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A B S T R A C T

Natural wetlands are the largest source of methane emissions, contributing 20–40% of global emissions and
dominating the inter-annual variability. Large uncertainties remain on their variability and response to climate
change.

This study uses atmospheric methane observations from the GOSAT satellite to evaluate methane wetland
emission estimates. We assess how well simulations reproduce the observed methane inter-annual variability by
evaluating the detrended seasonal cycle. The latitudinal means agree well but maximum differences in the tropics
of 28.1–34.8 ppb suggest that all simulations fail to capture the extent of the tropical wetland seasonal cycle.

We focus further analysis on the major natural wetlands in South America: the seasonally flooded savannah of
the Pantanal (Brazil) and Llanos de Moxos (Bolivia) regions; and the riverine wetlands formed by the Paraná
River (Argentina). We see large discrepancies between simulation and observation over the Pantanal and Llanos
de Moxos region in 2010, 2011 and 2014 and over the Paraná River region in 2010 and 2014. We find highly
consistent behaviour between the time and location of these methane anomalies and the change in wetland
extent, driven by precipitation related to El Niño Southern Oscillation activity.

We conclude that the inability of land surface models to increase wetland extent through overbank inundation
is the primary cause of these observed discrepancies and can lead to under-estimation of methane fluxes by as
much as 50% (5.3–11.8 Tg yr−1) of the observed emissions for the combined Pantanal and Paraná regions. As the
hydrology of these regions is heavily linked to ENSO variability, being able to reproduce changes in wetland
behaviour is important for successfully predicting their methane emissions.

1. Introduction

Methane (CH4) is an important greenhouse gas, contributing ∼30%
of the radiative forcing due to anthropogenic long-lived greenhouse
gases released to the atmosphere since the industrial revolution. It is
second only to carbon dioxide (CO2) and has a global warming potential
on a 100-year time-scale of over 25 times that of CO2 (Etminan et al.,
2016). Global atmospheric concentrations of CH4 are now approxi-
mately 1810 parts per billion (ppb), an increase of over 1000 ppb from
pre-industrial levels (Myhre et al., 2013). However, neither the causes
of recent inter-decadal variability in the global atmospheric growth rate

nor if the current growth will continue are fully understood. Surface
observations from a range of networks (NOAA, AGAGE, CSIRO and
UCI) have shown that the growth rate of atmospheric CH4 had been
steadily declining over the last three decades, from 12 ppb yr−1 in the
1980s, to 6 ppb yr−1 in the 1990s to almost no growth in the early
2000s (Dlugokencky et al., 2003; Kirschke et al., 2013). The apparent
stabilisation of atmospheric CH4 suggested an equilibrium between the
various sources and sinks. However, the sudden and unexpected re-
newed growth from 2007 has highlighted significant gaps in current
knowledge (Rigby et al., 2008; Dlugokencky et al., 2009; Nisbet et al.,
2014) with various hypotheses presented to explain the behaviour
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(Nisbet et al., 2016; Schaefer et al., 2016; McNorton et al., 2016a; Rigby
et al., 2017; Turner et al., 2017).

The main sources of atmospheric CH4 are natural wetlands, rice
cultivation, fossil fuel production, livestock and biomass burning
(Saunois et al., 2016). Wetland emissions contribute between 20–40%
of the total global CH4 emissions (Ciais et al., 2013). They are thought
to dominate the inter-annual variability of global CH4 (Bousquet et al.,
2006) but there remain large uncertainties surrounding their variability
and potential response to climate change. This uncertainty is dominated
by estimates of wetland extent and distribution (Bloom et al., 2010;
Melton et al., 2013; Kirschke et al., 2013). Furthermore, the extent and
distribution of wetlands and the rate of methanogenesis are sensitive to
changing climate, leading to a potential positive feedback on climate
(Christensen et al., 2003; Gedney et al., 2004).

The majority of natural wetlands are found in tropical and sub-
tropical regions where precipitation drives the variability in wetland
extent, and ultimately CH4 emissions (Bloom et al., 2010). Tropical
precipitation is strongly enhanced during the La Niña phase of the El
Niño Southern Oscillation (ENSO) and previous work has attributed
higher tropical wetland CH4 emissions to this (Hodson et al., 2011; Zhu
et al., 2017). Bousquet et al. (2006) and Ringeval et al. (2010) suggest
that it is these tropical wetlands that drive the majority of the year-to-
year variability in atmospheric CH4 and have a significant impact on
the global CH4 budget (Hodson et al., 2011). However, there remain
substantial data gaps and discrepancies between process-based esti-
mates and those from atmospheric inversions (Bousquet et al., 2011;
Melton et al., 2013). Improvements to process-based modelling of
wetland extent and subsequent wetland CH4 emissions are identified by
Saunois et al. (2016) as a key priority for improving our understanding
of the global CH4 budget.

This work aims to i) evaluate the temporal and spatial global
variability of state-of-the-art CH4 emission datasets against satellite
observations; ii) test our current capability to accurately reproduce the
observed tropical CH4 seasonal cycle over major wetland regions; and
iii) estimate the discrepancy in emissions between models and ob-
servations over these regions.

2. CH4 wetland emission estimates

There have been many previous studies assessing how well wetland
CH4 emissions can be reproduced by current land surface models
(LSMs), often finding large uncertainties in both the spatial and tem-
poral distribution (Riley et al., 2011; Melton et al., 2013; Kirschke et al.,
2013). When such emission estimates are used as prior estimates in
forward model experiments or atmospheric transport inversions for CH4

flux estimates they are not fully consistent with in-situ or satellite CH4

observations (Fraser et al., 2013; Hayman et al., 2014).
In this work we use four different CH4 wetland emission estimates,

from both top-down and bottom up approaches. A comparison (Fig. 1)
reveals that these emission estimates can vary considerably from each
other in regions with major wetlands.

2.1. JULES - land surface model methane emission estimates

We use two emission estimates based on The Joint UK Land
Environment Simulator (JULES; Best et al. (2011), Clark et al. (2011)).
JULES is a process-based land surface model (LSM) that describes the
exchange of water, energy and carbon between the land surface and
atmosphere. JULES monthly methane wetland emission estimates at a
spatial resolution of 0.5° provided by both University of Leeds
(McNorton et al. (2016b); referred to as JULES-Leeds from here on) and
the Centre for Ecology and Hydrology (CEH) (Comyn-Platt et al. (2018),

Gedney et al. (in preparation); referred to as JULES-CEH from here on)
are used. Further details for the two JULES-based estimates are pro-
vided in Appendix A.

2.2. Bloom2012 - top-down wetland methane emission estimates

Bloom et al. (2010, 2012) used a diagnostic modelling approach,
further constrained by satellite-derived CH4 concentration variability,
to estimate CH4 wetland fluxes. They combine equivalent water height
anomalies from GRACE (Landerer and Swenson, 2012) and ERA-in-
terim surface skin temperature in a diagnostic wetland emission model;
the model seasonality is empirically constrained by atmospheric total
column CH4 variability estimated from space by SCIAMACHY. Water
table depth is determined to be the main contributor to variations in the
observed CH4 in the tropical regions, with the land surface temperature
playing a more important role at higher latitudes. These Bloom2012
emission estimates have been used by many CH4 inversion studies as an
a priori estimate of methane wetland emissions (Bloom et al., 2012;
Fraser et al., 2011, 2013; Wilson et al., 2014). Studies have shown that
use of these wetland emission estimates, together with emissions from
fossil fuels and biomass burning within atmospheric transport models
as surface boundary conditions are generally able to sufficiently re-
produce atmospheric CH4 observations.

2.3. WetCHARTs - process-based data-constrained wetland methane
emissions

Bloom et al. (2017) derive a wetland CH4 emission and uncertainty
datasets from an ensemble of terrestrial biosphere models (Huntzinger
et al., 2013), a terrestrial carbon cycle analysis (Bloom et al., 2016),
satellite-derived surface water extent (Schroeder et al., 2015), ERA-
interim reanalyses, and wetland extent maps (Lehner and Döll, 2004;
Bontemps et al., 2011). The WetCHARTs emission estimates are con-
strained by the extent of wetlands as defined in the Global Lakes and
Wetlands Database (Lehner and Döll, 2004), and the GLOBCOVER
wetland extent dataset (Bontemps et al., 2011). These emission esti-
mates cover a period of 2001 to 2015. A nominal benefit of this ap-
proach is that the combination of satellite data with carbon cycle
models and temperature-based parametrisations leads to physical-based
estimates of the uncertainty, which can be used to characterise un-
certainties of atmospheric transport inversions for the purpose of CH4

flux estimation.

3. GOSAT proxy XCH4 data

We use observations of column-averaged dry air mole fractions of
CH4 (XCH4) from the University of Leicester Proxy XCH4 GOSAT re-
trieval (v7). Details of these data are available in Parker et al. (2011,
2015). In short, the retrieval uses the University of Leicester retrieval
algorithm (Boesch et al., 2011; O’Dell et al., 2012) to retrieve XCH4

using the light-path proxy approach (Frankenberg et al., 2006) from
GOSAT shortwave infrared radiances (Parker et al., 2011). This proxy
approach is particularly useful over regions such as the tropics where
the prevalence of clouds and aerosols can greatly reduce the number of
successful “full physics” retrievals. Many recent inversion studies
(Fraser et al., 2013; Wecht et al., 2014; Fraser et al., 2014; Cressot et al.,
2014; Wilson et al., 2014; Alexe et al., 2015; Turner et al., 2015) have
used the University of Leicester Proxy XCH4 data in order to success-
fully infer regional and global emissions.

This GOSAT XCH4 data has been extensively validated (Dils et al.,
2014; Parker et al., 2015; Buchwitz et al., 2017), primarily using data
from the Total Carbon Column Observing Network (TCCON). TCCON is
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a global network of ground-based high resolution Fourier transform
spectrometers recording direct solar spectra in the near-infrared spec-
tral region (Wunch et al., 2011b). The TCCON data are calibrated to
World Meteorological Organization (WMO) standards (Wunch et al.,
2010) and are the primary validation data for satellite observations of
greenhouse gases (Cogan et al., 2012; Wunch et al., 2011a; Dils et al.,
2014).

Version 7 of our GOSAT Proxy XCH4 data has been assessed against
the latest version (GGG2014) of the TCCON data. Across all sites, the
standard deviation of the 44,714 individual co-located pairs (i.e. the
single-sounding precision) is found to be just 13.28 ppb with a corre-
lation coefficient of 0.89 and overall bias of just 0.06 ppb. The TCCON
network is limited in its geographic distribution with the majority of
sites measuring in the northern hemisphere (US, Europe and Japan).
Although TCCON measurements in the tropics are limited, the data
which are available agree well with GOSAT (Paramaribo bias of
3.4 ppb, Ascension Island bias of 3.1 ppb).

To further validate GOSAT over the Amazon, Webb et al. (2016)
used high-precision in-situ aircraft measurements from the AMAZON-
ICA and Amazonian Carbon Observatory projects (Webb et al., 2016).
They found that GOSAT XCH4 and the aircraft measurements agree
within their uncertainties and that the GOSAT data successfully capture
the phase and magnitude of the seasonal cycle over the Amazon
(r= 0.61–0.90).

Overall, these validation efforts suggest that the GOSAT Proxy XCH4

data are of sufficient accuracy and precision to successfully assess the
seasonal cycle of CH4 driven by wetland emissions.

4. Modelling of atmospheric CH4

We use the TOMCAT atmospheric chemistry transport model
(University of Leeds - (Chipperfield, 2006)) to simulate atmospheric
CH4 concentrations with prescribed surface emission fields. We perform
simulations between 2009 and 2014 at 2.8°× 2.8° spatial resolution
with 60 vertical levels for each wetland emission dataset described in
Section 2. All other CH4 flux components are kept the same. We use the

EDGAR anthropogenic emissions up to 2010 (Olivier et al., 2012), with
extrapolated values for the latter years, and take biomass burning
emissions from GFEDv4.1 (Randerson et al., 2015). For CH4 sources
with limited inter-annual variability (termites, oceans and hydrates) we
use annually repeated values as described in Patra et al. (2011). For
emissions from rice paddies that reside in natural wetland areas, in
order to consistently evaluate all wetland datasets we prescribe annual
repeated values for the rice production (Yan et al., 2009). Loss fields are
as used in McNorton et al. (2016a), with annually repeating OH and
stratospheric O1D loss fields and a methanotrophic soil sink.

Assumptions made relating to the distribution of the OH sink, as
well as transport and other non-wetland emissions are all factors that
could contribute to uncertainties in the analysis. The scale of OH un-
certainty could be investigated by performing sensitivity experiments
using multiple OH fields; this is beyond the scope of this study.
However, as the uncertainty in OH distribution would cause dis-
crepancies at a much larger regional scale than we observe in our
analysis, we remain confident that wetland emissions are the dominant
effect that we observe.

5. Detrending the CH4 seasonal cycle

To asses the magnitude and phase of the wetland seasonal cycle we
detrend the modelled and observed atmospheric CH4 so that any in-
consistencies between the trends from GOSAT and the simulations (e.g.
due to interpolation of the anthropogenic emissions in latter years or
assumptions about variations of the OH sink) are minimised. We de-
trend the GOSAT XCH4 data and model simulations using the NOAA
CurveFit routine (Thoning et al., 1989). This performs a least squares fit
of a third order polynomial to account for the long-term growth with
the annual oscillation relating to the seasonal cycle fit through a series
of harmonics. The uncertainty on the detrended seasonal cycle is de-
rived from the sum of the standard deviations of the smoothed com-
ponent and the trend of the fitted data (NOAA, 2017).

Fig. 2 shows a comparison of the detrended TCCON and GOSAT
seasonal cycles for the US sites at Park Falls (45.945°N, 90.273°W -

Fig. 1. Global maps showing the CH4 wetland emission data for 2010 from the four different estimates used in this study.
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Wennberg et al. (2014a)) and Lamont (36.604°N, 97.486°W - Wennberg
et al. (2014b)). We find average differences ≤0.6 ppb, standard de-
viations below 3 ppb and high correlation coefficients (0.90–0.96). The
close agreement between GOSAT and TCCON data gives confidence
that the methodology used is suited to estimate the XCH4 seasonal
cycle.

6. Global comparisons

We assess how well the global distribution of the observed CH4

seasonal cycle can be reproduced by the emission estimates. To allow a
robust comparison between the models and the satellite data, the
models are sampled at the same time and location as the GOSAT ob-
servations and have the measurement-specific GOSAT averaging kernel
applied.

The difference in the global daily average zonal mean values be-
tween model and observation are found to be small for all model si-
mulations. The average differences (±standard deviations) were
2.2±7.0 ppb (JULES-Leeds), 1.7± 6.9 ppb (JULES-CEH),
2.7± 8.0 ppb (Bloom2012) and 2.5± 8.1 ppb (WetCHARTs).
However, there is clear spatial structure in the differences to observa-
tions (see Appendix B). The largest differences were at tropical latitudes
where the models generally under-estimated w.r.t. GOSAT. We attri-
bute this difference to underestimation of tropical (particularly South
American) wetland emissions in all of these model simulations.

The regions of notable model/satellite differences are known wet-
land regions, suggesting that these differences are related to wetland

fluxes. Uncertainties in OH concentration would occur over non-wet-
land regions as well as wetland regions leading to a different spatial and
temporal distribution of model/satellite discrepancy. The scale of OH
uncertainty could be investigated by performing sensitivity experiments
using multiple OH fields; this is beyond the scope of this study.

7. Regional analysis

We identify individual regions of interest which are dominated by
natural wetland emissions (Fig. 3) using the Sustainable Wetlands
Adaptation and Mitigation Program (SWAMP) data from the Center for
International Forestry Research (CIFOR) (Gumbricht et al., 2017). This
compilation identifies all major wetlands between 60°S and 40°N. Al-
though there is no temporal component, the data can be used to identify
regions where we would expect a significant wetland extent and sub-
sequently large CH4 emissions.

We calculate the CH4 seasonal cycle for each region and the con-
tribution of each component (i.e. wetlands, biomass burning, anthro-
pogenic, rice paddies) to the overall seasonal cycle amplitude. Fig. 4
shows the peak-to-peak wetland seasonal cycle for GOSAT and the
model simulations. The fire, rice and anthropogenic seasonal cycle
magnitudes are also displayed. Note that the GOSAT wetland seasonal
cycle magnitude assumes that the difference between the GOSAT ob-
servations and the NoWetlands simulation can be fully attributed to
differences in wetland emissions.

We find that for wetland regions located in Asia, where rice pro-
duction and anthropogenic emissions can both be significant, the

Fig. 2. Comparison of the smoothed detrended TCCON XCH4 seasonal cycle at the US Lamont and Park Falls TCCON sites against GOSAT XCH4 observations within ±2° latitude/
longitude and ±2 h. The average difference (D), standard deviation of the difference (σ) and correlation coefficient (r) between the datasets are all shown.

Fig. 3. Map showing the location of the individual wetland regions identified using the Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) data from the Center for
International Forestry Research (CIFOR).
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observed total seasonal cycle is at its largest (peaking at
84.69± 4.63 ppb in SE Asia in 2012) but is exceeded by all of the
model simulations (by 11.8–16.25 ppb). This discrepancy is attributed
to the uncertainty in the anthropogenic and rice emissions in this region
which dominate the wetland signal and is consistent with previous
studies which have suggested that estimates of these non-wetland
emissions over Asia are too high (Patra et al., 2009; Hayman et al.,
2014).

The Pantanal, Paraná, Yucatán and Southern African regions all
exhibit strong seasonal cycles in CH4 that are dominated by wetland
emissions. The Pantanal and Paraná regions are examined in detail in
the following sections, particularly in relation to how well JULES is
capable of reproducing the observed atmospheric concentration signals.
The Yucatán and Southern African regions are examined in Appendix D
and provide corroboration of the results for South America.

7.1. Pantanal

The Pantanal wetland region is the world's largest tropical wetland
complex and extends over parts of Brazil, Bolivia and Paraguay with an
area estimated at around 160,000 km2 (Junk and de Cunha, 2005). For
this analysis we also include the large Bolivian seasonally inundated
savannah (Llanos de Moxos) located to the north-west, defining our
“Pantanal” region from 70°W to 52°W and 21°S to 10°S.

Fig. 5 (top panel) shows the detrended seasonal cycles for this re-
gion. All datasets exhibit a strong seasonal cycle, with average ampli-
tudes of 35.11± 2.62 ppb (GOSAT), 26.31±2.77(JULES-Leeds),
25.37± 2.83(JULES-CEH), 26.61±2.44(Bloom2012) and 31.94±

3.04(WetCHARTs). The correlation coefficients range from 0.85 to 0.90
and the standard deviation of the model-GOSAT difference is less than
6 ppb. When omitting any wetland emissions from the simulation, the
statistics worsen substantially, showing that the addition of the wetland
datasets greatly improves the capability of the model to reproduce the
observed seasonal cycle in this region.

Large discrepancies (∼10–20 ppb) in the seasonal cycle magnitude
between the observations and models are found for multiple (2010,
2011 and 2014) but not all years (2012 and 2013). This is consistent
with Webb et al. (2016) who observed total column enhancements of
over 50 ppb for aircraft measurements at the Rio Branco AMAZONICA
site (67.85°W, 9.19°S), just to the north of this region, during early
2011.

To isolate the wetland component of the seasonal cycle we subtract
the NoWetlands model simulation (Fig. 5 (bottom)). Large anomalies in
the seasonal cycle coincide with the peak of the wetland emissions in
the models, suggesting that it is these wetland emissions that are being
under-estimated.

Analysis of the GRACE Terrestrial Water Storage (TWS) and MODIS
imagery (Fig. 6) show that the three years of highest CH4 discrepancy
(2010, 2011 and 2014) have strong seasonal cycles in above ground
water storage. The MODIS imagery and analysis of the spatial dis-
tribution of the GRACE data (not shown) imply that the majority of the
water mass anomalies follow the river channels (as discussed in
Hamilton et al., 2004). This is particularly evident for the Bolivian
wetlands in 2014. The years 2010 and 2011 are consistent with the
increased precipitation during the 2010/2011 La Niña (Gloor et al.,
2013). The models assessed here are failing to reproduce these large

Fig. 4. Magnitude of the average (2010–2014) peak-to-peak wetland CH4 seasonal cycle globally and in each of the 16 regions of interest as identified in Fig. 3. The wetland component of
the seasonal cycle is calculated by subtracting the model simulation containing no wetland emissions from each of the full model simulations and from the GOSAT data. The individual
components for fire, rice and anthropogenic emissions are calculated from the model data in the same way (and are identical for all four model simulations). The error bars indicate the
min/max annual values.

Fig. 5. Timeseries showing the detrended sea-
sonal cycle over the Pantanal region, including
the GOSAT observations and the model simula-
tions utilising the different wetland emission da-
tasets (top panel). The lower panel shows the
difference to the NoWetlands model simulation
(that does not contain any wetland emissions),
providing information on the wetland component
in each of the model simulations.
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scale, river fed, wetlands and as such are missing a large portion of the
methane emissions in these regions.

Interestingly the year of largest water mass anomaly (2014) does
not correspond to the year of largest CH4 anomaly (2011). This could be
due to the extreme 2014 flooding event exceeding the optimum con-
ditions for net CH4 emission, i.e. the depth of water above the surface is
large enough to oxidise the CH4 before it is emitted.

7.2. Paraná

The “Paraná” region in this analysis extends from the Iberá wetlands
in northern Argentina (the world's second largest wetlands after the
Pantanal), following the Paraná River south until it merges with the
Uruguay River, forming the Río de la Plata (or River Plate) estuary
which then discharges into the Atlantic Ocean. It is one of the most

important fluvial systems in South America (Marchetti et al., 2013).
This region extends between 65°W to 52°W and 35°S to 25°S. The
seasonal cycle of CH4 in this region (Fig. 7 - top panel) is relatively
strong, with values for the GOSAT seasonal cycle amplitude over the
5 years between 15.85–30.08±3.96 ppb. All model simulations exhibit
a similar seasonal cycle, peaking during the wet season at the start of
each year. The models capture the magnitude and seasonality of the
observations, but disagree in the timing of the onset of the positive
phase of the seasonal cycle. Additionally, there are several anomalous
events which we analyse in more detail.

The wetland component for the years 2010 and 2014 shows strong
differences between the model simulations and the observations (Fig. 7
(bottom panel)). This indicates that all four of the wetland emission
estimates fail to reproduce the CH4 observations in these years. There is
much better agreement between the observations and the simulations

Fig. 6. Timeseries for the GRACE Terrestrial Water Storage Anomaly over the entire “Pantanal” region (green) as well as sampled at the centre of the Pantanal (blue) and Bolivian (red)
wetland regions. MODIS imagery (RGB false-colour composite from the surface reflectance in bands 1 and 2) for February–April for each year is also included, highlighting the change in
visible wetland extent between these years. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Timeseries showing the detrended
seasonal cycle over the Paraná region, in-
cluding the GOSAT observations and the
model simulations utilising the different
wetland emission datasets (top panel). The
lower panel shows the difference to the
NoWetlands model simulation (that does not
contain any wetland emissions), providing
information on the wetland component in
each of the model simulations.
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for other years, albeit the discrepancy in phase remains (e.g. model
simulations peaking too early in 2011 and too late in 2012).

We focus on the early 2010 anomaly when the Paraná River ex-
perienced an “extraordinary” flooding event (Marchetti et al., 2013;
Puig et al., 2016). The GOSAT - JULES-Leeds CH4 difference is calcu-
lated between 1st November 2009 and 28th February 2010. These 647

measurements are subsequently averaged into 2°× 2° boxes (Fig. 8 (top
left)). The large anomaly following the course of the river indicate that
the simulation is missing significant emissions in this region. The
modelled emission (top centre) and wetland fraction (top right) indicate
that JULES primarily places the wetlands (and consequently, the
emissions) to the east of the region. This is where the rainfall occurs

Fig. 8. Maps of the Paraná region for November 2009 to February 2010 showing (top-left, clock-wise): GOSAT-JULES-Leeds difference, JULES-Leeds wetland emissions, JULES wetland
fraction, GRACE Water Storage Anomaly, SWAMP wetland fraction and JULES rainfall amount.

Fig. 9. Timeseries for the GRACE Terrestrial
Water Storage Anomaly at the location in-
dicated by the red circle along with MODIS
imagery (RGB false-colour composite from
the surface reflectance in bands 1 and 2) for
January 2010 and 2011, showing the entire
Paraná region. (For interpretation of the
references to colour in this figure legend,
the reader is referred to the web version of
this article.)
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(bottom left). The SWAMP data (bottom centre) place the wetlands
more centrally in the investigation region. The differences in wetland
distribution matches the differences seen in the distribution of atmo-
spheric CH4. Even accounting for the incorrect placement of the wet-
lands, the overall magnitude of the wetland emissions from JULES is
significantly lower than that suggested by the observations. Our pro-
posed reason for this is shown by analysis of the GRACE terrestrial
water storage anomaly (Fig. 8 (bottom right)), confirming a significant
enhancement in the observed mass anomaly (i.e. water) along the banks
of the Paraná River during January/February 2010.

Time-series of the GRACE TWS anomaly and MODIS imagery
(Fig. 9) both show extreme levels of flooding in January 2010. January/
February 2010 exhibited a large positive peak in the GRACE data, ex-
ceeding 500mm, with values for the same time period in subsequent
years typically below 0mm. Many previous studies (Depetris et al.,
1996; Amarasekera et al., 1997; Boulanger et al., 2005; Pasquini and
Depetris, 2007, 2010) have identified the hydrology of the Paraná River
and the Paraná-Plata basin as being sensitive to ENSO dynamics. Unlike
the Amazon where excess river levels are driven by precipitation during
the cold La Niña phase of ENSO, the Paraná River system exhibits
flooding significantly correlated to the warm El Niño phase of ENSO
(Depetris et al., 1996).

For the 2014 anomaly, observations show a strong CH4 enhance-
ment along the length of the Paraná River with the strongest en-
hancement directly over the Iberá wetlands. This is consistent with both
GRACE and MODIS data which indicate an increase in the wetland
extent during this time period. This is not reproduced in the JULES
simulations and provides clear evidence that the process leading to
wetland formation in this region, i.e. overbank inundation, is not suf-
ficiently reproduced by JULES.

Overbank inundation describes the process whereby water is
transported long distances via rivers, then re-enters the soil column
downstream to create wetlands. Such wetlands could be induced by
large floods following extreme rainfall events, as seen in 2010, as well
as more continuously river-fed inundation regions as shown for the
Bolivian wetlands (Section 7.1). The absence of this process means that
a large portion of CH4 emissions are missed by the simulations, and the
potential impacts on future climate forcing are unaccounted for.

8. Evaluating emission estimates

To assess the significance of these anomalies on the regional CH4

budget, we calculate the integrated annual seasonal cycle signal for
each model simulation as a percentage of the GOSAT signal. We use
these values to estimate the additional emissions required in each si-
mulation to match the observations. This pragmatic approach to esti-
mate the flux differences without the use of a full inversion system

makes the assumptions that the differences are due to wetland emis-
sions and not for example, propagation of signals from the northern
hemisphere.

Table 1 shows these values for the Pantanal and Parana regions,
with both exhibiting similar behaviour. JULES-Leeds, JULES-CEH and
Bloom2012 all underestimate the emissions compared to the observa-
tions and this discrepancy is larger in years with significant wetland
flooding events.

For the exceptionally strong La Niña in 2011, these three models
only emit 48–61% of the required wetland CH4 to reproduce observa-
tions over the Pantanal region, a deficit of between 4.9–8.4 Tg yr−1. For
2010, the year with significant overbank inundation of the Paraná River
leading to an extensive area of wetlands not captured by the models, we
find that the JULES-based emission estimates only provide 67–69% of
the required emissions, a deficit of 4.4–4.5 Tg yr−1. Despite in-
corporating GRACE data, the Bloom2012 estimates show a larger dis-
agreement, under-predicting the seasonal cycle by 43% and requiring
an additional 5.8 Tg yr−1 to match the observations.

In both regions, the closest estimates to the total required emissions
are the WetCHARTs data (86–141%) but these emissions have the
wrong temporal signal, peaking too early and not capturing the full
extent of the observed cycles. Since WetCHARTs is the mean of multiple
ensemble models, there is potential for future work to evaluate in-
dividual ensemble members to determine whether a change to a certain
process (e.g. temperature, carbon, water or extent) leads to an im-
proved performance.

9. Discussion

We identify regions that contain a significant wetland seasonal cycle
compared to the signals from anthropogenic, rice and fire emissions
(Pantanal, Paraná, Yucatán and Southern Africa) and analyse these in
more detail.

For Paraná, we observed a significant difference between the si-
mulations and observations in 2010. We have attributed this to the
extensive flooding of the Paraná river caused by an excess of ENSO-
driven precipitation. This substantially increased the extent of active
methanogenesis during the 2010 wet season. Increases in wetland ex-
tent also occurred during 2011 for the Pantanal wetlands, 2014 in the
Iberá and Llanos de Moxos wetlands, 2010/2013 in the wetlands of the
Yucatán region, and annually for the seasonally inundated grasslands of
Southern Africa. Such flood events are not reproduced by JULES be-
cause the model currently has no process to simulate wetlands fed via
flooded rivers. In JULES when run-off water enters the river system it
does not leave until it reaches the ocean, and JULES is susceptible to
missing the emissions from such extreme events. Dadson et al. (2010)
demonstrated improved estimates of evaporative fluxes and water

Table 1
Table showing the annual wetland component of the CH4 seasonal cycle in % relative to the GOSAT value for each model simulation for the Pantanal and Paraná regions. A value of 100%
indicates that the integrated wetland seasonal cycle signal is the same between the model and observations. A value less than 100% indicates that the model has a lower integrated
wetland seasonal cycle than GOSAT. We also include the absolute change in emissions (in Tg yr−1) that would need to be added to the simulations to match the observations.

2010 2011 2012 2013 2014

% ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1

Pantanal
JULES-Leeds 64% 4.4 56% 5.7 64% 4.1 60% 4.5 56% 5.4
JULES-CEH 69% 3.8 61% 4.9 69% 3.5 66% 3.9 61% 4.5
Bloom2012 53% 6.8 48% 8.4 64% 4.1 57% 6.2 52% 6.7
WetCHARTs 94% 0.5 95% 0.4 114% −0.9 98% 0.15 94% 0.5

Paraná
JULES-Leeds 67% 4.5 62% 3.6 86% 1.8 61% 4.5 56% 4.8
JULES-CEH 69% 4.4 71% 3.2 81% 1.3 65% 4.3 46% 7.3
Bloom2012 57% 5.8 65% 4.2 102% −0.2 60% 5.1 55% 6.3
WetCHARTs 93% 0.6 109% −0.6 141% −2.2 102% −0.2 86% 1.1
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budgets when overbank inundation was included in JULES on the re-
gional scale. Our work indicates that inclusion of this process will have
a significant impact on estimates of CH4 emissions and, therefore, the
potential feedbacks on climate forcing. Ongoing work by Marthews (in
preparation) will add overbank inundation to JULES which should help
address this issue. Previous work to improve JULES CH4 emission fluxes
focusing on transport mechanisms, like those described by Pangala
et al. (2017) have not improved spatial and temporal representation of
fluxes (McNorton et al., 2016b); however, improved process descrip-
tions in the future might be key in certain regions not explored in this
study.

Previous work (Melton et al., 2013) has shown that wetland extent
calculations can vary dramatically between different LSMs (with yearly
maximum wetland extent ranging between 7 and 27M km 2), hence
identifying the mechanisms that drive such variability and evaluating
them can lead to significant improvements in estimating wetland ex-
tent. Many LSMs rely on a topography-based hydrological model in
their generation of wetlands. As some regions (such as the Pantanal) are
very flat and have a low standard deviation of topographic index, they
are prone to failure of the TOPMODEL methodology, particularly when
run-off/river water is not sufficiently transported laterally. This very
low standard deviation of terrain means that the water table has to be
very close to the surface before wetland starts to form (Gedney et al.,
2004). Furthermore, much of the water feeding these wetlands is from
rivers and not adequately modelled by JULES, resulting in insufficient
water to raise the water table.

Top-down estimates for wetland CH4 missions from the Bloom2012
data (which itself utilises GRACE data in its generation of wetland ex-
tent) also fails to capture the magnitude of the emissions, likely due to
the low spatial resolution (3°× 3°) of the Bloom2012 dataset or issues
with the diagnostic model parametrisation not capturing the extent of
the anomalies. We recognise the importance of top-down estimates and
future work to extend and improve such estimates would be of benefit.

We find that, as expected, flooding in South America coincides with
precipitation driven by the La Niña (for the Pantanal) and El Niño (for
the Paraná) phases of the ENSO system. Thus CH4 inter-annual varia-
bility is sensitive to future changes in ENSO dynamics. For such events,
we calculate that the under-estimation of the wetland extent, previously
recognised as a significant contribution to uncertainties in CH4 wetland
emissions (Ringeval et al., 2010; Bohn et al., 2015; Saunois et al.,
2016), leads to an underestimation of emissions by more than 50%,
resulting in a deficit of 5.3–11.8 Tg yr−1 from these two regions alone.

10. Conclusion

Globally, we found that the latitudinal means of the detrended
seasonal cycle agree well between simulations and observations, with
average differences between 1.7–2.7 ppb but with maximum differ-
ences in the tropics of 28.1–34.8 ppb, suggesting that all simulations fail
to capture the full extent of the tropical wetland seasonal cycle.

We have verified that a major driver for year-to-year anomalies in
tropical CH4 wetland emissions is seasonal flooding, often related to
river overbanking and linked to ENSO variability. Current LSMs gen-
erally lack such an overbank inundation mechanism and are therefore
not capable of capturing the temporal or spatial variability in the CH4

seasonal cycle. This leads to an underestimate of the emissions by
17.1–24.3 Tg yr−1 totalled over the four regions examined in this study.

Furthermore we have successfully shown the utility in a range of

earth observation data for successfully evaluating the temporal/spatial
distribution of wetland extent and informing the development of such
LSMs.

Future observations of atmospheric XCH4, such as those from the
Sentinel 5-Precursor (Hu et al., 2016) and the NASA GeoCARB
(Polonsky et al., 2014) missions, will be obtained at an unprecedented
spatial and temporal resolution and along with new missions to mea-
sure precipitation (NASA's Global Precipitation Measurement, Hou
et al., 2014), plant biomass (BIOMASS, Quegan et al., 2012) and ve-
getation dynamics (FLEX, Drusch et al., 2017), the capability to eval-
uate the skill of current and future land surface (and coupled-climate)
models will advance further, improving our understanding and pre-
dictive capability related to these important climate-significant pro-
cesses.
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Appendix A. JULES wetland CH4 emission estimates

Natural CH4 emissions from wetlands, FCH4
, are estimated in JULES following Gedney et al. (2004) at a prescribed spatial discretisation by:

= −F k f Q TΛ ( )w
T T

CH CH 10 soil
( )/10

4 4
soil 0 (A.1)

where fw is the fraction of a gridbox where the water table is at or slightly above the surface. Λ (kg CH4m−2 s−1) is the sum of the carbon mass in
each of the soil carbon pools (decomposable plant matter, resistant plant matter, biomass and long-lived humus) weighted by their respective
respiration rate. The carbon mass of each soil carbon pool is a prognostic of the TRIFFID dynamic vegetation model, therefore providing another
aspect of seasonality to the simulated emission. Q10 is a factor parametrising the temperature dependence of the methanogenesis rate, Tsoil (K) is soil
temperature, T0 (K) is a reference temperature and k is a calibration constant (Gedney and Cox, 2003). The value of k has been selected such that the
global mean emission estimates are 175 Tg yr−1 between 2000 and 2009, consistent with the work in Ciais et al. (2013).

Within JULES fw is calculated as the integral of a Gamma distribution of topographic index,τindex, between the minimum and maximum critical
limits, i.e.:

∫=f G τ( )w τ

τ

( )

( )

min

max

(A.2)

where G is the gamma distribution form as described by Sivapalan et al. (1987). τmin defines where the water table is at or above the surface and is
dependent on the current mean water table depth, (zw (m)), that is:

= +τ
z

τln Ψ(0)
Ψ( )w

min
(A.3)

where Ψ(0) and zΨ( )w are the local transmissivities of the entire soil column and the soil column below the water table, respectively. τmax defines
where the water table rises sufficiently above the surface to induce streamflow and is no longer considered to emit methane, it is calculated as a
constant increment to τmin, i.e.:

= +τ τ τrangemax min (A.4)

For further details on the JULES implementation of TOPMODEL please refer to Gedney and Cox (2003), Marthews et al. (2015).
The two JULES wetland emission estimates used in this study (JULES-Leeds and JULES-CEH) use different parameters for the same equations and

consequently using both provides an estimate of uncertainty. The primary differences between these two model setups have been summarised in
Table A.2. JULES-Leeds considers only the top 10 cm of the soil column for the temperature dependency of methanogenesis and, hence, has a lower
Q10 value, optimised to give best agreement with surface CH4 flux observations over large scales in time and space (Gedney et al., 2004; McNorton
et al., 2016b). Thus, one would expect JULES-Leeds to respond stronger to temperature fluctuations (since soil temperature variation is dampened
with depth). Additionally, JULES-Leeds and JULES-CEH have different values of τrange in their TOPMODEL setup (Table A.2). This difference means
the JULES-CEH configuration can produce a larger fractional cover of wetland per gridbox than the JULES-Leeds setup. These differences result in a
higher sensitivity of JULES-Leeds to changes in precipitation and temperature, allowing predictions of larger regions of active methanogenesis.

JULES can be run as a stand-alone model or as the land-surface component of coupled climate models (e.g. HadCM3 (Walters et al., 2011) and the
UK Earth System Model (UKESM)). Note that the JULES-CEH wetland and CH4 emission configuration will be used in the UKESM.

Table A.2
Primary differences, with respect to wetland CH4 emissions, in tuning of the JULES-Leeds and
JULES-CEH model parametrisations.

JULES-Leeds JULES-CEH

Tsoil depth 0.1m 1m
Q10(T0) 3.0 3.7
τindex wetland range 2.0 1.5

Appendix B. Global CH4 distribution

This section provides extra details on the zonal mean comparisons described in Section 6 as well as a Hovmoller plot (Fig. B.1) showing the
different distributions.

These maximum differences between the simulations and GOSAT in the tropics are found to be 28.1 ppb (JULES-Leeds), 28.1 ppb (JULES-CEH),
34.5 ppb (Bloom2012) and 34.8 ppb (WetCHARTs), suggesting that all of the model simulations fail to capture the full extent of the tropical wetland
seasonal cycle. Large negative differences (i.e. model seasonal cycle is higher than observations) are found both in the 10°N–40° N latitude band
(with minimum values ranging from −24.6 to −25.3 ppb for the different simulations) as well as a second, summertime band at high northern
latitudes, greater than 60°N (with minimum value ranging from −60.0 to −74.3 ppb). These are respectively attributable to over-estimation of
anthropogenic and rice emissions in Asia and boreal wetland emissions.

R.J. Parker et al. Remote Sensing of Environment 211 (2018) 261–275

270



Fig. B.1. Hovmoller plot showing the difference between the GOSAT and model seasonal cycles for each model simulation between 2009 and 2014.

Appendix C. Calculation of integrated emission signal

We integrate the detrended seasonal cycle signal between minima for GOSAT and each simulation. An example of this for the Pantanal region is
shown in Fig. C.1. Ratioing these integrated values to the GOSAT value allows the difference in emissions (in Tg yr−1) to be calculated.

Fig. C.1. An example of the integrated seasonal cycle calculation for the Pantanal region.

Appendix D. Additional regional analysis

Table D.1
Table showing the annual wetland component of the CH4 seasonal cycle in % relative to the GOSAT value for each model simulation for the Yucatán
and Southern Africa regions. A value of 100% indicates that the integrated wetland seasonal cycle signal is the same between the model and
observations. A value less than 100% indicates that the model has a lower integrated wetland seasonal cycle than GOSAT. We also include the
absolute change in emissions (in Tg yr−1) that would need to be added to the simulations to match the observations.

2010 2011 2012 2013 2014

% ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1 % ΔTg yr−1

Yucatán
JULES-Leeds 91% 0.8 102% −0.1 67% 4.5 54% 4.5 N/A N/A
JULES-CEH 63% 4.9 77% 2.3 79% 2.4 80% 1.9 N/A N/A
Bloom2012 79% 2.0 82% 1.7 42% 10.7 56% 6.1 N/A N/A
WetCHARTs 148% −2.4 153% −2.4 78% 2.1 89% 0.9 N/A N/A
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Southern Africa
JULES-Leeds 48% 8.4 48% 7.9 38% 13.4 38% 10.8 37% 11.2
JULES-CEH 44% 9.3 42% 10.6 38% 14.2 41% 10.9 38% 12.4
Bloom2012 55% 5.9 59% 6.4 51% 6.4 51% 8.9 47% 6.9
WetCHARTs 56% 4.7 57% 5.5 54% 6.8 151% 7.1 45% 9.4

In the main text we focus on the South American regions where natural wetlands dominate the seasonal cycle and the wetland inter-annual
variability is particularly sensitive to ENSO variability. In this section, we also show that similar behaviour can be identified for other regions that
exhibit a strong wetland seasonal cycle, namely Yucatán and Southern Africa.

D.1. Yucatán

In this section, we examine the seasonal cycle signal over the Yucatán peninsula area of Mexico, with particular focus on the Tabasco and
Campeche wetlands at the northern base of the peninsula. The Tabasco area contains the large Reserva de la Biosfera Pantanos de Centla, consisting
of primarily flooded freshwater swampland. The nearby Campeche region also contains the largest coastal lagoon on the Mexican shore of the Gulf of
Mexico, supporting in excess of 120,000 ha of mangrove forests. Fig. D.1 shows the full “Yucatán” region used in this analysis, with the SWAMP
wetland data indicating the location and types of wetlands present. The Tabasco and Campeche wetlands described above are clearly visible on the
northern coast at the base of the Yucatán Peninsula.

Fig. D.1. SWAMP wetland data showing the location and type of wetlands present in the Yucatán Peninsula region.

When examining the CH4 seasonal cycle for this region, we find that all of the model simulations do a reasonable job in capturing the general
magnitude and phase (standard deviation ranging from 4.16 to 5.16 ppb and the correlation coefficient ranging from 0.64 to 0.78). However, when
examining the wetland component in isolation, the wetland seasonal cycle is too weak compared to observations in all of the simulations for the peak
in wetland activity during September-November each year. In particular, 2010 and 2013 show the largest discrepancies against the model.

For 2010, the wetland GOSAT signal peaks at 13.88 ppb, compared to model values of 5.27 ppb (JULES-Leeds), 3.52 ppb (JULES-CEH), 3.62 ppb
(Bloom2012) and 9.29 ppb (WetCHARTs), with WetCHARTs the only simulation approaching a similar magnitude to GOSAT. For 2013, all of the
model simulations have a peak of less than 6 ppb (4.51–5.77 ppb), compared to a peak in the GOSAT data of almost 17.91 ppb. This suggests that all
of the emission estimates are missing a large wetland signal in this region. Again, analysis of the GRACE data for this area shows that 2010 and 2013
were both anomalous years, with the TWS in excess of 700mm, compared to values of between 200–400mm for the other years. The anomaly in
both the GOSAT-JULES difference and the GRACE satellite data are geographically consistent with the Tabasco/Campeche wetland areas, indicating
that it is this region driving the anomalies in the timeseries. The normalised integrated seasonal cycle signal for this region suggests that for 2013, all
the emission estimates underestimate the required emissions, with values ranging from 37%–48% of the observed signal.

D.2. Southern Africa

Here, we analyse in detail the region of Southern Africa, defined as 15°E to 33°E and 22°S to 8°S. This region encompasses wetlands, primarily
swampland and seasonally inundated grassland, in Zambia, Angola and Botswana. Although for this region both the modelled wetland and
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anthropogenic seasonal cycle magnitudes are comparable at ∼10 ppb, the fact that they are distinctly out of phase (with the wetland signal peaking
in March/April and the anthropogenic signal peaking in July/August) means that we can successfully identify and assess the peak in the wetland
component.

The behaviour in this region is extremely systematic, despite the phase being in good agreement, the peak from wetland emissions in the model
simulations are significantly lower than that of the observations. The maximum values of the GOSAT seasonal cycle range from
9.91–16.25± 1.74 ppb over the 5 years. The JULES-based simulations are significantly lower than this, ranging from 5.95–8.65±1.87 for JULES-
Leeds and 5.54–8.31± 1.87 for JULES-CEH. The two Bloom emission datasets for this region better reproduce the magnitude of the observed signal
than JULES, having peaks in the range of 11.30–15.60± 2.04(Bloom2012) and 9.62–13.11±1.97(WetCHARTs). The Bloom2012 simulation does
the best at reproducing the observations, with a correlation coefficient of 0.83 and a standard deviation of 3.96 ppb, both significantly better than the
other datasets. Overall, the observations suggest a peak to peak seasonal cycle magnitude of the wetland component of 22.47–27.07 ppb, compared
to values for the simulations of 10.42–13.91 ppb (JULES-Leeds), 9.72–11.91 ppb (JULES-CEH), 14.28–16.62 ppb (Bloom2012) and 12.36–13.67 ppb
(WetCHARTs).

Fig. D.2 shows the calculated JULES wetland fraction for March 2010 (left), along with the SWAMP wetland data (middle) and MODIS data (left).
The JULES wetland fraction suggests that the majority of wetlands in this region are located to the north-east. However whilst the SWAMP data does
show that this area contains the region's permanent water bodies, it also highlights that there is a large area of swampland and seasonally inundated
wetland in the centre of this region which is not represented in the JULES data. As the SWAMP data is static in time, we also use the MODIS
Normalized Difference Water Index (NDWI) which provides an indication of the water coverage in this region (Gao, 1996). Fig. D.2 (right) shows the
MODIS visible image for February/March 2010, overlaid with the MODIS NDWI data for this time period in red and the NDWI for later in the year,
during the dry season (August/September 2010) in blue. The blue areas therefore represent the permanent water bodies in this region and corre-
spond to the known locations of rivers and lakes (as shown in the central figure), whereas the red areas indicate seasonal wetlands. Whilst there is
clearly some indication of seasonally inundated wetlands in the north-east of this region, the large central wetland that is missing from the JULES
data strongly features here, giving further confidence that JULES misses this significant wetland area, leading to it significantly under-estimating the
seasonal cycle in this region (with annual normalised values ranging from 41% to 57% for JULES-Leeds and 39% to 53% for JULES-CEH). In contrast,
the Bloom2012 emissions, which use the GRACE data to identify wetland areas, performs far better in this region and correctly assigns emissions to
this central region (with annual normalised values ranging from 53% to 82%), indicating that correctly identifying the wetland extent in this region
is key to better reproducing the observed seasonal cycle.

Fig. D.2. Maps for the Southern Africa region showing the JULES wetland fraction (left), the SWAMP wetland data (centre) and the MODIS visible imagery overlaid with NDWI for the
wet (red) and dry (blue) seasons.
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