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S U M M A R Y
Seismic observations suggest that a stably stratified layer, known as the F-layer, 150–300 km
thick exists at the bottom of Earth’s liquid outer core. These observations contrast with the
density inferred from the Preliminary Reference Earth Model (PREM), which assumes an
outer core that is well-mixed and adiabatic throughout. The liquid core is composed primarily
of iron alloyed with a light component. A thermal boundary layer produces the opposite effect
on the density profile compared with the observations, and single phase, thermochemical
models do not provide a sufficient dynamic description of how light element is transported
across the F-layer into the overlying liquid outer core. We therefore propose that the layer can
be explained by a slurry on the liquidus, whereby solid particles of iron crystallize from the
liquid alloy throughout the layer. The slurry model provides a dynamic explanation of how
light element can be transported across a stable layer. We make two key assumptions, the first
of which is fast-melting where the timescale of freezing is considered short compared to other
processes. The second assumption is that we consider a binary alloy where the light element
is purely composed of oxygen, which is expelled entirely into the liquid during freezing. We
present a steady state 1-D box model of a slurry formulated in a reference frame moving at
the speed of inner core growth. We ascertain temperature, light element concentration and
solid flux profiles by varying the layer thickness, inner core heat flux and thermal conductivity,
since there is some uncertainty in these estimates. Our solutions demonstrate that the steady
state slurry can satisfy the geophysical constraints on the density jump across the layer and
the core–mantle boundary heat flux.
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1 I N T RO D U C T I O N

It is well established that a seismically distinct layer is located at
the base of the Earth’s outer core (Souriau & Poupinet 1991; Zou
et al. 2008; Adam & Romanowicz 2015; Ohtaki & Kaneshima
2015). This so-called ‘F-layer’ is characterized by an observed P-
wave velocity, Vp, that is slower compared with the Preliminary
Earth Reference Model (PREM) (Dziewonski & Anderson 1981).
Souriau & Poupinet (1991) argued that density, ρ, rather than the
bulk modulus, K, is more likely to vary in liquids at high pressure,
and therefore inferred from the relationship V 2

p = K/ρ that the
observed layer is denser than expected. PREM assumes that the
liquid core is chemically homogeneous and adiabatically stratified
throughout, so a slower Vp compared to PREM indicates stable
stratification at the base of the outer core that cannot be explained
by adiabatic compression alone.

The low Vp layer is consistently observed by seismology, how-
ever its thickness, d, is uncertain. Souriau & Poupinet (1991) and
Song & Helmberger (1992) independently obtained d ≈ 150 km.
The AK135 (Kennett et al. 1995) reference model features a 400-
km-thick layer. Zou et al. (2008) also observe a low Vp structure at
the base of the outer core that is 350 km thick. More recently, a layer
thickness of up to 380 km was reported by Ohtaki & Kaneshima
(2015). On the other hand, Adam & Romanowicz (2015) prefer a
300-km-thick layer with a Vp gradient greater than that of AK135
on top of a 50-km-lower velocity layer directly above the inner
core boundary (ICB). We consider here thicknesses in the range of
150 ≤ d ≤ 300 km.

The existence of a stably-stratified layer at the base of the outer
core has profound implications for understanding the geodynamo
and core evolution. The principal energy sources for sustaining the
present-day geodynamo are predominantly from compositional con-
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vection due to the release of light element during inner core growth
and thermal convection powered by secular cooling. Greater ther-
modynamic efficiency is achieved from compositional convection
(Nimmo 2015) driven by light element passing through the F-layer
into the overlying liquid outer core but it is presently unclear how
this is achieved while preserving the stable stratification. Conse-
quently, explaining the existence of the F-layer and how it may be
sustained is of great geophysical interest.

The exact composition and abundance of light elements in the
Earth’s core are not precisely known, though geochemical argu-
ments favour candidate elements such as oxygen, silicon and sul-
phur (e.g. Badro et al. 2015). Over time the core cools and the inner
core solidifies and grows. First principles calculations have shown
that for an Fe-(S,Si)-O mixture under core conditions, oxygen parti-
tions entirely into the liquid upon solidification whereas silicon and
sulphur partition evenly into the solid and liquid (Alfè et al. 2002b).

Previous work on the F-layer considers the possibility that a
purely thermal boundary layer could exist at the base of the Earth’s
outer core. Slower fluid velocity close to the solid inner core in-
hibits convective mixing, therefore a super-adiabatic temperature is
required to conduct heat out across the boundary layer. Density de-
creases with depth, since material at the bottom of the layer is hotter
and more thermally buoyant than the material at the top. This set-
up contradicts the seismically inferred density increase with depth,
and therefore the F-layer cannot be explained by a thermal boundary
layer (Gubbins et al. 2008).

Alternatively Gubbins et al. (2008) propose a two-component
layer constrained to the liquidus temperature to explain the F-layer.
The liquidus is the temperature that divides solid from liquid phase
and it is dependent on pressure and light element concentration.
Gubbins et al. (2008) assume a fixed layer thickness and impose a
light element concentration at the boundaries to match a range of
seismically determined density jumps, thus prescribing a compo-
sitionally stratified layer from the outset. The solutions are consis-
tent with suggested CMB heat flows using a lower estimate of the
thermal conductivity, however newly obtained thermal conductiv-
ity estimates are two to three times larger than previously thought
(Pourovskii et al. 2017; Pozzo et al. 2014; Gomi et al. 2013) which
will likely impact the results. The model outlined by Gubbins et al.
(2008) does not explain the origin of compositional stratification
since this is prescribed, and so a dynamic description how light ma-
terial moves around and ultimately out of the layer is still needed.

Convective translation has been proposed as a possible mech-
anism for explaining the F-layer. This particular deformationless
mode of motion can arise in convectively unstable conditions and
results in inner core freezing in the Western Hemisphere and melt-
ing in the Eastern Hemisphere. Alboussière et al. (2010) use a
low-thermal conductivity of 36 W m−1 K−1 that favours superadia-
batic conditions for thermal convection, and a high critical viscosity
on the order of 1018 Pa s accommodates convective instability by re-
ducing viscous deformation. The viability of this mechanism may
be limited by high-thermal conductivity estimates, which implies
that the inner core is thermally stratified. Compositional effects have
been proposed as an alternative pathway to inner core convection,
since freshly created solid at the ICB over the lifetime of the inner
core gives rise to unstable stratification as the concentration of iron
is progressively refined (Deguen et al. 2013). Gubbins et al. (2013)
find a weak chemical stratification caused by temperature dependent
partitioning of light elements, though Labrosse (2014) and Lythgoe
et al. (2015) find that unstable compositional effects are dominated
by thermal stratification and so inner core convection is unlikely to
occur. These models of convective translation are mainly concerned

with explaining the hemispherical asymmetry of the inner core, and
it is unclear whether the magnitude of this convection can explain
an F-layer hundreds of kilometres thick.

This paper aims to establish the dynamics of a slurry that allows
the passage of light material through the F-layer while retaining
a stable stratification. We extend the two-component, single phase
model by permitting a small amount of solid phase to crystallize
and create a slurry layer. We envisage solid iron particles freezing
throughout the slurry layer that sink under gravity towards the ICB
to grow the inner core, whilst the remaining light material migrates
to the outer core to power the dynamo without disturbing the stable
stratification. Our model builds on the work of Loper & Roberts
(1977, 1980, 1987) and Roberts & Loper (1987). Loper & Roberts
(1977) developed a full general theory before reducing it by assum-
ing that light element does not partition into the solid phase, and
that the fast-melting limit applies. These two key approximations
form the basis of our model.

A constant solid composition assumes that no light material is
incorporated into the solid upon freezing. We assume that the core
material can be approximated by a binary alloy composed of iron
and oxygen, since oxygen is expelled entirely into the liquid when
freezing an Fe-(S,Si)-O alloy, while silicon and sulphur are evenly
partitioned between the liquid and solid (Alfè et al. 2002b). The
constant solid assumption avoids the complex history dependence
of particle size on processes such as diffusion and sedimentation
of iron at previous locations with different conditions in pressure,
temperature and composition. The fast-melting limit assumes that
a change in phase occurs instantaneously compared with other rel-
evant time-scales in the slurry. This simplifies the thermodynamics
of the system so that regions of material can be clearly separated
into slurry and slurry-free regions and constrains the slurry to the
liquidus temperature, which is determined by the composition and
pressure at every point in the layer. If the temperature at any point
is higher than the liquidus temperature then the solid iron particles
there would completely melt, while if the temperature is below the
liquidus then the iron solidifies to release the latent heat necessary
to raise the temperature to the liquidus. Fast-melting is an approxi-
mation used to good effect in other iron snow models such as Davies
& Pommier (2018).

In this paper, we present a self-consistent, simplified model that
elucidates the key features of a slurry, and find steady state so-
lutions to compare with the geophysical observations. The slurry
theory is developed in Section 2 along with the necessary boundary
conditions for the steady state equations. Solutions to the model
should satisfy the geophysical constraints, namely that the density
jump across the layer should be consistent with seismology, and
that the core–mantle boundary heat flux should be within plausible
limits. Section 3 explores the effect of various layer thicknesses
and ICB heat fluxes on the steady state, and investigates the effect
of recent higher thermal conductivity estimates by comparing with
a lower thermal conductivity (Konôpková et al. 2016). Section 4
summarises the results and discusses the main assumptions of the
theory.

2 T H E O RY

The slurry model described in this section starts from the assump-
tions that the fast-melting limit applies and that the light element
partitions entirely into the liquid upon solidification of the alloy
(Loper & Roberts 1977). We consider a simple model of a binary
slurry in a Cartesian box, with no magnetic field and no rotation.
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A Boussinesq fluid is considered, where changes in density are as-
sumed to be small except in the buoyancy force, since variations
in core density are on the order of 0.1 per cent within hundreds of
kilometres of the ICB according to PREM (Dziewonski & Anderson
1981). For reference a list of all parameters is given in Table (A1).

2.1 Basic definitions

The slurry consists of a two component mixture: light oxygen al-
loyed with heavy iron. Given that oxygen partitions entirely into the
liquid upon solidification of the mixture (Alfè et al. 2002b), then
oxygen is always in the liquid phase, whereas iron may either be in
the solid or liquid phase. The components and phases are defined
by considering a small volume of material with oxygen mass, Ml

O,
liquid iron mass, Ml

Fe, and solid iron mass, Ms
Fe. Here the superscript

denotes the phase, with l for liquid and s for solid, and the subscript
denotes the composition, with O for oxygen and Fe for iron. The
mass fractions of light element, ξ , light element in the liquid phase,
ξ l and solid, φ are defined as

ξ = Ml
O

Ml
O + Ml

Fe + Ms
Fe

= Light element mass

Total mass
,

ξ l = Ml
O

Ml
O + Ml

Fe

= Light element mass

Liquid mass
,

φ = Ms
Fe

Ml
O + Ml

Fe + Ms
Fe

= Solid mass

Total mass
.

These definitions determine the relation

ξ = (1 − φ)ξ l , (1)

and its differential form

dξ = (1 − φ)dξ l − ξ ldφ, (2)

which will be used to develop the slurry equations later.

2.2 Conservation equations

We assume that density variations are small relative to the reference
density, so that the Boussinesq approximation can be used. The
reference density is chosen to be the value for pure liquid iron, ρl

Fe,
since the solid fraction in the slurry is small. Density variations
are neglected everywhere except in the buoyancy term where they
are multiplied by the gravitational acceleration. The total mass of a
slurry is conserved, therefore

∇ · u = 0, (3)

where u is the slurry velocity. Conservation of light material in the
slurry implies

ρl
Fe

Dξ

Dt
= −∇ · i, (4)

where i is the diffusive flux of light element (Landau & Lifshitz
1959; Loper & Roberts 1977). The solid fraction, φ, is not conserved
as it can be created or destroyed through freezing or melting, hence

ρl
Fe

Dφ

Dt
= −∇ · j + ms, (5)

where j is the solid flux of the iron particles and ms is a source term
that defines the rate solid particles are formed (Loper & Roberts
1977). Conservation of energy is given by

ρl
FeT

Ds

Dt
= −∇ · (T k) − i · ∇μl , (6)

where T is the temperature, s is the entropy, μl = μl
Fe − μl

O is the
chemical potential of the mixture in the liquid phase, which is the
free energy released when an atom of liquid oxygen replaces an atom
of liquid iron at constant p and T, and k is the entropy flux vector (see
eq. 5.26, Loper & Roberts 1977). The viscous dissipation is zero
because of the Boussinesq approximation, while internal heating
and the heat of reaction are ignored. Constitutive relations for the
light element flux, i, solid flux, j, and entropy flux, k, are derived in
Section2.3, eqs (18)–(21).

The momentum equation under the Boussinesq approximation,
with no rotation and no magnetic field, is given by

Du

Dt
= −∇

(
p′

ρl
Fe

)
− ρ ′

ρl
Fe

gẑ + ν∇2u + F, (7)

where p
′

is the non-hydrostatic pressure, ρ
′

is the density variation
due to buoyancy, g is gravitational acceleration, ẑ is the vertical
unit vector of the Cartesian box, pointing outwards and away from
the ICB, ν is the kinematic viscosity and F are other general body
forces. The density variation, ρ

′
, is given by

ρ ′ = ρl
Fe

[−αT ′ − αξ ξ
′ + αφφ′] , (8)

where α is the thermal expansion coefficient, αξ is the composi-
tional expansion coefficient, αφ = −ρl

Fe (∂V/∂φ)T,ξ is the phasal
expansion coefficient, and the primes denote the perturbations from
the reference value [see eqs (A2) and (A3)].

2.3 The liquidus and constitutive relations

The differential of the Gibbs free energy, without assuming a con-
stant solid composition for the moment, is (Loper & Roberts 1977)

d� = V dp − sdT + μldξ + φ
(
μs − μl

)
dξ s

+ [
μφ − (ξ s − ξ l )μl

]
dφ, (9)

where ξ s is light element in the solid phase, V is the specific volume,
μs = μs

Fe − μs
O is the chemical potential of iron relative to light

element in the solid phase, which is the free energy released when
an atom of solid oxygen replaces an atom of solid iron at constant p

and T, and μφ =
(

d�

dφ

)
p,T,ξ l ,ξ s

= �s − �l is the chemical potential

of solid relative to the liquid phase, which is also the difference
between the solid and liquid part of the Gibbs free energy (see the
Lever rule in Appendix A). Phase change (dφ �= 0) at constant
pressure, temperature and ξ requires d� = 0 to minimize the Gibbs
free energy at equilibrium, therefore

μφ − (ξ s − ξ l )μl = 0. (10)

If we briefly consider a variation in solid light element (dφ = 0
and dξ s �= 0), then μl = μs. The constant solid assumption, in
which ξ s = 0, means that μs no longer enters the theory as phase
equilibrium implies μl = μs everywhere, so μl is rewritten as μ

with no danger of ambiguity henceforth. Assuming that the liquid
and solid phases do not interact chemically, which is commonly
supposed in phase equilibrium, then the Lever rule can apply where
the Gibbs free energy is assumed linear in φ. Hence the phase
equilibrium condition (10) is equivalent to

�s − �l + ξ lμ = 0, (11)

where �s denotes Gibbs free energy of the solid and �l denotes the
Gibbs free energy of the liquid. The differential of (11) is also equal
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to zero at phase equilibrium, so

d�s = V sdp − ssdT,

d�l = V ldp − sldT + μdξ l ,

dμ = 	V l
Fe,Odp + ∂μ

∂T
dT + ∂μ

∂ξ l
dξ l , (12)

yields the liquidus relation

	V s,l
Fe dp − L

T
dT = ξ l ∂μ

∂ξ l
dξ l , (13)

where

− 	V s,l
Fe = −	V s,l

Fe,O + ξ l	V l
Fe,O,

L

T
= −ss + sl + ξ l ∂μ

∂T
.

Full details are included in Appendix A.
To complete the conservation equations, the constitutive form of

the light material flux i, solid flux j and entropy flux k must be
sought. We invoke the Onsager reciprocal relations together with
the fast-melting limit to obtain

i = −a∇μ − g∇T − ξ l j (14)

j = bξ l∇μ − f ∇T (15)

k = −(g − f ξ l )∇μ − c∇T . (16)

where a, b, c, f and g are coefficients to be determined (see eqs
2.1 and 2.2 of Loper & Roberts 1980). Small-scale responses of the
light element mass flux to temperature gradients, also known as the
Soret effect, are usually ignored (Gubbins et al. 2004), and the solid
flux is independent of temperature and compositional gradients,
therefore we must have (Loper & Roberts 1980)

f = −b

(
L

T
− ξ l ∂μ

∂T

)
,

g = −a
∂μ

∂T
. (17)

Upon substitution of (12), (13) and (17) into (14), the light element
flux becomes

i = −ρl
Fe D′	V s,l

Fe,O

ξ l (∂μ/∂ξ l )
∇ p + ρl

Fe D′L
T ξ l (∂μ/∂ξ l )

∇T − ξ l j, (18)

where a ≡ ρl
Fe D′/

(
∂μ/∂ξ l

)
(Landau & Lifshitz 1959), and D

′
is

the self-diffusion coefficient of the light material. The first term in
(18) corresponds to the barodiffusion of light material in the slurry
and occurs whether solid material is present or not. Variations in
∇ξ l depend on ∇p and ∇T through the liquidus, which is the cause
of the ‘Soret’-like behaviour in the second term of (18). The last
term accounts for the light element that is displaced by the flux of
solid particles snowing towards the ICB under gravity.

Substituting (12) and (17) into (15) and eliminating ∇ξ l via the
liquidus (13) yields the solid flux

j = b(φ)	V s,l
Fe,O∇ p, (19)

where b(φ) is the sedimentation coefficient. The mass flux, j, de-
scribes how the solid particles fall through the liquid in response
to a pressure gradient. The sole purpose of the sedimentation coef-
ficient is to relate the solid fraction, φ, with the solid flux, j. This
can potentially be described by a variety of elaborate crystal growth
models. For the sake of simplicity, we assume the iron snow flakes

are spherical particles falling with gravity against viscous drag,
known as Stokes flow. This gives

b(φ) ≡ kφφ5/3 =
[

ρs
Fe(ρ

l
Fe)2

162π 2ν3 N 2

]1/3

φ5/3, (20)

where N is the number of particles per unit volume. This model of
mobility is valid in the limit of φ 	 1. If φ exceeds a critical value,
then the slurry transitions to a solid matrix of mush, an effect that is
not supported by the current theory. If there are a small number of
very large particles or a large number of very small particles, then
both scenarios can produce the same solid flux. There is no likely
indication of what the particle size should be from observations
to constrain N, hence by considering solutions of j there is no
need to evaluate b(φ). Other more sophisticated models of crystal
growth and mobility [for example, crystallization of magma oceans
(Solomatov 2007)] could be incorporated into b(φ) to account for
factors such as particle shapes and hindered particle transport.

The entropy flux can be written (Loper & Roberts 1980)

k = − ∂μ

∂T
i − L

T
j − k

T
∇T . (21)

Together with the entropy differential, ds, derived using the Gibbs
free energy and Lever rule (see Appendix A), the energy equation
(6) becomes

ρl
Fecp

DT

Dt
= ∇ · (k∇T + Lj) + ρl

Fe L
Dφ

Dt
, (22)

where dξ l has been eliminated in favour of dp and dT via the
liquidus, and the heat of reaction and pressure freezing are neglected
(Gubbins et al. 2003).

2.4 Governing equations and parameter estimates

In summary, the general equations of a Boussinesq slurry are

ξ = (1 − φ)ξ l (23a)

ρl
Fe

Dξ

Dt
= −∇ · i (23b)

ρl
Fe

Dφ

Dt
= −∇ · j + ms (23c)

ρl
Fecp

DT

Dt
= ∇ · (k∇T + Lj) + ρl

Fe L
Dφ

Dt
(23d)

dT

dz
= T 	V s,l

Fe

L

dp

dz
− T ξ l

(
∂μ/∂ξ l

)
L

dξ l

dz
(23e)

i = −ρl
Fe D′	V s,l

Fe,O

ξ l (∂μ/∂ξ l )
∇ p + ρl

Fe D′L
T ξ l (∂μ/∂ξ l )

∇T − ξ l j (23f)

j = b(φ)	V s,l
Fe,O∇ p (23g)

∇ · u = 0 (23h)

Du

Dt
= −∇

(
p′

ρl
Fe

)
− ρ ′

ρl
Fe

gẑ + ν∇2u + F (23i)

ρ ′ = ρl
Fe

[−αT ′ − αξ ξ
′ + αφφ′] . (23j)

The above equations may be solved iteratively. Relation (23a)
together with the liquidus (23e) reduces the five thermodynamic

Downloaded from https://academic.oup.com/gji/article-abstract/214/3/2236/5040765
by University of Leeds user
on 27 July 2018



2240 J. Wong, C. Davies and C. A. Jones

variables {p, T, ξ , ξ l, φ} to three. Solving the energy equation (23d)
yields the temperature, T, which then determines ξ l from the liq-
uidus (23e). The light element equation, (23b), determines ξ , which
also determines φ through relation (23a). Eq. (23c) determines the
freezing rate, ms, which feeds back into the energy equation in the
next iteration.

Slurry behaviour is fundamentally distinct from thermochemical
convection. For example, in a system at constant pressure hot fluid
does not necessarily rise as it does in regular thermal convection,
since an increase in temperature reduces the concentration of light
material in the liquid phase to maintain the liquidus. The increase
in density from the reduction of light material can outweigh the de-
crease in density from the increasing temperature, therefore produc-
ing a stabilizing, bottom heavy layer. The most interesting feature of
this model is encapsulated in light element equation (23b), as it de-
scribes how light element can pass through a stably-stratified layer.
Light element can diffuse along a pressure gradient (barodiffusion)
or temperature gradient (‘Soret’-like effect), or be displaced up-
wards through the layer as solid particles sediment and fall towards
the ICB under gravity.

Given that the F-layer is thin compared to the rest of the outer
core, some parameter values are taken as constant since they do
not vary much across the layer, such as the specific heat capacity,
cp, latent heat, L, thermal, α, compositional, αξ , and phasal, αφ ,
expansion coefficients and isothermal compressibility, β. Values
used are listed in Table A1.

Ideal solution theory is used to estimate the specific volumes V l
Fe,

V s
Fe and V l

O, of the slurry mixture. An ideal solution experiences
no change in volume upon mixing. The validity of an ideal solu-
tion under core pressure and temperature conditions remains to be
checked by high pressure experiments or theoretical calculations.
Gubbins et al. (2004) argue that the ideal solution approximation
should be accurate for small concentrations of impurity, and the spe-
cific densities are given by ρO = 5.56 × 102 kg m−3, ρs

Fe = 12.76 ×
103 kg m−3 and ρl

Fe ≡ ρs
Fe − 	ρmelting = 12.52 × 103 kg m−3, where

the density drop upon melting is 	ρmelting = 0.24 × 103 kg m−3

(Alfè et al. 2002a). This assumes that the core material is com-
posed of an Fe-(Si,S)-O alloy, with 84 per cent iron, 8 per cent
silicon/sulphur and 8 per cent oxygen, where oxygen partitions en-
tirely into the liquid when the alloy solidifies (Alfè et al. 2002b).

The depression of the liquidus (23e) due to composition, and
thus the light element flux (23f), depends on the derivative of the
chemical potential with respect to ξ l. We use ideal solution theory
(Gubbins et al. 2004) to approximate the chemical potential by

μ = μ0 + RT
1000

aO
ln ξ l ,

where μ0 is a constant and R × 1000/aO converts from molar to mass
concentration, with R the gas constant and aO the atomic weight of
oxygen. Its thermodynamic derivative with respect to ξ l is therefore

ξ l ∂μ

∂ξ l
= RT

1000

aO
. (24)

Since ξ l cannot diffuse through solid material, Loper & Roberts
(1980) suggest that the diffusion coefficient D

′
can be linearly ap-

proximated as

D′ = (1 − φ)D̄, (25)

where D̄ is now a modified diffusion coefficient independent of
φ. First principles molecular dynamic simulations obtain D̄ ≈
10−8 m2s−1 (Pozzo et al. 2013).

Thermal conductivity at core conditions is difficult to calculate,
and its value significantly impacts thermal history models. Lower
thermal conductivity estimates found a nominal inner core age of a
billion years (Labrosse et al. 2001). However, recent higher conduc-
tivity estimates mean that the inner core is a much younger feature
of the Earth with an approximate age of 500 Myr (Nimmo 2015;
Gomi et al. 2013; Davies et al. 2015).

2.5 Steady state

The slurry layer is considered to be relatively thin compared to
the rest of the core, so we seek a reference state in a Cartesian
geometry, with ẑ the unit vector pointing away from the ICB. With
the aim of formulating a 1-D model, we assume no x, y dependence
( ∂

∂x , ∂

∂y → 0). The position of the ICB advances upwards at the rate
of inner core growth as solid particles accumulate at the base of
the layer. In a steady state, the slurry is time-independent

(
∂

∂t → 0
)

and static (u = 0). The time dependence of the advancing ICB
is removed by transforming to a frame of reference that moves
with the ICB, in a similar manner to Gubbins et al. (2008). This
transformation is given by

z = z′ − vt t = t ′, (26)

where z
′
and t

′
are the vertical and time coordinates in the rest frame,

with z and t the corresponding coordinates in the moving frame in
which the ICB advances at a constant speed v > 0. In the moving
frame in a steady state, the material derivative is given by

D f

Dt
≡ −v

d f

dz
, (27)

for an arbitrary scalar function, f. The light element (23b) and
temperature (23d) equations for a slurry system with an advancing
ICB become

ξ l d jz

dz
= gρl

Fe

d

dz

(
ρl

Fe D̄	V s,l
Fe,O

RT 1000
aO

)
− (

vρl
Fe + jz

) dξ l

dz
, (28)

− k
d2T

dz2
= vρl

Fecp
dT

dz
+ L

d jz

dz
, (29)

where the liquidus (23e) closes the equations, and the z-component
of the solid flux, jz, is given by (23g). Terms involving dφ/dz are
ignored since the solid fraction is small and not expected to vary
much in the layer.

2.6 Boundary conditions

The steady state equations (28), (29) and liquidus (23e) must be
solved subject to four boundary conditions. We assume that the
layer thickness, d, is fixed and cannot grow or shrink over time.
Continuity of ξ l at the core slurry boundary (CSB) at the top of
the layer yields the condition ξ l(d) = ξT, where ξT is the outer core
concentration of light element and is presumed to be 8 mol. per cent
of oxygen (Alfè et al. 2002b).

The total energy of the system is conserved, therefore

n · 〈k∇T〉 = 0 (30)

after ignoring Soret effects, viscous stress and the heat of reaction
(see eq. 3.23, Loper & Roberts 1987). Note that 〈a〉 = asl − al/s

is the jump in an arbitrary quantity a, with superscripts sl and l/s
denoting the value in the slurry and in the liquid/solid respectively.
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At the ICB this becomes

dT sl

dz
= − Qi

s

k
, (31)

where Qi
s is the secular cooling of the inner core. Note that the

latent heat flux is not included in this boundary condition, since
we assume that the growth of the inner core is entirely due to the
accumulation of solid particles from the slurry settling onto the ICB.
This also means that no new particles nucleate at the boundaries
and so solid is conserved, therefore applying the standard pill-box
argument (Loper & Roberts 1987) to (23c) gives

n · 〈ρφ (u − U)〉 + n · 〈j〉 = 0, (32)

where U is the boundary velocity. At the ICB, condition (32) be-
comes

ρslφsl (usl − U sl ) + j sl
z − ρsφs(us − U s) − j s

z = 0

⇒ j sl
z = −ρs

Fev (33)

where U sl = U s = v, the velocity of the ICB and φsl 	 1 in the
slurry. Here we use the fact that ρsl ≈ ρs, us = usl = j s

z = 0, and
φs = 1 in the solid inner core. The sign of the solid flux is negative
down towards the ICB since iron particles sediment under gravity.
Growth speed, v, is estimated by

v = ri

τi
(34)

where ri is the present-day inner core radius and τ i is the age of the
inner core. Speeds of 1.2 and 2.4 mm yr−1 correspond with inner
core ages of 0.5 and 1 Ga, respectively, and relate to the high and
low values of thermal conductivity through the core energy budget
(Davies et al. 2015). At the CSB condition (32) gives

ρslφsl (usl − U sl ) + j sl
z − ρlφl (ul − Ul ) − j l

z = 0

⇒ j sl
z = 0, (35)

where j l
z = φl = 0 in the liquid since no solid exists on the liquid

side of the CSB. Applying two boundary conditions on jz over-
constrains the steady state problem, therefore a free parameter is
introduced as follows to ensure (35) is satisfied, so that the solid
flux vanishes at the CSB.

We envisage a thin turbulent mixing sublayer at the top of the
slurry generated by the difference in the slurry and the liquid outer
core velocities. In the mixing sublayer diffusion is enhanced by
eddies that promote the transport of light element out of the slurry
layer into the rest of the outer core. This mechanism is incorporated
into the pre-existing light element barodiffusion term in (28), as this
process also transports light element out of the layer, albeit along
a pressure gradient. Enhancement is controlled by modifying the
self-diffusion coefficient, D̄. A functional form of D̄ is assumed by
the exponential function

D̄ = D0 exp

(
Fz

d

)
, (36)

where D0 ≈ 10−8 m2s−1 and F is a dimensionless free parameter
to be determined by forcing the solid flux to vanish at the CSB
as required by (35). Note that the product rule now applies to the
z-derivative of the barodiffusion term in (28).

2.7 Geophysical constraints

The steady-state model should satisfy several geophysical con-
straints. The density jump across the slurry layer should be con-
sistent with seismic observations. Gubbins et al. (2008) noted that

estimates of the density jump from normal mode studies, 	ρmod,
which have a resolution of several hundred kilometres, were gen-
erally larger than estimates from body waves, 	ρbod, which have
a high resolution of only a few kilometres. They suggested that
	ρbod represented the actual density jump across the ICB itself, but
that 	ρmod included the density jump across the stable layer as well
because of the lower resolution. The difference, 	ρmod − 	ρbod,
therefore represents the density jump across the stable layer. There
is considerable variation in the published estimates of 	ρmod and
	ρbod. PREM gives 	ρmod = 600 kg m−3 (Dziewonski & Anderson
1981) and other values can range up to 	ρmod = 820 ± 180 kg m−3

(Masters & Gubbins 2003). Body wave observations are as low as
	ρbod = 520 ± 240 kg m−3 (Koper & Dombrovskya 2005; Koper
& Pyle 2004), and as high as 	ρbod = 1100 kg m−3 (Tkal̆cić et al.
2009). The high 	ρbod estimate indicates that there is no detectable
density jump across the stable layer. The highest 	ρmod data (Mas-
ters & Gubbins 2003) is 820 + 180 = 1000 kg m−3, and the lowest
	ρbod data (Koper & Dombrovskya 2005; Koper & Pyle 2004) is
520 − 240 = 280 kg m−3, giving a maximum possible stable layer
density jump of 1000 − 280 = 720 kg m−3, which constrains the
maximum density jump in our slurry model to be consistent with
the seismic results. The variance in the range of permissible density
jumps is attributed to the limitations of different sampling tech-
niques employed in each seismic study (Deuss 2014).

Total density is given by the addition of the hydrostatic part
together with density fluctuations (23j) within the slurry. The hy-
drostatic contribution is

ρH =
(

βg(z − d) + 1

ρ(d)

)−1

, (37)

with ρ(d) coincident with the PREM value at the top of the layer.
Note that for a bottom-heavy layer the calculated density jump, 	ρ,
is negative, so its magnitude is presented in the results.

The heat flux across the CMB should be within acceptable lim-
its consistent with the core thermal history. Secular cooling of the
core volume, Qs, latent heat release from inner core growth, Ql,
and the gravitational energy, Qg, contribute to the CMB heat flux.
The gravitational energy is neglected in the slurry because of the
Boussinesq approximation since there is no viscous or ohmic dissi-
pation to balance the buoyancy flux in the F-layer (Anufriev et al.
2005), but is retained in the rest of the core as in Gubbins et al.
(2004). Pressure freezing is ignored since it is believed to be small
(Gubbins et al. 2004), and radiogenic heating is ignored for sim-
plicity. Present day estimates of the maximum CMB heat flow are
believed to be 12 ± 5 TW (Lay et al. 2008), and a minimum of
5 TW is deemed insufficient to power the geodynamo (Davies et al.
2015). Therefore acceptable steady state solutions should satisfy

5 TW ≤ Qc = Qs + Ql + Qg ≤ 17 TW, (38)

where the secular cooling term, Qs, is separated into three parts: the
secular cooling of the inner core, Qi

s , the slurry layer Qsl
s and the

rest of the adiabatic liquid outer core, Qo′
s . In general, the secular

cooling is given by

Qs = −
∫

V
ρcp

DT

Dt
dV, (39)

where DT/Dt = −vdTa/dz in the inner core and outer core [assuming
the inner core is adiabatically stratified (Labrosse et al. 2001)],
DT/Dt = −vdTl/dz using the liquidus gradient in the slurry and V is
the relevant volume of the inner core, slurry or the rest of the outer
core. The total ICB heat flux at the lower boundary, Qi = Qi

s + Ql ,
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Figure 1 (Clockwise from top left) Profiles of ξ l, temperature, solid fraction normalized by its value at the base of the layer, φB, and the solid flux. Layer
thickness is indicated by the legend (colour online). Secular cooling of the inner core is fixed at Qi

s = 1.6 TW and the thermal conductivity is equal to
107 W m−1 K−1, with an inner core age of τi = 0.5 Ga.

contains the latent heat flux,

Ql =
∫

Ai
L jz dAi , (40)

where Ai is the surface area of the inner core. The latent heat flux, Ql,
is not known a priori since no freezing occurs directly at the ICB,
and only the controlling parameter, the secular cooling of the inner
core, Qi

s , is input into the boundary condition (31). Gravitational
power over the rest of the outer core, excluding the F-layer, is given
by

Qg =
∫

V
ρψαξ

Dξ

Dt
dVo′ , (41)

where ψ is the gravitational potential and Dξ /Dt = −vdξ /dz. In
conventional thermal history models the CMB heat flux is directly
proportional to the core cooling rate dTc/dt (Nimmo 2015). When
a slurry is present this is not the case, because the secular cooling
in the slurry layer is conducted along the liquidus temperature gra-
dient rather than the adiabat. As a result, the slurry solutions are
characterized in terms of the inner core secular cooling.

3 R E S U LT S

We investigate the effect of layer thickness, variations of the ICB
heat flux and the impact of high versus low thermal conductivity
on a non-convecting, steady state slurry layer. All of the solutions
should be consistent with geophysical constraints such as the seis-
mic density jump across the layer, and give plausible CMB heat
fluxes. All other parameters are kept fixed as listed in Table A1.

3.1 Effect of layer thickness and ICB heat flux

Given the range of layer depths inferred from seismology in Sec-
tion 1 and the uncertainty in estimates of the ICB heat flux, layer
thicknesses between 150 and 300 km at different rates of inner core
secular cooling, Qi

s , are investigated. Initially a fixed thermal con-
ductivity of 107 W m−1 K−1 (Davies et al. 2015) with a young inner
core age of 0.5 Ga is investigated.

Figure 1 shows profiles of ξ l, T, jz and φ/φB (the solid fraction
normalized by its value at the base of the layer, φB) for a range of
depths with Qi

s = 1.6 TW. An increase in light element concentra-
tion to the outer core value of 8 mol. per cent is clearly observed,
and its depressing effect on the liquidus towards the top of the layer

Downloaded from https://academic.oup.com/gji/article-abstract/214/3/2236/5040765
by University of Leeds user
on 27 July 2018



A Boussinesq slurry model of the F-layer 2243

is evidenced by the steepening temperature gradient. Throughout
the layer the solid flux remains close to its value predetermined by
the inner core growth rate at the ICB and then quickly decreases
to zero at the top, where the effect of barodiffusion is enhanced
by the turbulent mixing layer. The solid fraction profile follows the
behaviour of the solid flux governed through using Stokes flow as a
model of mobility (20). The temperature at the CSB is continuous,
hence at the top of the layer the liquidus temperature is equal to the
adiabatic temperature, which is anchored at the ICB by the melting
temperature, Ti = 5500 K (Nimmo 2015). A departure in tempera-
ture from this anchor point is evident at the base of the layer, since
the actual temperature at the ICB increases due to the latent heat
transported there by falling solid particles that have crystallized in
the slurry. The slurry has developed an equilibrium by balancing
the latent heat released by the freezing snow with the heat lost by
cooling so that the temperature is on the liquidus everywhere in the
layer.

3.2 Effect of thermal conductivity and inner core age

We compare lower estimates of the thermal conductivity to the
solutions obtained with a higher thermal conductivity. A lower value
of k = 50 W m−1 K−1 (Konôpková et al. 2016), and an older inner
core age of 1 Ga is selected. The steady state is sensitive to the inner
core age through the speed of ICB advance, v, defined at the base of
the slurry, and this enters the boundary condition (33) for the solid
flux.

Profiles for a range of depths with a fixed secular cooling of
Qi

s = 0.8 TW are given in Figure 2. The speed of ICB advance has
halved, resulting in the same factor of reduction in the solid flux
imposed at the base of the layer. In comparison to the higher thermal
conductivity solutions the reduction in solid flux yields a reduction
in the light element concentration at the ICB, as less freezing occurs
to partition light element into the liquid. Less light element in the
liquid overall reduces the depression in the liquidus temperature. A
lower thermal conductivity restricts the amount of heat that can be
conducted through the layer, so more heat must be transported by
the slurry and greater temperatures are found in comparison to the
higher thermal conductivity case.

Figure 3 shows a phase diagram of solutions to the steady state
model comparing high and low thermal conductivity solutions. It
shows that a wide range of solutions satisfy the geophysical con-
straints on the density jump and the CMB heat flux. Increasing the
layer thickness increases the density jump across the layer at a fixed
Qi

s , and similar increases in density jump are observed when in-
creasing Qi

s for a fixed layer depth. There is a proportional increase
in the CMB heat flux with layer thickness since a larger slurry
volume releases more latent heat, and more secular cooling arises
because the liquidus gradient is steeper than the adiabat. Very high
estimates of the CMB heat flux are attained with Qi

s = 2 TW for
thicker layers with a high thermal conductivity.

Lower thermal conductivity models with smaller layer thick-
nesses can comfortably provide acceptable solutions with lower
rates of inner core secular cooling. Less heat is conducted down
the adiabat, and therefore more heat must be transported by the
slurry compared to high thermal conductivity models. The temper-
ature drop and hence the density jump increases across the layer
in turn. Conversely, a higher thermal conductivity decreases the
density jump across the layer significantly, since more heat is con-
ducted along the adiabat and reduces the temperature drop across
the slurry. A larger density jump requires a greater layer thickness

and/or stronger heating from inner core secular cooling to compen-
sate.

4 D I S C U S S I O N

We have developed a simplified model of a slurry system to explain
the dynamics of a seismically distinct layer at the base of the Earth’s
outer core. We propose that the F-layer can be explained by a slurry
layer where stable stratification arises from particles of iron freezing
out of the liquid alloy. As the iron particles fall under the influence
of gravity, residual light element migrates towards the CSB into the
rest of the outer core to help power the geodynamo. A steady state
slurry zone that is chemically stable and on the liquidus temperature
everywhere is consistent with the seismically inferred density jumps
for a range of layer thicknesses and inner core secular cooling.
Sensible values of the total CMB heat flux are achieved, using both
high and low k. Greater layer thickness, secular cooling at the ICB
and lower thermal conductivity tend to favour a larger density jump.

Several assumptions are made in order to produce a steady state
slurry model, and these are appraised in the following discussion.
These assumptions are

(i) fast-melting
(ii) constant solid
(iii) binary mixture
(iv) ideal solution theory
(v) fixed layer thickness
(vi) static slurry.

(i) The fast-melting limit considerably simplifies the thermody-
namics and constrains the system to remain in phase equilibrium,
hence the temperature follows the liquidus in the slurry. We expect
that the timescale of melting and freezing is much shorter than the
longer timescales (billions of years) of interest in the slurry. With-
out this limit departures from phase equilibrium must be incorpo-
rated into the constitutive relations using a macroscopic measure of
the microscopic crystal growth process (Loper 1992). Nucleation
may be a factor that can complicate the slurry model, in which
fast-melting covers the need for supercooling and the provision of
nucleation sites to overcome the energy barrier required to crystal-
lize solid iron particles. Classical nucleation theory suggests that
critical supercooling rates are as high as 1000 K for homogeneous
nucleation (Huguet et al. 2018), which is so large that the inner
core never freezes out. A less extreme position is that the degree
of supercooling sufficient for nucleation is attained only at the ICB
itself and a slurry never forms. Though possible it would be difficult
to explain the F-layer, and it’s not yet clear that a consistent ther-
mal and compositional structure could be found in this case. Alfè
et al. (2011) find no evidence of a barrier to melting/freezing using
molecular dynamics simulations, and find that the mean waiting
time to nucleate iron for a particular supercooling rate decreases as
the system size increases. The degree of supercooling required to
nucleate solid iron at core conditions during the onset of inner core
freezing is poorly constrained, therefore the extent to which nucle-
ation theory applies to the slurry model is limited in this period of
the Earth’s history. An initial slurry would be supercooled and the
model equations presented in this paper will not apply. However
once nucleation has occurred there will always be nucleation sites
on which snow can grow, so supercooling becomes less of an issue.
We believe, as did Roberts & Loper (1987), that once nucleation
sites have been created the slurry will evolve to a mature slurry state
in which fast-melting is a reasonable approximation to make.
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Figure 2 (Clockwise from top left) Profiles of ξ l, temperature, solid fraction normalized by its value at the base of the layer, φB, and the solid flux. Layer
thickness is indicated by the legend (colour online). Secular cooling of the inner core is fixed at Qi

s = 0.8 TW and the thermal conductivity is equal to
50 W m−1 K−1, with an inner core age of τi = 1 Ga.

(ii) Core material is modelled as a simple binary mixture com-
posed of iron and oxygen due to the constant solid assumption. The
solid inner core is lighter than if it were made of pure iron (Jeph-
coat & Olson 1987) so partitioning other species of light element,
such as silicon and sulphur, into the solid phase demands modelling
of the composition history within each solid grain. This was not
attempted in this study as modelling such a complex history sig-
nificantly complicates the mathematical problem (Roberts & Loper
1987). However we expect the main dynamic effect is caused by the
partitioning of oxygen when core material freezes, as this creates
the compositional density contrast between solid and liquid for light
element to rise out of the layer. We think that these approximations
are sensible compromises given present knowledge of the core.

(iii) Ideal solution theory is used to estimate parameters that are
difficult to measure experimentally at the relevant core pressures and
temperatures, such as changes in density and the chemical potential.
Ideal solutions exclude the possibility of chemical reactions between
iron and light element. Whilst ideal solution theory is accurate for
predicting densities, some studies suggest that it does not predict the
chemical potential or its derivatives well at core conditions (Gubbins
et al. 2004). Departures from ideal solution theory may steepen the

liquidus curve and its intersection with the adiabat that controls the
inner core growth rate, which may alter our results. Currently ideal
solution theory is sufficient, though we expect parameter estimates
to improve with future experiments.

(iv) Fixing the layer thickness at all times in a steady state model
means that the entire slurry layer advances with the growing inner
core at a constant speed. A turbulent mixing sublayer at the top
with enhanced diffusion is introduced as a consequence, to enable a
smooth transition at the CSB from a non-zero solid flux within the
slurry to zero solid flux outside of the slurry. This allows the passage
of light element from a high to low pressure environment, which
balances the fresh light element brought into the top of the layer
in the moving frame. Obtained solutions are not unique, and future
studies could consider a CSB that moves at a speed separate to the
ICB. Relaxing the steady state assumption allows the layer to grow
or shrink over time, and eliminates the need for introducing a free
parameter through the mixing layer. Considering the circumstances
leading to layer growth may provide insight into the origins of the
F-layer. Conditions surrounding a shrinking layer could indicate the
timescale in which the layer may be diminishing, which could be
longer than the timescales we can presently observe.
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Figure 3 A phase diagram of steady state solutions of the slurry. Layer thicknesses are indicated by the symbols in the legend. The imposed inner core secular
cooling (in TW) is given by the numbers enclosed. High conductivity solutions are grouped by filled in symbols, whereas low conductivity solutions are
grouped by unfilled symbols. Along the x-axis is the calculated density jump and along the y-axis is the CMB heat flux. The maximum density jump inferred
from seismology is 720 kg m−3 and the maximum plausible CMB heat flux is marked by the dashed line at 17 TW.

(v) The slurry is assumed to be static, however coupling the mo-
mentum equation (23i) to the system allows the convecting state
to be investigated. Exploring its linear stability may map out the
different regimes of slurry convection. Possible scenarios include a
phase instability that can arise when lateral variations of solid phase
induces overturning (Loper & Roberts 1987), or inner core convec-
tion from below could be connected to the model (Alboussière et al.
2010; Deguen et al. 2013). Nevertheless, maintaining a net stable
stratification will remain a key requirement in such a convecting
state in order to match the seismic observations.

Estimating mean solid particle size in models of particle mobility
is important in characterizing the freezing process. It is unlikely that
direct measurements of this property will be made in the Earth’s
core, however the advantage of our model is that we only need to
resolve the solid flux. The model of mobility is used solely to relate
the solid flux, j, to the solid fraction, φ. Further work investigating
the mobility may shed light on the range of admissible particle sizes
encountered in the core. Estimates of particle sizes in alternative
physical situations may benefit this problem—for example growth
and coagulation of raindrops used in meteorology (Loper & Roberts
1977), and iron snow models in Ganymede (Ruckrieman et al.
2015).

If the model conditions (i)–(vi) are met, then a present-day slurry
is likely to exist that can explain current geophysical observations.
If dTa/dp < dTl/dp < dTc/dp, where dTl/dp is the liquidus gradient
and dTc/dp is the conduction gradient, then a slurry is inevitable
(Loper & Roberts 1977). Estimates used in our current model for the
thermal conductivity and ICB heat flux satisfy the above inequality.
If dTc/dp < dTl/dp then freezing may occur directly onto the core
and a small conductive sublayer is possible. This case requires a
very low heat flux near the ICB.

Under the fast-melting limit our slurry model idealizes that the
inner core grows exclusively by solid particles settling at the ICB
under Stokes flow. Alternatively it has been proposed that the inner
core may grow through a mushy layer, where constitutional super-
cooling ahead of the ICB promotes dendritic crystal growth of solid
iron at the interface (Fearn et al. 1981). The mushy solid matrix is
permeated by interdendritic liquid channels, known as ‘chimneys’
that are enriched by residual light element (Mullins et al. 1964).
The solid fraction of a mush is significantly greater than a slurry, as
standard slurry theory considers φ 	 1. Deguen et al. (2007) con-
duct a linear stability analysis to find that the interdendritic spacing
is at least several metres wide at the ICB in its current state, with
an approximate layer thickness of 300 km extending below the ICB
into the inner core. The top of the mush is coincident with the ICB
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to be consistent with the sharpness of the seismic velocity jump at
the ICB (Fearn et al. 1981), and the mush is thought to be strongly
influenced by convection. Huguet et al. (2016) use experimental
methods to suggest that mush convection is the dominant regime
in the inner core, leaving a matrix with a solid fraction close to
unity without the effect of compaction (a collapsing mush). If the
inner core grows dendritically then a slurry layer cannot overlay a
mush, since dendrites would grow to the point where the liquidus
and adiabat intersect at the top of the F-layer which would have
been seismically visible.

The steady-state slurry model presented here provides a good
dynamic description of the present-day F-layer that agrees with cur-
rent geophysical constraints. Further work testing our assumptions
on how an evolving slurry layer couples to the thermal history of the
Earth can answer the questions surrounding the origins of a slurry
F-layer. Initial conditions surrounding F-layer formation may be
probed, such as supercooling and the nucleation of the first stable
iron crystal. Prior to inner core formation the adiabat may have
initially crossed the liquidus to create a slurry at the centre of the
Earth, or at an interior point away from the centre. If the latter is
true, then the liquid core may entrain the slurry once it had formed
from below the interior point by convection. Further work may also
concern coupling the F-layer to the inner core and rest of the outer
core, which may reveal potential feedback mechanisms.
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Alfè, D., Gillan, M.J. & Price, G.D., 2002a. Composition and temperature
of the Earth’s core constrained by combining ab initio calculations and
seismic data, Earth planet. Sci. Lett., 195, 91–98.
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Tkal̆cić, H., Kennett, B.L.N. & Cormier, V.F., 2009. On the inner-outer
core density contrast from PKiKP/PcP amplitude ratios and uncertainties
caused by seismic noise, Geophys. J. Int., 179, 425–443.

Zou, Z., Koper, K.D. & Cormier, V.F., 2008. The structure at the base of the
outer core inferred from seismic waves diffracted around the inner core,
J. geophys. Res., 113, B5.

A P P E N D I X : T H E R M O DY NA M I C
R E L AT I O N S

Consider the Gibbs free energy, �, where the pressure, p, temper-
ature, T, concentration of light material, ξ and solid fraction φ are
chosen to be the independent thermodynamic variables of the slurry
system. The differential of the Gibbs free energy under the constant
solid assumption (ξ s = 0) is

d� =
(

∂�

∂p

)
T,ξ,φ

dp +
(

∂�

∂T

)
p,ξ,φ

dT

+
(

∂�

∂ξ

)
p,T,φ

dξ +
(

∂�

∂φ

)
p,T,ξ

dφ

= V dp − sdT + μdξ + (μφ + ξ lμ)dφ (A1)

where V is the specific volume, s is the entropy, μ is the chemical
potential of iron relative to light material in the liquid, and μφ is the
chemical potential of the solid phase relative to the liquid phase.

The Gibbs free energy is a thermodynamic potential that yields
the differentials of the specific volume, dV, entropy, ds, and chemical
potential, dμ, required by the slurry theory. The differential of the
specific volume gives the density variation, ρ

′
, in (23j) and is given

by

dV ≡ dρ−1

= α

ρl
Fe

dT + αξ

ρl
Fe

dξ − αφ

ρl
Fe

dφ

= α

ρl
Fe

dT + αξ (1 − φ)

ρl
Fe

dξ l −
(

αφ

ρl
Fe

+ αξ ξ
l

ρ0

)
dφ (A2)

where

α

ρl
Fe

≡
(

∂V

∂T

)
p,ξ,φ

,
αξ

ρl
Fe

≡
(

∂V

∂ξ

)
p,T,φ

and the phasal coefficient αφ arises from the non-natural thermo-
dynamic derivative, manipulated using (2) along with the definition
of 	V s,l

Fe (A12) to give

− αφ

ρl
Fe

≡
(

∂V

∂φ

)
T,ξ

=
(

∂V

∂ξ l

)
T,φ

(
∂ξ l

∂φ

)
ξ

+
(

∂V

∂φ

)
T,ξ

= − ξ lαξ

ρl
Fe(1 − φ)

+ ∂

∂φ

(
∂�

∂p

)
T,ξ,φ

= − ξ lαξ

ρl
Fe(1 − φ)

+ ∂

∂p

(
∂�

∂φ

)
p,T,ξ

= − ξ lαξ

ρl
Fe(1 − φ)

+
(

∂

∂p
(μφ + ξ lμ)

)
T,ξ l

= −
(

ξ lαξ

ρl
Fe(1 − φ)

+ 	V s,l
Fe

)
. (A3)

Note that density variations due to pressure, dp, are assumed to be
negligible in the Boussinesq approximation in (A2).

The entropy differential is used to complete the energy equation
(23d), and is manipulated in a similar manner to give

ds = − α

ρl
Fe

dp + cp

T
dT + (1 − φ)

∂μ

∂T
dξ l −

(
ξ l ∂μ

∂T
+ L

T

)
dφ

(A4)

where

− α

ρl
Fe

≡
(

∂s

∂p

)
T,ξ l ,φ

,
cp

T
≡

(
∂s

∂T

)
p,ξ l ,φ

,

(1 − φ)
∂μ

∂T
≡

(
∂s

∂ξ l

)
p,T,φ

, −
(

ξ l ∂μ

∂T
+ L

T

)
≡

(
∂s

∂φ

)
p,T,ξ l

.

The chemical potential differential is used in the flux vectors i, j
and k in eqs (18), (19) and (21). This is given by

dμ = 	V l
Fe,Odp +

(
∂μ

∂T

)
p,ξ l φ

dT +
(

∂μ

∂ξ l

)
p,T,φ

dξ l , (A5)

where

	V l
Fe,O ≡

(
∂μ

∂p

)
T,ξ l ,φ

.

The Lever rule allows a significant simplification by assuming
that the liquid and solid phases do not interact chemically. As a
result, the Gibbs free energy is linear in φ and we can write

� = φ�s(p, T ) + (1 − φ) �l (p, T, ξ l ), (A6)

where �s is the solid part of the Gibbs free energy and �l is the
liquid part of the Gibbs free energy. Its exact differential is

d� = φd�s + (1 − φ)d�l + (
�s − �l

)
dφ. (A7)
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In terms of the independent thermodynamic variables p, T, ξ l and
φ, (A7) is equivalent to

d� =
(

φ
∂�s

∂p
+ (1 − φ)

∂�l

∂p

)
dp

+
(

φ
∂�s

∂T
+ (1 − φ)

∂�l

∂T

)
dT

+∂�l

∂ξ l
dξ l +

(
�s − �l + ξ l ∂�l

∂ξ l

)
dφ. (A8)

By comparing this with (A1), it can be seen that the specific volume,
V, entropy, s, and chemical potential, μ, follow a similar lever rule
with

V s ≡
(

∂�S

∂p

)
T

, V l ≡
(

∂�L

∂p

)
T,ξ l

,

−ss ≡
(

∂�s

∂T

)
p

, −sl ≡
(

∂�l

∂T

)
p,ξ l

,

μ ≡
(

∂�l

∂ξ l

)
p,T

, μφ ≡ �s − �l .

At phase equilibrium, the Gibbs free energy is minimized and
therefore d� = 0. By the fast-melting limit, a change in phase is
assumed to be instantaneous, so at constant pressure, temperature
and light material, a variation of the solid fraction (dφ �= 0) requires
that

μφ + ξ lμ = 0. (A9)

By comparison with (A8), this condition is equivalent to

�s − �l + ξ l ∂�l

∂ξ l
= 0. (A10)

The differential (A10) is also equal to zero at phase equilibrium, so(
V s − V l

)
dp − (

ss − sl
)

dT

+ξ l

(
	V l

Fe,Odp + ∂μ

∂T
dT + ∂μ

∂ξ l
dξ l

)
= 0 (A11)

through the Lever rule and the definition of dμ (A5). We define

− 	V s,l
Fe = −	V s,l

Fe,O + ξ l	V l
Fe,O (A12)

as the change in specific volume between the solid and liquid iron,
−	V s,l

Fe,O = V s − V l , is the change in specific volume between the
solid and liquid phase and 	V l

Fe,O is the change in specific volume
between light element and liquid iron. Similarly,

L

T
= −ss + sl + ξ l ∂μ

∂T
(A13)

defines the latent heat. The phase equilibrium condition (A11)
therefore yields the liquidus

ξ l ∂μ

∂ξ l
dξ l = 	V s,l

Fe dp − L

T
dT . (A14)
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Table A1. Commonly used symbols and estimates of slurry properties. For ease of reference, the corresponding symbols used in Loper & Roberts (1977,
1980, 1987) is provided in brackets.

Symbol Definition Estimate Units Source

ξ Light element concentration
ξ l Light element concentration in the liquid phase
φ Solid fraction
T Temperature K
p Pressure Pa
u Flow velocity m s−1

ri ICB radius 1.22 × 106 m PREM (Dziewonski &
Anderson 1981)

ro CMB radius 3.48 × 106 m PREM
d Layer depth 1.5–3 × 105 m Souriau & Poupinet (1991),

etc.
gρl

Fe Hydrostatic pressure gradient at r = ri 5.51 × 104 Pa m−1 PREM
	ρmelting Density drop upon melting 0.24 × 103 kg m−3 Alfè et al. (2002b)
β Isothermal compressibility 7.55 × 10−13 Pa−1 Gubbins et al. (2008)
ρO Specific density of light element 5.56 × 103 kg m−3 Gubbins et al. (2004)
ρl

Fe Specific density of liquid iron, reference density 12.52 × 103 kg m−3 Gubbins et al. (2004)
ρs

Fe (ρs) Specific density of solid 12.76 × 103 kg m−3 Gubbins et al. (2004)
	V l

Fe,O (δ̄) Change in specific volume between light element and liquid
iron

10.00 × 10−5 kg−1 m3

	V s,l
Fe,O (	V) Change in specific volume between liquid and solid phase 4.03 × 10−6 kg−1 m3

	V s,l
Fe (δ) Change in specific volume between liquid iron and solid iron 1.50 × 10−6 kg−1 m3

cp (Cp) Specific heat capacity 715 J kg−1 K−1 Gubbins et al. (2003)
α Thermal expansion coefficient 1 × 10−5 K−1 Davies et al. (2015)
αξ (ᾱ) Compositional expansion coefficient 1.1 Nimmo (2015)
αφ Phasal expansion coefficient 0.02
μ (μl) Chemical potential of light element relative to iron J kg−1

∂μ/∂ξ l (μ̄) Thermodynamic derivative of chemical potential w.r.t. ξ l J kg−1 Gubbins et al.
(2004)

μ0 Constant used in the logarithmic form of the chemical
potential

μφ (ψ) Chemical potential of solid relative to the liquid J kg−1

k Thermal conductivity 50–107 W m−1 K−1 Davies et al. (2015),
Konôpkova et al. (2016)

L Latent heat of fusion 0.75 × 106 J kg−1 Davies et al. (2015)
D

′
ξ l self–diffusion coefficient (dependent on φ) m2s−1

D̄ Modified self–diffusion ξ l coefficient (independent of φ) m2s−1

D0 ξ l self–diffusion coefficient 1 × 10−8 m2s−1 Pozzo et al. (2013)
F Turbulent mixing coefficient
ξT Light element fraction at the top of the slurry layer

(assumed to be 8 mol. per cent O) 0.0252 Alfè et al. (2002b)
v Speed of ICB advance 1.2–2.4 mm yr−1

τ i Inner core age 0.5–1 Ga Gomi et al. (2013)
Ti Temperature at ICB 5500 K Nimmo (2015)
Ta Adiabatic temperature K
Qi

s ICB heat flux (inner core secular cooling excluding the latent
heat flux)

0.8–2 TW

Qc CMB heat flux 12 ± 5 TW Lay et al. (2008)
Qs Secular cooling TW
Ql Latent heat flux TW
Qg Gravitational power TW
n Unit normal to the boundary of the ICB, pointing into the

slurry
i Light element flux vector kg m−2 s−1

j Solid mass flux vector kg m−2 s−1

k Entropy flux vector J
b(φ) Sedimentation coefficient kg m−3 s
ms Creation rate of solid particles kg m−3 s−1

Ml
O Mass of oxygen kg

Ml
Fe Mass of liquid iron kg

Ms
Fe Mass of solid iron kg

ρ
′

Density variation kg m−3

� Gibbs free energy J
V Specific volume m3 kg−1

s Entropy J K−1

R Gas constant 8.31 J K−1 mol−1
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