead to spine formation. The develop-
ment of shear bands in our PFCmodel is exaggerated due to the high ex-
trusion rate; these results should therefore be seen as qualitative of
process, rather than quantitative. Nevertheless we clearly see that a
change in extrusion direction leads to strain accumulation in the centre
of the dome that can be interpreted as carving out a pathway for lava to
reach the surface and begin exogenous dome growth. This is not ob-
served in the dome that is allowed to spread continuously.

In severalmodels, deep accumulation of shear stress is clearly visible
within the dome, whether this is purely along the core/talus boundary
(Fig. 9) or intersecting the core (e.g. Fig. 7). In either case this shear ac-
cumulation marks localisation of displacement and development of a
plane of weakness along which material can easily slide or be pushed
out of the dome. These zones therefore demonstrate preferential
dome cooling can cause lava lobe formation, often leading to over-
steepened flow fronts which can collapse.

4.2. Developing pressurisation

Due to computational expense we model the pressurisation of the
system separately fromextrusion. Themodelwith a purely gravitational
response (i.e. no simulated pressurisation) shows that strain accumu-
lates at the rheological boundary due to gravitational settling (Fig. 7a),
but is intensified and focussed by addition of gas pressure (Fig. 7b–d).
A natural next step would be to model gas pressure and extrusion as
combined processes. We speculate that there would be more outwards
movement of talus slopes due to the combined effects of pressurisation
and the lateral force of magma influx.

We demonstrate a simple way to add a pressure into a DEM model
and complexities could be added to this in future model iterations. For
example, the material in our model is allowed to deform, representing
an open system that prohibits accumulation of gas pressure within the
dome. An alternative scenario could be a dome with a “sealed cap”
which cannot deform and allows a build-up of pressure. Equally it
could be possible that a dome experiences reduction in pressure over
time, for example due to evolution in the mechanical properties (e.g.
permeability, fracturing) of the talus (Sparks, 1997). In the models pre-
sented here, the amount of shear strain accumulation shows significant
material deformation and is therefore irreversible. Our models are act-
ing beyond the elastic regime, and potential failure planes developed
would continue to exist as weaknesses in the dome following reduction
in pressure.

4.3. Model validation and similarity to conventional landslide studies

It is particularly challenging to validate our failure models, as dome
collapse tends to culminate in explosive events. The only method to at-
tempt to understand collapse process is examination of resultant de-
posits (normally block-and-ash flows). This means that despite
hazards associated with lava dome collapse, we do not fully understand
strain accumulation in the critical stages prior to collapse. Our models
allow us to see a simplified cross-section through the dome interior
and begin to reveal methods by which strain accumulates and alters
the behaviour and stability state of a lava dome. We find that despite
the complex conditions that exist during active lava dome growth
(high temperatures, gas overpressure, seismicity), lava domes appear
to behave in many ways similarly to traditional landslides – events
that are commonly easier to observe than lava dome collapses. Particu-
larly we see development of large scale listric shear planes, just as ob-
served in rock or soil slope studies (e.g. Hungr et al., 2014; Petley et
al., 2002). The actual slope failure process at a lava dome is difficult to
discern due to the addition of gas resulting in turbulent pyroclastic den-
sity currents; it is therefore impossible to use thedeposit to establish the
way in which the slope failed (as in landslide studies) because the ma-
terial completely disintegrates during the pyroclastic flow process. By

Image of Fig. 9


Fig. 10. PFC dome model extruded onto different surface topographies to represent (a)
dome growth onto a slope; (b) growth out of a vent, onto sloped sides; (c) growth in a
crater, where the dome eventually overtops crater walls. Rheological boundary between
core and talus shown by red dotted line. Solidus pressure= 0.4 MPa.

Fig. 11. PFC domemodels, emplacedwith solidus pressure of (a) 0.2 MPa and (b) 0.8MPa.
Both shown following the application of an upward force that corresponds to a pressure of
5 MPa, plotted using normalised shear strain, where the red dotted line represents the
rheological interface between core and talus material.
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using this modelling method to understand the generation of strain in-
side the lava dome, it reveals processes that cannot be otherwise
discerned from observational studies.

4.4. Model development

We observe that failure plane development within pressurisation
models (Fig. 7) is controlled primarily by the rheological boundary.
We develop this hypothesis by pressurising domes emplaced with soli-
dus pressures of 0.2 MPa and 0.8 MPa (Fig. 11). In the dome with a sol-
idus pressure of 0.2 MPa (Fig. 11a), strain accumulates along the
rheological boundary and we see a listric failure plane through the
core of the right side of the dome. We suggest this is due to the low-
angle dome morphology, preventing larger scale rockfalls in this area.
In the dome with a solidus pressure of 0.8 MPa (Fig. 11b), strain accu-
mulation reveals listric failure planes that also follow the rheological
boundary, albeit deeper in the dome due to the larger talus volume.
This sensitivity test shows the importance of solidus pressure in deter-
mining the volume of material involved in potential collapse, as it con-
trols the depth at which the shear plane forms. We suggest therefore
that understanding the solidus pressure of a dome is key in assessing
collapse hazard.

Following this, we propose that talus properties are crucial to the
way in which shear accumulates around the rheological boundary. In
all models presented here, we assume rock properties based on initial
bond properties of the lava. Laboratory testing can determine mechan-
ical properties of the talusmaterial (e.g. Heap et al., 2014, 2016; Smith et
al., 2011), however these sample-scale properties must be scaled before
they can be applied to a volcano-scale model. Despite previous studies
investigating this relationship at specific volcanic sites (Apuani et al.,
2005; Okubo, 2004; Thomas et al., 2004; Watters et al., 2000), there is
no general rule for taking intact laboratory strength and scaling it to
rock mass strength in a volcanic environment. The same can be said
for understanding elastic moduli at the scale of a volcanic edifice
(Heap et al., 2018). A further degree of complexity is introduced in
order to generate this calibrated, scaled material within PFC. Fully-
scaled talus properties are therefore outside of the scope of this paper,
but will be an important step in future model development.
5. Conclusions

We employed a discrete element method to develop lava dome
models, and were able to simulate two distinct failure mechanisms:
(1) shallow, superficial rockfalls and (2) deep-seated listric shear
planes. The information that crater-confined domes lead primarily to
superficial rockfalls has the potential to feed into hazard assessment,
as models show these collapses to be shallow and relatively low in vol-
ume. We showed also that solidus pressure can control the volume of
material involved in collapse. However it is important to recognise
that trigger mechanisms can act simultaneously to destabilise a dome,
a detail futuremodels should consider. Deep-seated listric failure planes
are observed following cessation of extrusion and subsequent genera-
tion of internal pressure. A collapse of this nature could lead to hot
magma in the core being exposed to atmospheric pressure resulting in
rapid decompression, explosions and pyroclastic flow generation.
Deep shear planes also develop in models simulating switches in extru-
sion direction, although these are planar in nature and occur along the
rheological boundary, showing lava lobe formation which can later
lead to collapse.

Image of Fig. 10
Image of Fig. 11
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Through knowledge of lava viscosity and extrusion conditions at a
given lava dome, our method can be adapted in other locations to
model dome morphology, and therefore propensity of the dome to col-
lapse. Here we focus on pressurisation of the dome system, a non-hori-
zontal underlying topography, or a change in extrusion direction, but
many more scenarios could be analysed in this type of model. By
visualising the strain within the dome and showing similar features to
those observed in traditional landslide studies, we can begin to use
knowledge of landslide processes to better understand the dome col-
lapse process.

The models presented here use an innovative method to examine
lava dome collapse, and provide a basic framework to understand the
complex physics of a dynamically evolving system.Many additional fac-
tors cannowbe incorporated into futuremodels to provide amore com-
prehensive understanding of factors likely to influence the stability of a
growing lava dome. These include, for example, talus properties cali-
brated to real dome rock, a fracture network, successive extrusion
events, and spatial/temporal variation in mechanical properties. We
demonstrated that using discrete elementmethodmodelling is a prom-
ising approach for visualising strain generation within a lava dome, and
interrogating the relationship between a growing dome and mecha-
nisms that trigger instability.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jvolgeores.2018.06.017.
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